用户名: 密码: 验证码:
高速铁路弓网动态特性现代谱评估及故障图像智能识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铁路事业近年来蓬勃发展,而电气化牵引以其高效、节能、环保的特点获得了越来越多地应用。弓网系统是电气化牵引系统的核心之一,但由于接触网是工作在室外环境中单一无备用系统,弓网之间存在复杂地耦合和电能传输,因此故障率一直相对较高,是电力牵引系统的薄弱环节。随着电气化铁路通车里程不断增加,必须一方面从性能上有效地评估优化弓网动态特性,从基础上提高弓网性能,另一方面加强弓网系统安全检测监控,从而确保铁路高速、安全、可靠的运营。本文将改变目前主要以时域均值、标准差为主的简单统计特征弓网评估方法,将弓网动态特性一维物理信号和二维图像信号作为分析对象,利用现代信号处理手段,在频域/时频域对表征弓网基本动态性能和安全特征的信号展开研究。
     本文主要受到铁道部科技开发计划“牵引供电可靠性技术研究-空气动力对高速铁路大张力接触网波动性能影响研究”(2011J016-B),国家自然科学基金“电气化高速铁路接触网线谱研究”(No.51007074),教育部新世纪优秀人才支持计划(No. NECT-08-0825)及西南交通大学博士创新基金项目支持。
     为实现对表征弓网系统特性的信号进行更加准确的分析评估,论文将从弓网动态数据获取->弓网动态数据预处理方法->弓网动态数据统计特性评估->弓网时域评价指标改进->弓网频域评价指标改进->弓网故障图像信号识别方法研究几个方面出发,较为全面的研究了利用现代信号处理技术分析弓网系统特性的体系。主要研究工作如下:
     (1)在弓网动态数据获取方面,利用二次开发方法进行弓网自动化建模可有效提高建模效率、增强模型重复利用率、减少模型出错概率,对不同参数模型进行对比研究时更加便利。通过降温法和非线性材料特性对弓网模型进行优化可以获得更佳精确合理的弓网仿真模型并给出了接触线有限单元长度建议选择范围。利用EN50318标准进行建模分析并与西门子仿真结果比较分析,模型具有较高可信度。
     (2)为研究环境随机风对接触网波动特性的影响,在考虑大张力、接触线刚度、随机风条件下,提出了接触网波动传播速度修正计算公式。通过接触线截断风洞实验测定了两种高铁常用接触线的阻力系数和升力系数。构建了考虑风阻尼条件下弓网动力学方程。
     (3)为准确评估弓网动态特性,利用EEMD分解研究了不同检测信号相关性问题,与传统的3σ预处理相比,通过相关系数对接触压力数据预处理更加有效。对弓网接触压力数据进行了平稳性、周期性等基本统计特性分析。针对弓网接触压力周期性特点,提出一种利用改进的二阶差分标准差更加准确地评估弓网动态特性的方法,并从受电弓对接触线疲劳寿命影响角度证明了方法合理性。
     (4)利用现代信号谱分析方法,分析了不同参数下弓网动态特性谱特征。分析了利用ARMA模型进行弓网固有频率测试的可行性。利用弓网动态抬升谱分析了利用谱方法评估弓网耦合性能的优势,不但可识别弓网耦合优劣还可看到不良耦合出现的频率区间,为优化弓网关系提供参考。对弓网谱进行了量化表达方法的研究,为弓网动态特性分级评估提供了参考。
     (5)利用现代信号稀疏表示方法,研究了弓网检测二维图像信号的故障特征提取问题。证明了利用超完备曲波变换,可以很好的处理图像信号预处理、受电弓故障检测、接触网绝缘子故障识别等一系列问题,算法对二维故障信息识别的准确率较高,算法实现时间较短,可在可接受的时间范围内实现可靠的故障信息自动分析识别任务,为实现故障信息自动化识别提供了可行的方案。
The railway industry in our country develops fast in the recent years. The electric railway is the most efficient, energy-saving and environment-friendly railway system, so it has been used widely. The pantograph-catenary system is one of the key technologies in the electric railway. But its fault rates are very high because this system is a solo system without any redundancy, the force and power transmission mechanism are complex. It's a weakness in the electric railway. In order to keep the electric railway operation trustworthy and safe, the pantograph-catenary system's dynamic characteristics must be assessed effectively to promote its personal performance, and in the other hand, the system must be monitored efficiently to keep the safety. This paper do not use the traditional methods like mean and standard deviation in the time domain. The one dimension physical signals and two dimension image signals of the pantograph-catenary system are analyzed using the modern signal processing technologies in frequency domain or time-frequency domain.
     This paper is supported by the Scientific Project of Railway Ministry of China (2011J016-B); the National Natural Science Foundation of China(No.51007074); the New Century Excellent Talents in University of Education Ministry of China(No. NECT-08-0825); the PhD Innovation Fund of Southwest Jiaotong University.
     The main purpose of this research is to assess pantograph-catenary system characteristic signal accurately. Based on the modern signal processing technologies, the main work in the paper includes:the obtain of pantograph-catenary dynamic data-> the pre-process of the data-> the analysis of basic statistic characteristic-> the new assessment method in time domain-> the new assessment method in frequency domain-> the fault image intelligent identification.
     (1) The pantograph-catenary model automatic creation method using the secondary development technology is proposed to obtain the necessary data for analyzing the characteristic, and this method can promote the efficiency of model creation, improve the reuse rate, reduce the fault rate of creating the model and simplify the comparison between the different models. The model is modified using the falling temperature method and the nonlinear characteristics of material. The suggested choice of finite element length in the model is given. The model is proved reliable via the compare with EN50318and simulation of Siemens.
     (2) In order to research the influence of the wind to the catenary, the formula of catenary wave speed is modified considering the high tension, catenary stiffness and random wind. The wind tunnel test is performed to measure the lift coefficient and damp coefficient of catenary. The pantograph-catenary dynamic formula is constructed considering the extra wind damp.
     (3) In order to assess the pantograph-catenary characteristics, the correlation between different signals of system are analyzed using EEMD. The contact force data are pre-processed more accurately according to the correlation. The stationarity and periodicity of contact force data are assessed. A new second order difference standard deviation assessment method is proposed to assess the system characteristics. The rationality of this method is analyzed from the lifetime's point of view.
     (4) The pantograph-catenary characteristics showed by spectrum are analyzed by the modern signal spectrum technology. The catenary inherent frequencies are obtained from ARMA model. The advantage of spectrum analysis is showed by analyzing the pantograph-catenary coupling performance using the uplift spectrum, and the bad coupling frequency range can be found besides the basic result. Finally, the quantitative representation of spectrum is researched, and this can provide the reference of grading the pantograph-catenary characteristics.
     (5) The pantograph-catenary detection image signals are researched by using the modern signal sparse representation technology. The image pre-process, the pantograph crack fault, the insulator damage fault can be identified intelligently using curvelet transform. These algorithms are accurate and fast. Its time cost can be accepted. These algorithms provide the feasible scheme to monitor the pantograph-catenary system.
引文
[1]张卫华,沈志云.接触网动态研究[J].铁道学报.1991,13(04):26-33.
    [2]Park T, Kim B, Wang Y, et al. A catenary system analysis for studying the dynamic characteristics of a high speed rail pantograph[J]. Journal of Mechanical Science and Technology.2002,16(4):436-447.
    [3]Kim B W, Sung H G, Hong S Y, et al. Finite element nonlinear analysis for catenary structure considering elastic deformation[J]. CMES-Computer Modeling in Engineering and Sciences.2010,63(1):29-45.
    [4]Song S, Lee J, Waldron K J. Motion study of two-and three-dimensional pantograph mechanisms [J]. Mechanism and Machine Theory.1987,22(4):321-331.
    [5]张卫华,沈志云.受电弓动力学研究[J].铁道学报.1993,15(01):23-30.
    [6]梅桂明,张卫华.受电弓垂向动力学线性化模型及特性研究[J].铁道学报.2002,24(5):28-32.
    [7]Weihua Z, Yi L, Guiming M. Evaluation of the coupled dynamical response of a pantograph—catenary system:contact force and stresses[J]. Vehicle System Dynamics. 2006,44(8):645-658.
    [8]Rauter F G, Pombo J A, O, et al. Contact Model for The Pantograph-Catenary Interaction[J]. Journal of System Design and Dynamics.2007,1(3):447-457.
    [9]Wu T X, Brennan M J. Basic analytical study of pantograph-catenary system dynamics[J]. Vehicle System Dynamics.1998,30(6):443-456.
    [10]Collina A, Bruni S. Numerical Simulation of Pantograph-Overhead Equipment Interaction[J]. Vehicle System Dynamics.2002,38(4):261.
    [11]张卫华.准高速接触网动态性能的研究[J].西南交通大学学报.1997,32(02):67-72.
    [12]Zhai W M, Cai C B. Effect of locomotive vibrations on pantograph-catenary system dynamics[J]. VEHICLE SYSTEM DYNAMICS.1998,29S:47-58.
    [13]宦荣华,潘国峰,金伟良,等.计及列车车体随机振动影响时受电弓的随机动力响应[J].铁道学报.2010,32(03):39-42.
    [14]梅桂明.受电弓—接触网系统动力学研究[D].西南交通大学,2011.
    [15]吴燕,吴俊勇,郑积浩.基于有限元和空气动力学模型的高速受电弓动态性能仿真[J].西南交通大学学报.2009,44(06):855-859.
    [16]Pombo J, Ambrosio J, Pereira M, et al. Influence of the aerodynamic forces on the pantograph-catenary system for high-speed trains[J]. Vehicle System Dynamics.2009, 47(11):1327-1347.
    [17]蔡成标,翟婉明.高速铁路受电弓-接触网系统动态性能仿真研究[J].铁道学报.1997,19(05):38-43.
    [18]Arias E, Alberto A, Montesinos J, et al. A mathematical model of the static pantograph/catenary interaction [J]. International Journal of Computer Mathematics. 2009,86(2):333-340.
    [19]Scott P R, Rothman M. Computer Evaluation of Overhead Equipment for Electric Railroad Traction[J]. Industry Applications, IEEE Transactions on.1974, IA-10(5): 573-580.
    [20]靳蕃,吴章江.弹性为周期分布时架空导线振动稳定性的分析[J].力学学报.1965,8(03):186-195.
    [21]吴燕,吴俊勇,郑积浩.高速弓网系统动态振动性能的仿真研究[J].铁道学报.2009,31(05):113-117.
    [22]Brandani V, Galeotti G, Toni P. A FEM method combined with modal analysis for evaluating the dynamical performance of a pantograph[J]. Advances in Engineering Software.1992,14(3):171-177.
    [23]Rauter F G, Pombo J, Ambrosio J, et al. Multibody Modeling of Pantographs for Pantograph-Catenary Interaction[C]. Stuttgart, Germany:2007:205-226.
    [24]Gonzalez F J, Chover J A, Suarez B, et al. Dynamic analysis using finite elements to calculate the critical wear section of the contact wire in suburban railway overhead conductor rails.[J]. Proceedings of the Institution of Mechanical Engineers -- Part F Journal of Rail & Rapid Transit.2008,222(2):145-157.
    [25]Zhou N, Zhang W. Investigation on dynamic performance and parameter optimization design of pantograph and catenary system[J]. Finite Elements in Analysis and Design. 2011,47(3):288-295.
    [26]Cho Y H. Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper[J]. Journal of Sound and Vibration.2008,315(3):433-454.
    [27]张忠林.双弓作用下锚段关节处弓网耦合系统的动态受流分析[D].天津大学,2012.
    [28]郝方涛,吴积钦.基于ANSYS的接触网弹性计算[J].电气化铁道.2010(03):31-33.
    [29]吴燕.高速受电弓—接触网动态性能及主动控制策略的研究[D].北京交通大学,2011.
    [30]赵飞,刘志刚,张晓晓.基于有限元的高速弓网系统动态性能仿真研究[J].铁道学报.2012(08):33-38.
    [31]李受钊,柳萍,王月明,等.基于ADAMS/Simulink联合仿真的弓网振动控制分析[J].电力机车与城轨车辆.2011(06):35-37.
    [32]Zhang W, Mei G, Wu X, et al. Hybrid Simulation of Dynamics for the Pantograph-Catenary System[J]. Vehicle System Dynamics.2002,38(6):393.
    [33]梅桂明,张卫华.利用半实物半虚拟试验方法研究接触网参数对弓网接触力的影响[J].铁道学报.2004,26(01):33-39.
    [34]吴学杰,张卫华,梅桂明.受电弓/接触网半实物半虚拟混合模拟系统的研究[J].铁道学报.2002,24(01):14-18.
    [35]Manabe K, Morikawa T, Hikitaf M. On dynamics of overhead equipment and multi-pantograph system[J]. Quarterly Reports of RTRI.1986,27(1):21-25.
    [36]M L, B N. Zur dynamischen analyse des systems strom abnehmer und fahrleitung, dargestllt ambeispiel des intercity experimental [J]. VDI Berichte.1986(603):245-261.
    [37]Wu T X, Brennan M J. DYNAMIC STIFFNESS OF A RAILWAY OVERHEAD WIRE SYSTEM AND ITS EFFECT ON PANTOGRAPH-CATENARY SYSTEM DYNAMICS[J]. Journal of Sound and Vibration.1999,219(3):483-502.
    [38]Arnold M, Simeon B. Pantograph and catenary dynamics:A benchmark problem and its numerical solution[J]. Applied Numerical Mathematics.2000,34(4):345-362.
    [39]Park T, Han C, Jang J. Dynamic sensitivity analysis for the pantograph of a high-speed rail vehicle[J]. Journal of Sound & Vibration.2003,266(2):235-260.
    [40]Dr. Albreehht. Simulations model des system Oberleitung-skettenwerk and Stromabnehmer Elektrisehe Bahnen[C].1993
    [41]李丰良,孙焰.TSG_3受电弓的力学模型及运动微分方程[J].铁道学报.1998,20(06):120-122.
    [42]李瑞平,周宁,梅桂明,等.初始平衡状态的接触网有限元模型[J].西南交通大学学报.2009,44(05):732-737.
    [43]Kim J. An experimental study of the dynamic characteristics of the catenary-pantograph interface in high speed trains[J]. Journal of Mechanical Science and Technology.2007, 21(12):2108-2116.
    [44]周宁,张卫华.基于受电弓弹性体模型的弓网动力学分析[J].铁道学报.2009,31(06):26-32.
    [45]Kim J, Chae H, Park B, et al. State sensitivity analysis of the pantograph system for a high-speed rail vehicle considering span length and static uplift force [J]. Journal of Sound and Vibration.2007,303(3-5):405-427.
    [46]Zhang W, Mei G, Zeng J. A study of pantograph/catenary system dynamics with influence of presag and irregularity of contact wire[J]. VEHICLE SYSTEM DYNAMICS.2002,37S:593-604.
    [47]Cho Y H, Lee K, Park Y, et al. Influence of contact wire pre-sag on the dynamics of pantograph-railway catenary[J]. International Journal of Mechanical Sciences.2010, 52(11):1471-1490.
    [48]赵永清.新干线受流系统高速化技术研究[J].电气化铁道.1996(02):27-32.
    [49]Aboshi M. Estimation Method of Contact Line Unevenness using Dynamic Simulation[J]. IEEJ Transactions on Industry Applications.2006,126(7):983-988.
    [50]Bucca G, Collina A. A procedure for the wear prediction of collector strip and contact wire in pantograph-catenary system[J]. Wear.2009,266(1-2):46-59.
    [51]吴积钦.受电弓——接触网系统电接触特性研究[D].成都:西南交通大学,2009.
    [52]Midya S, Bormann D, Schutte T, et al. Pantograph Arcing in Electrified Railways-Mechanism and Influence of Various Parameters-Part II:With AC Traction Power Supply[J]. Power Delivery, IEEE Transactions on.2009,24(4):1940-1950.
    [53]何宏叶.接触网硬点形成原因及减少接触网硬点产生的建议[J].上海铁道科技.2008(03):54-55.
    [54]于涤.高速接触网受流的理论分析[J].铁道学报.1998,20(05):58-64.
    [55]于万聚.高速接触网-受电弓系统动态受流特性研究[J].铁道学报.1993,15(02):16-27.
    [56]周宁,张卫华.双弓作用下弓网动力学性能[J].西南交通大学学报.2009,44(04):352-357.
    [57]翟婉明,蔡成标.机车-轨道耦合振动对受电弓-接触网系统动力学的影响[J].铁道 学报.1998,20(01):32-38.
    [58]郭京波,杨绍普,高国生.高速铁路接触网-受电弓系统受流稳定性[J].动力学与控制学报.2004,2(03):60-63.
    [59]郭京波.高速机车受电弓稳定受流与控制研究[D].北京交通大学,2006.
    [60]梅志红,王冰容,邓文华.接触网受流质量综合评价手段的研究[J].华东交通大学学报.1997,14(04):15-21.
    [61]张媛,秦勇,程晓卿,等.基于改进NARX神经网络的接触线表面不平顺与弓网接触力关联分析方法[J].中国铁道科学.2012(3):84-91.
    [62]Collina A, Fossati F, Papi M, et al. Impact of overhead line irregularity on current collection and diagnostics based on the measurement of pantograph dynamics[J]. Proceedings of the Institution of Mechanical Engineers--Part F--Journal of Rail & Rapid Transit.2007,221(4):547-559.
    [63]陈康.电力机车受电弓的三维多体动力学模型研究[J].机车电传动.2006,(05):11-14.
    [64]Bruni S, Bucca G, Collina A, et al. Pantograph-Catenary dynamic interaction in the medium-high frequency range[J]. Vehicle System Dynamics.2004,41:697-706.
    [65]谢建.电气化铁路接触网不平顺分析及功率谱研究[D].西南交通大学,2010.
    [66]Kudo S, Honda S, Ikeda M. Contact force signal analysis of current collecting with bispectrum and wavelet[C]. Tokyo:Soc. Instrument & Control Eng,2002:2478-2482.
    [67]Barmada S, Landi A, Papi M, et al. Wavelet multiresolution analysis for monitoring the occurrence of arcing on overhead electrified railways[J]. Proceedings of the Institution of Mechanical Engineers-Part F--Journal of Rail & Rapid Transit.2003,217(3): 177-187.
    [68]赵波.弓网振动在线检测及信号分析[D].西南交通大学,2007.
    [69]Zhang Q, Que P, Mao Y. Feature extraction of ultrasonic flaw signals of pipelines using Hilbert-Huang transform[C]. Sanya, Hainan, China:Inst. of Elec. and Elec. Eng. Computer Society,2008:156-160.
    [70]Amin P, Subbalakshmi K P. Detecting hidden messages using image power spectrum[C]. San Antonio, TX, United states:Inst. of Elec. and Elec. Eng. Computer Society,2006:1421-1424.
    [71]Samuelsson J, Hedelin P. Recursive coding of spectrum parameters[J]. IEEE Transactions on Speech and Audio Processing.2001,9(5):492-503.
    [72]樊剑,刘铁,胡亮.基于现代时频分析技术的地震波时变谱估计[J].振动与冲击.2007,26(11):79-82.
    [73]Matz G, Hlawatsch F, Kozek W. Generalized evolutionary spectral analysis and the Weyl spectrum of nonstationary random processes[J]. IEEE Transactions on Signal Processing.1997,45(6):1520-1534.
    [74]Molla M K I, Hirose K. Single-mixture audio source separation by subspace decomposition of hilbert spectrum[J]. IEEE Transactions on Audio, Speech and Language Processing.2007,15(3):893-900.
    [75]王珍,丁子佳,李玉光,等.局域波自回归谱及其在柴油机故障诊断中的应用研究[J].内燃机工程.2004,25(03):51-53.
    [76]王军,王志伟.多层堆码包装系统冲击动力学特性研究(Ⅰ):冲击谱[J].振动与冲击.2008,27(08):106-107.
    [77]Antoni J. The spectral kurtosis:a useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing.2006,20(2):282-307.
    [78]张中民,卢文祥,杨叔子,等.基于小波系数包络谱的滚动轴承故障诊断[J].振动工程学报.1998(01).
    [79]赵纪元,何正嘉,孟庆丰,等.小波包—自回归谱分析及在振动诊断中的应用[J].振动工程学报.1995(03).
    [80]杨宇,于德介,程军圣.基于Hilbert边际谱的滚动轴承故障诊断方法[J].振动与冲击.2005,24(01):71-72.
    [81]曹明红,齐丕骞,葛森.涉及双模态应力响应谱的振动疲劳寿命估算方法[C].中国陕西西安:2008:页码.
    [82]祝济之,杨志鹏.多维随机振动试验中的互谱控制技术[J].航天器环境工程.2010,27(05):621-624.
    [83]张格明.中高速条件下车红桥动力分析模型与轨道不平顺影响[D].铁道部科学研究院,2001.
    [84]陈宪麦.轨道不平顺时频域分析及预测方法的研究[D].铁道部科学研究院,2006.
    [85]Weihua M, Shihui L, Rongrong S. Influence of Track Irregularity on Longitudinal Vibration of Wheelset and Correlation Performance [J]. Journal of Southwest Jiaotong University.2006,14(03):238-251.
    [86]Chong L, Hongxia C, Jianhui L. Research of Track Irregularity Spectrum Based on Modern Signal Processing[C].2005:152-155.
    [87]Nagasaka S, Aboshi M. Measurement and Estimation of Contact Wire Unevenness[J]. Quarterly Report of RTRI.2004,45(2):86-91.
    [88]Aboshi M, Shimizu M, Okimoto F. Unevenness of Sliding Surface of Overhead Rigid Conductor Line and its Reduction Method[J]. RTRI report.2011,25(4):29-34.
    [89]韩柱先,王国梁.刚性接触网的不平顺分析[J].铁道工程学报.2007(04):61-64.
    [90]谢建,刘志刚,韩志伟,等.弓网耦合动力学模型仿真及接触网不平顺分析[J].电气化铁道.2009(6):23-26.
    [91]刘志刚.电气化高速铁路接触网线谱研究[J].学术动态.2009(02):5-7.
    [92]宦荣华,焦京海,苏光辉,等.计及接触线垂向不平顺的弓网耦合动力学分析[J].铁道学报.2012,37(7):24-29.
    [93]黎国清,许贵阳.高速综合检测列车技术交流总结[R].北京:铁道科学研究院,2004.
    [94]O'Donnell C, Palacin R, Rosinski J. Pantograph Damage and Wear Monitoring System[C].2006:178-181.
    [95]Shing A W C, Pascoschi G. Contact wire wear measurement and data management[C]. Birmingham, United kingdom:Institution of Engineering and Technology, 2006:182-187.
    [96]Boffi P, Cattaneo G, Amoriello L, et al. Optical Fiber Sensors to Measure Collector Performance in the Pantograph-Catenary Interaction [J]. Sensors Journal, IEEE.2009, 9(6):635-640.
    [97]刘杰.接触网参数的非接触检测[J].电气化铁道.1998(02):43-45.
    [98]刘芳,王黎,高晓蓉,等.受电弓与接触网间的接触压力检测研究[J].电力机车与城轨车辆.2006(06):19-21.
    [99]任世光.新型滑板磨耗检测及自动降弓装置[J].铁道运营技术.2000,6(04):139-141.
    [100]吴积钦.电气化铁道接触线拉出值检测装置[J].铁道学报.1996,18(02):78-81.
    [101]刘浩,王黎,高晓蓉.电力机车受电弓离线检测技术的现状及展望[J].机车车辆工艺.2004(06):1-4.
    [102]刘真梅,刘淑梅,吴东波,等.接触网几何参数的道外测量[J].山东科学.2004,17(01):67-69.
    [103]Hofler H, Dambacher M, Dimopoulos N, et al. Monitoring and inspecting overhead wires and supporting structures[C]. Parma, Italy:Institute of Electrical and Electronics Engineers Inc.,2004:512-517.
    [104]刘月苏,刘真梅,文骁阳,等.激光接触网检测仪的研究[J].电气化铁道.2002(4):29-30.
    [105]彭朝勇,王黎,高晓蓉,等.接触网导线高度动态检测系统[J].光电工程.2004(S1):91-93.
    [106]Kuen L K, Lee T K Y, Ho S L, et al. A novel intelligent train condition monitoring system coupling laser beam into image processing algorithm[J]. Transactions Hong Kong Institution of Engineers.2006,13(1):27-33.
    [107]Kimura S. Development of an automated consumables control system[J]. Japanese Railway Engineering.1993,32(3):21-24.
    [108]Puschmann R, Wehrhahn D. Ultrasonic measurement of contact wire position[J]. eb Elektrische Bahnen.2011,109(7):323-324.
    [109]尹保来,王伯铭.超声波测距原理在受电弓磨耗检测中的应用[J].机车电传动.2008(05):57-59.
    [110]孙丰晖,王伯铭.双滑板受电弓磨耗的超声波检测方法[J].机电产品开发与创新.2011,24(03):129-131.
    [111]范虎伟,卞春华,朱挺,等.非接触式接触网定位器坡度自动检测技术[J].计算机应用.2010,30(S2):102-103.
    [112]Landi A, Menconi L, Sani L. Hough transform and thermo-vision for monitoring pantograph-catenary system[J]. Proceedings of the Institution of Mechanical Engineers--Part F--Journal of Rail & Rapid Transit.2006,220(4):435-447.
    [113]冯倩,陈维荣,王云龙,等.受电弓滑板磨耗测量算法的研究[J].铁道学报.2010,32(01):109-113.
    [114]江杰.接触网风偏量检测系统设计与实现[D].中南大学,2009.
    [115]杨红梅,刘志刚,韩志伟,等.基于仿射不变矩的电气化铁路绝缘子片间夹杂异物检测[J].铁道学报.2013,35(04):30-36.
    [116]Candes E J. Ridgelts theory and applications [D]. Stanford University,1998.
    [117]Le Pennec E, Mallat S. Sparse geometric image representations with bandelets[J]. IEEE Transactions on Image Processing.2005,14(4):423-438.
    [118]Donoho D L, Huo X. Beamlets and Multiscale Image Analysis[M]. Berlin:Springer Berlin Heidelberg.
    [119]Do M N, Vetterli M. The contourlet transform:An efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing.2005,14(12): 2091-2106.
    [120]Candes E. New tight frames of curvelets and optimal representations of objects with piecewise-C2 singularities [J]. Comm. Pure Appl. Math.2002(57):219-266.
    [121]张桂南,刘志刚,韩烨,等.接触网棒式绝缘子故障检测的快速模糊匹配方法[J].铁道学报.2013:27-33.
    [122]Yangkai, Wangli, Gaoxiaorong, et al. Application of CCD measurement technique for wear on pantograph sliding plates[C]. chengdu:The International Society for Optical Engineering,2009:34-37.
    [123]陈坤峰,刘志刚,韩志伟,等.基于曲波域移动平行窗的受电弓滑板裂纹识别[J].铁道学报.2012,34(10):43-47.
    [124]陈坤峰.基于曲波变换的受电弓滑板裂纹故障检测[D].西南交通大学,2011.
    [125]周宁.ANSYS APDL高级工程应用实例分析与二次开发[M].北京:中国水利水电出版社,2007.
    [126]杨风利,杨靖波,李正,等.覆冰输电线路脱冰跳跃及抑制方法研究[J].振动与冲击.2010(05):20-25.
    [127]于万聚.接触网设计及检测原理[M].北京:中国铁道出版社,1991.
    [128]周东朋,吴俊勇,吴燕,等.京津城际高速铁路弓网动态系统有限元仿真[J].交通运输工程学报.2009,9(01):25-28.
    [129]冯超,韩俊杰,苗杰,等.基于有限元方法的接触网吊弦长度计算[J].电气化铁道.2012(04):1-4.
    [130]陈维荣,李文豪,张倩,等.几种高速受电弓/接触网系统性能的比较[J].西南交通大学学报.2009(3):354-359.
    [131]工晖,张忠林,毕继红.双弓作用下锚段关节处弓网耦合系统受流分析[J].铁道标准设计.2011,(11):104-107.
    [132]于万聚.高速电气化铁路接触网[M].成都:西南交通大学出版社,2003.
    [133]李丰良,粟谦,孙焰.接触网的力学模型及运动微分方程[J].长沙铁道学院学报.1996,14(02):90-93.
    [134]胡少伟,苗同臣.结构振动理论及其应用[M].北京:中国建筑工业出版社,2005.
    [135]Kiebling.电气化铁道接触网[M].北京:中国电力出版社.
    [136]程维.电气化铁道受电弓—接触网系统受流特性研究[D].成都:西南交通大学,2007.
    [137]易东云,王正明.测量数据建模与参数估计[M].长沙:国防科技大学出版社,1996.
    [138]Kalamkar S S, Banerjee A, Roychowdhury A. Malicious user suppression for cooperative spectrum sensing in cognitive radio networks using Dixon's outlier detection method[C]. Kharagpur:2012:1-5.
    [139]Pop S, Ciascai I, Pitica D. Statistical analysis of experimental data obtained from the optical pendulum[C]. Romania:Pitesti:2010:207-210.
    [140]Grubbs F E. Sample Criteria for Testing Outlying Observations[J]. Annals of mathematical statistics.1950,21(1):27-58.
    [141]Angiulli F, Basta S, Pizzuti C. Distance-based detection and prediction of outliers[J]. Knowledge and Data Engineering, IEEE Transactions on.2006,18(2):145-160.
    [142]李斌,刘学毅.基于随机振动理论的我国中高速铁路有砟轨道设计轮载研究[J].铁道学报.2010,32(05):114-118.
    [143]李大为.德国接触网动态接触压力检测及其缺陷判别技术浅析[J].铁道标准设计.2005(08):101-102.
    [144]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceeding of Royal Society London.1998,454(12):903-995.
    [145]Wu Z, Huang N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis.2009,1(1):1-41.
    [146]高燕,林建辉,李翀.磁悬浮轨道长波不平顺测试数据的预处理及时域分析[J].计算机应用.2009,29(S1):353-355.
    [147]陈秀方,金守华,曾华亮.客运专线轨道不平顺功率谱分析[J].中国工程科学.2008,10(04):56-59.
    [148]刘秀波,吴卫新.钢轨焊接接头短波不平顺功率谱分析[J].中国铁道科学.2000,21(02):28-36.
    [149]王燕.应用时间序列分析[M].北京:中国人民大学出版社,2005:90-97.
    [150]毕继红,陈花丽,任洪鹏.基于雨流计数法的接触线疲劳寿命分析[J].铁道学报.2012(06):34-39.
    [151]Khosrovaneh A K, Dowling N E. Fatigue loading history reconstruction based on the rainflow technique[J]. International Journal of Fatigue.1990,12(2):99-106.
    [152]Cenelec.European Committee for Electro technical StandardizationEN50419[S].2001.
    [153]Choi B. ARMA Model Identification[M]. New York:Springer-Verlag,1992.
    [154]Burnham, Kenneth P, Anderson. Model Selection and Multi-Model Inference[M]. New York:Springer-Verlag,2002.
    [155]Woodward W A, Gray H L. On the Relationship Between the S Array and the Box-Jenkins Method of ARMA Model Identification[J]. Journal of the American Statistical Association.1981,76(375):579-587.
    [156]Akaike H. A new look at the statistical model identification[J]. Automatic Control, IEEE Transactions on.1974,19(6):716-723.
    [157]Akaike H. On entropy maximization principle[J]. Applications of statistics.1977: 27-41.
    [158]Akaike H. Power spectrum estimation through autoregressive model fitting[J]. Annals of the Institute of Statistical Mathematics.1969,21(1):407-419.
    [159]Gooijer J G D, Abraham B, Gould A, et al. Methods for Determining the Order of an Autoregressive-Moving Average Process:A Survey [J]. International Statistical Review/Revue Internationale de Statistique.1985,53(3):301-329.
    [160]Chow J. On estimating the orders of an autoregressive moving-average process with uncertain observations [J]. Automatic Control, IEEE Transactions on.1972,17(5): 707-709.
    [161]张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    [162]Mcquarrie A D R, Chih-Ling T. Regression and Time Series Model Selecction[M]. Singapore:World Scientific Publishing,1998.
    [163]应怀樵,敖清波,徐慧,等.桥梁振动的ARMA法分析及与AR、MEM和FFT法的比较研究[J].铁道学报.1988(01):17-24.
    [164]Smail M, Thomas M, Lakis A. ARMA models for modal analysis:Effect of model orders and sampling frequency[J]. Mechanical Systems and Signal Processing.1999, 13(6):925-941.
    [165]James G H. Extraction of modal parameters from an operation HAWT using the natural excitation technique (NEXT)[C]. New Orleans, LA, USA:Publ by ASME, 1994:227-232.
    [166]Bonato P, Ceravolo R, De Stefano A, et al. Use of cross-time-frequency estimators for structural identification in non-stationary conditions and under unknown excitation[J]. Journal of Sound and Vibration.2000,237(5):775-791.
    [167]杨叔子,吴雅,轩建平.时间序列分析的工程应用[M].第二版.武昌:华中科技大学出版社,2007.
    [168]Alberto A, Benet J, Arias E, et al. A high performance tool for the simulation of the dynamic pantograph-catenary interaction[J]. Mathematics and Computers in Simulation.2008,79(3):652-667.
    [169]Kia S H, Bartolini F, Mpanda-Mabwe A, et al. Pantograph-catenary interaction model comparison[C]. NJ:IEEE,2010:1584-1589.
    [170]Candes E, Demanet L, Donoho D. Fast discrete curvelet transforms [J]. Multiscale Model. Simul.2005,5(3):861-899.
    [171]Jean-Luc S, Candes E J, Donoho D L. The curvelet transform for image denoising[J]. Image Processing, IEEE Transactions on.2002,11(6):670-684.
    [172]Choi M, Kim R Y, Nam M, et al. Fusion of multispectral and panchromatic satellite images using the curvelet transform [J]. IEEE Geoscience and Remote Sensing Letters.2005,2(2):136-140.
    [173]Starck J L, Murtagh F, Candes E J, et al. Gray and color image contrast enhancement by the curvelet transform[J]. Image Processing, IEEE Transactions on.2003,12(6): 706-717.
    [174]Xuli Z, Laine A F, Geiser E A. Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing[J]. Medical Imaging, IEEE Transactions on.1998,17(4):532-540.
    [175]Nezhadarya E, Shamsollahi M B. Image Contrast Enhancement by Contourlet Transform[C]. Zadar:2006:81-84.
    [176]Serra J. Introduction to mathematical morphology [J]. Computer Vision, Graphics, and Image Processing.1986,35(3):283-305.
    [177]胡晓辉,张晓颖,陈俊莲.一种融合小波变换和数学形态学的图像边缘检测算法[J].铁道学报.2011,33(03):45-48.
    [178]徐岩,雷涛.基于形态学方法的车道线检测算法研究[J].铁道学报.2009,31(01):107-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700