用户名: 密码: 验证码:
装备自主维修保障关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在装备技术发展与作战样式演变的推动与牵引下,装备维修保障朝着“科学预知,精确保障”的目标发展。装备自主维修保障系统(Autonomic Logistics System,ALS)是一种能够降低装备寿命周期成本、提高装备使用可用度的智能型、预知型、先导式、网络化的维修保障体系,是未来装备维修保障的必然发展模式。ALS的构成要素包括:故障预测与健康管理(Prognostics and Health Management,PHM)系统、联合分布式信息系统(Joint Distributed Information System,JDIS)以及维修保障资源设施。对于ALS而言,为提升复杂动态环境下的装备维修保障效能,如何构建柔性维修保障网络体系、合理有效利用装备实时状态信息、充分调度维修保障资源是亟待解决的问题。
     鉴于装备维修保障在精确化、动态性、网络化等方面的需求,本文针对ALS中维修保障组织柔性化、维修决策精确化、资源供应协同化的问题,系统分析了维修保障网络的特点以及装备剩余使用寿命(Remaining Useful Life,RUL)评估的规律,并对RUL评估驱动的维修保障策略进行了深入研究。
     论文的主要研究内容包括:
     1. ALS组织体系的优化设计
     在深入分析ALS组织体系的任务、实体与网络化特性基础上,应用复杂网络与超网络描述与分析方法提出了维修保障体系结构的多元加权超网络模型。基于该模型定义了装备维修保障组织体系网络的性能指标,在ALS组织体系动态演化(集成)规则的基础上提出了两种动态演化(集成)模型——随机演化模型与适应演化模型,深入分析了演化模型的参数对ALS组织体系效能的影响,为ALS组织体系的设计提供了依据。
     2.基于RUL评估的预测维修决策优化
     将装备RUL评估分为离散型与累积型,分析了RUL评估过程的动态性与RUL评估结果的随机性,给出了刻画RUL评估结果不确定性的指标。
     (1)针对离散型RUL评估方法,在连续监控与完美维修的假设下,以单位时间成本最小与平均使用可用度最大为目标,基于维修过程的再生与更新特性提出了周期预测/非周期预测模式下RUL评估驱动的维修决策模型,设计了维修决策优化的算法。应用Monte Carlo仿真方法研究了周期/非周期评估调度函数、预防性维修阈值对维修决策优化的影响。
     (2)针对累积型RUL评估方法(损伤标尺法),在完美维修的假设下,以单位时间成本最小、平均使用可用度最大与平均效费比最大为目标,基于更新过程理论提出了损伤标尺驱动的预测维修决策模型。对于配置寿命独立型损伤标尺的系统,选择预测距离与威布尔分布的形状参数为决策变量,对于配置寿命相关型损伤标尺的系统,选择累积损伤因子与随机标准差为决策变量,应用MonteCarlo仿真研究了各个决策变量对维修性能的影响,并将维修效果与事后维修策略、年龄换件策略进行了对比,给出了最优维修决策的准则。
     3.自主维修保障体系的维修与库存联合优化
     综合考虑自主维修保障行为触发与响应两方面的因素,分析了维修保障体系网络中的信息流与物流,提出了ALS的信息集成与资源共享模式。分析了ALS中装备维修、备件供应等各类成本的产生机制,以单位时间成本最小为目标提出了由RUL评估驱动的维修与库存联合优化模型,应用Monte Carlo仿真方法设计了求解最优维修保障策略的算法,分析了漏检率与虚警率对维修保障效能的影响。
     总之,论文从ALS体系建立与优化的现实需求入手,建立了ALS体系的加权超网络模型与RUL评估的描述方法,提出并解决了ALS体系的动态演化(集成)与设计、装备预测维修优化、ALS资源协同配置等关键技术问题,为系统科学地解决ALS的构建与决策问题进行了广泛与深入地探索,具有重要的学术与工程实际应用价值。
With the development of equipment technology and the evolution of combatstyle, the goal of equipment maintenance and support is to be “scientific predictionand precise logistics”. The Autonomic Logistics System (ALS) is an intelligent,predictive, proactive and networked logistics architecture with the employment oftechnologies such as prognostics and health management (PHM) system and jointdistributed information system (JDIS). This new approach shows the potential for costsavings, increased operational availability and better system performance. There is anurgent need to build a flexible networked logistics architecture, to utilize theequipment’s real-time health information efficiently and to schedule logisticsresources successfully in a complex and dynamic logistics environment for betterALS efficiency.
     In order to establish a precise, dynamic and networked ALS, the characteristicsof logistics networks and the rules of equipment’s remaining useful life (RUL)estimation are analyzed entirely to improve logistics organization flexibility. Andthe optimal maintenance and support decision based on RUL estimation is studieddeeply to improve maintenance decision precision and resource supplycooperativeness.
     The main research contents include:
     1. Optimization design on ALS organizational architecture
     Based on the analysis of the tasks, entities and network characteristics of ALSorganizational architecture, a multi-element weighted super-network model oflogistics organizational architecture is presented using description and analysismethod of complex network and super-network. The performance indices whichdescribe the logistics organizational structure are defined, and two kinds of dynamicevolution (integration) models--stochastic evolution model and adaptive evolutionmodel are respectively proposed based on the evolution (integration) rules of ALSorganizational architecture. And then the effects of evolution modes and parameterson ALS organizational network performance are analyzed deeply to help designlogistics networks.
     2. Optimal predictive maintenance decision based on RUL estimation
     Since the RUL estimation process can be divided into discrete type andcumulative type, the dynamic characteristics of RUL estimation processes and therandomicity of RUL estimation results are thus analyzed, and the uncertainty indices,including false alarm rate and missed detection rate which depict RUL estimationperformance, are also proposed.
     (1) For discrete type of RUL estimation, under the assumption of continuous monitoring and perfect maintenance, a periodic/aperiodic maintenance decision modeland arithmetic are proposed with the aim of minimizing the long-term average costrate or maximizing average operational availability based on regeneration and renewalproperties of maintenance process. This model is demonstrated with a numericalimplementation example using Monte Carlo simulation to analyze the effects ofperiodic/aperiodic RUL estimation schedule function and preventive maintenancethreshold on optimal maintenance decision.
     (2) For cumulative type of RUL assessment method such as canary in RULestimation of electronic system, and under perfect maintenance assumption, acanary-driven predictive maintenance decision model is proposed with the aim ofminimizing the long-term average cost rate or maximizing average operationalavailability or maximizing average cost-effectiveness ratio, based on renewalproperties of maintenance process. For LRU-independent and LRU-dependentcanaries, the decision variables are respectively as prognostic distance, shapeparameter of life distribution (Weibull distribution) and as accumulated damage ratioand stochastic standard deviation of life distribution (Weibull distribution). Thismodel is demonstrated with a numerical implementation example using Monte Carlosimulation to analyze the effects of all decision variables on maintenance performance,and the optimal maintenance decision criterion is established thereafter in comparisonwith unscheduled maintenance and age replacement policy.
     3. Joint optimization of maintenance and inventory of ALS
     The information integration and resources sharing modes of ALS are proposedbased on a comprehensively considering sense and respond characteristics and on theinformation flow and material flow of ALS. The mechanisam of costs generation onequipment maintenance and on spare part replenishment under the respond resourcessharing mode are analyzed. And a joint optimization model of maintenance andinventory based on RUL estimation is proposed to minimize the long-term averagecost rate. The arithmetic for optimal logistics strategies is designed using Monte Carlosimulation methods which can analyze the effect of missed detection rate and falsealarm rate on ALS performance.
     In summary, the weighted super-network model of ALS architecture and thedescription method of RUL estimation are proposed, and the key problems such as thedynamic evolution and design of ALS architecture, the optimal equipment predictivemaintenance decision and the cooperative resource supply of ALS are all presentedand resolved after the requirement analysis of establishment and optimization of ALS.This dissertation aims at exploring the construct and decision of ALS in a thoroughand deep way, with the hope that these researches may have some academic andpractical significance.
引文
[1]甘茂治,康建设,高崎.军用装备维修工程学[M].北京:国防工业出版社,2001.
    [2]单志伟.装备综合保障工程[M].北京:国防工业出版社,2007.
    [3]宋建社,曹小平,曹耀钦等.装备维修信息化工程[M].北京:国防工业出版社,2005.
    [4] John M S. Joint Vision2010[EB/OL]. Washington, DC: Office of the Chairmanof the Joint Chiefs of Staff:1996.
    [5] Shelton H H. Joint Vision2020[EB/OL]. Washington, DC: Office of theChairman of the Joint Chiefs of Staff:2000.
    [6] Henley S, Currer R, Scheuren B, et al. Autonomic logistics-the support conceptfor the21st century[C]. Big Sky, MT, United States:2000IEEE AerospaceConference, IEEE Computer Society,2000:417-422.
    [7] Rebulanan R. Simulation of the Joint Strike Fighter’s (JSF) autonomic logisticssystem (ALS) using the JAVA programming language[D]. Wright-PattersonAir Force Base, Ohio: Air Force Institute of Technology,2000.
    [8] Henley S, Hess A, Fila L. The Joint Strike Fighter (JSF) PHM and theAutonomic Logistic concept: potential impact on aging aircraft problems[C].Big Sky, MT, United States:2001IEEE Aerospace Conference, IEEEComputer Society,2001:3021-3026.
    [9] Byer B, Hess A, Fila L. Writing a convincing cost benefit analysis tosubstantiate autonomic logistics[C]. Big Sky, MT, United States:2001IEEEAerospace Conference, IEEE Computer Society,2001:63095-63103.
    [10] Faas P D, Miller J O. Impact of an Autonomic Logistics System (ALS) on thesortie generation process[C]. New Orleans, LA, United States: Proceedings ofthe2003Winter Simulation Conference: Driving Innovation, IEEE,2003:1021-1025.
    [11] Nicholaus A. Yager. Models for sortie generation with autonomic logisticscapabilities[D]. Wright-Patterson Air Force Base, Ohio: Air Force Institute ofTechnology,2003.
    [12] Hess A, Calvello G, Dabney T. PHM a key enabler for the JSF autonomiclogistics support concept[C]. Big Sky, MT, United States:2004IEEEAerospace Conference, IEEE Computer Society,2004:3543-4549.
    [13]匡兴华,张亦弛,李东.信息化条件下装备技术保障的变革[J].国防科技.2008,29(4):13-18.
    [14范黎明.航空装备维修保障体系研究[D].北京:北京航空航天大学,2004.
    [15]姜云春,邱静,潘俊荣.装备自治性维修保障概念与体系研究[J].中国机械工程.2004,15(5):402-405.
    [16]潘俊荣.装备自治性维修保障体系研究[D].长沙:国防科学技术大学,2002.
    [17]张宝珍.21世纪的保障方案——JSF的自主式后勤[J].航空维系与工程.2003(1):27-30.
    [18] Faas P D. Simulation of Autonomic Logistics System (ALS) sortiegeneration[D]. Wright-Patterson Air Force Base, Ohio: Air Force Institute ofTechnology,2003.
    [19] Dreyer S L. Autonomic logistics-Developing an implementation approach foran existing military weapon system[J]. IEEE Instrumentation and MeasurementMagazine.2006,9(4):16-21.
    [20] Pecht M, Jaai R. A prognostics and health management roadmap forinformation and electronics-rich systems[J]. Microelectronics Reliability.2010,50(3):317-323.
    [21] Lopez L. Advanced electronic prognostics through system telemetry and patternrecognition methods[J]. Microelectronics Reliability.2007,47(12):1865-1873.
    [22] Jardine A K, Lin D, Banjevic D. A review on machinery diagnostics andprognostics implementing condition-based maintenance[J]. MechanicalSystems and Signal Processing.2006,20(7):1483-1510.
    [23] Qiu J, Zhang C, Seth B B, et al. Damage mechanics approach for bearinglifetime prognostics[J]. Mechanical Systems and Signal Processing.2002,16(5):817-829.
    [24] Heng A, Zhang S, Tan A C C, et al. Rotating machinery prognostics: State ofthe art, challenges and opportunities[J]. Mechanical Systems and SignalProcessing.2009,23(3):724-739.
    [25]曾声奎,Michael G. Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报.2005,26(5):626-632.
    [26]孙博,康锐,谢劲松.故障预测与健康管理系统研究和应用现状综述[J].系统工程与电子技术.2007,29(10):1762-1767.
    [27] Elwany A H, Gebraeel N Z. Sensor-driven prognostic models for equipmentreplacement and spare parts inventory[J]. IIE Transactions.2008,40(7):629-639.
    [28] Dieulle L, Berenguer C, Grall A, et al. Sequential condition-based maintenancescheduling for a deteriorating system[J]. European Journal of OperationalResearch.2003,150(2):451-461.
    [29] Liao H, Elsayed E A, Chan L. Maintenance of continuously monitoreddegrading systems[J]. European Journal of Operational Research.2006,175(2):821-835.
    [30] Curcuru G, Galante G, Lombardo A. A predictive maintenance policy withimperfect monitoring[J]. Reliability Engineering and System Safety.2010,95(9):989-997.
    [31] Huynh K T, Barros A, Berenguer C. Assessment of prognostic in maintenancedecision-making for a deteriorating system under indirect conditionmonitoring[C]. Rhodes, Greece: Proceedings of the European Safety andReliability Conference2010, IEEE,2010:1-8.
    [32] Wang W, Pecht M. Economic analysis of canary-based prognostics and healthmanagement[J]. IEEE Transactions on Industrial Electronics.2011,58(7):3077-3089.
    [33] Smith G, Schroeder J B, Masquelier B L. Logistics for the joint strike fighter—it ain’t business as usual[J]. Air Force Journal of Logistics.1999,23(1):14-18.
    [34] Karsai G, Bloor G, Doyle J. Automating human based negotiation processes forautonomic logistics[C]. Big Sky, MT, United States:2000IEEE AerospaceConference, IEEE Computer Society,2000:147-154.
    [35] Paul G M. Autonomic logistics capability of the advanced amphibious assaultvehicle[D]. Monterey,CA, United States: Naval Postgraduate School,2000.
    [36] Tsoutis A. An analysis of the joint strike fighter autonomic logistics system[D].Monterey, CA, United States: Naval Postgraduate School,2006.
    [37] Smith V D, Searles D G, Thompson B M, et al. SEM: Enterprise modeling ofJSF global sustainment[C]. Orlando, FL, United States: Proceedings of the38thConference on Winter Simulation, IEEE,2006:1324-1331.
    [38]时旺,陈臣,王自力等.自主式后勤保障系统体系研究[J].物流科技.2008,31(5):93-96.
    [39]曹艳华,陈春良,宋敬华.装甲装备自主式保障关键要素分析[J].装甲兵工程学院学报.2010,24(2):7-11.
    [40]毛京明,胥家常.一种新的自主式武器装备后勤保障系统[J].兵工自动化.2009,28(7):23-25.
    [41] Shin I, Levis A H. Performance prediction of a Network-Centric Warfaresystem[R]. Fairfax, VA, United States: Center of Excellence in Command andControl Communications and Intelligence, George Mason University,2000.
    [42] Alberts D S, Garstka J J, Stein F P. Network centric warfare: developing andleveraging information superiority[M].2nd Edition (Revised) ed. Washington,D.C.: DoD CCRP Publication Series,2000.
    [43] Brim C, Associate S. Logistics transformation: Next steps to interoperabilityand alignment[R]. Arlington, VA: Lexington Institute,2005.
    [44] Tripp R S, Amouzegar M A, Mcgarvey R G, et al. Sense and respond logistics:Integrating prediction, responsiveness, and control capabilities[R]. SantaMonica, CA: RAND Corporation,2006.
    [45] Castano-Pardo A, Lin G Y, Williams T. On the move: Advancing militarylogistics toward sense-and-respond[R]. New York: IBM Institute for BusinessValue,2006.
    [46] Tatro J S, Wood T L, Hammer J M. Sense and respond logistics: Supportingwarfighter replenishment with mule UAV[C]. Grapevine, TX, United States:61st Annual Forum Proceedings-AHS International, American HelicopterSociety,2005:2141-2154.
    [47] Lewandowski L, Cares J R. Sense and respond logistics: the fundamentals ofdemand networks[R]. Washington, DC: Office of the Secretary of Defense,Office of Force Transformation,2005.
    [48] Cares J R. Rule sets for sense and respond logistics: the logic of demandnetworks[R]. Washington, DC: Office of Secretary of Defense, Office of ForceTransformation,2004.
    [49]焦红,任学峰,魏爱国.基于感知与响应的柔性军事供应链——美军最新供应链理论解读之一[J].物流技术.2007,26(8):258-260.
    [50]焦红,任学锋,魏爱国.基于感知与响应的柔性军事供应链理论基础——美军最新供应链理论解读之二[J].物流技术.2007,26(9):130-132.
    [51]焦红,任学锋,魏爱国.感知与响应后勤对我军后勤建设的启示——美军最新供应链理论解读之三[J].物流技术.2007,26(10):127-130.
    [52]焦红,刘中,吴洋等.解读美军"感知与响应后勤"理论的核心理念[J].军事交通学院学报.2009,11(1):81-85.
    [53] Levchuk G M, Levchuk Y N, Luo J, et al. Normative design of organizations-Part I: Mission planning[J]. IEEE Transactions on Systems, Man, andCybernetics Part A:Systems and Humans.2002,32(3):346-359.
    [54] Levchuk G M, Levchuk Y N, Luo J, et al. Normative design of organizations-Part II: Organizational structure[J]. IEEE Transactions on Systems, Man, andCybernetics Part A:Systems and Humans.2002,32(3):360-375.
    [55] Levchuk G M, Levchuk Y N, Meirina C, et al. Normative design ofproject-based organizations-Part III: Modeling congruent, robust, and adaptiveorganizations[J]. IEEE Transactions on Systems, Man, and Cybernetics PartA:Systems and Humans.2004,34(3):337-350.
    [56] Alberts D S, Hayes R E. Power to the edge: command and control in theinformation age[M]. Washington DC: DoD CCRP Publication Series,2003.
    [57] Atkinson S R, Moffat J. The agile organization: from informal networks tocomplex effects and agility[M]. Washington DC: DoD CCRP PublicationSeries,2005.
    [58] Dodds P S, Watts D J, Sabel C F. Information exchange and the robustness oforganizational networks[J]. PNAS.2003,100(21):12516-12521.
    [59] Hanaki N, Peterhansl A, Dodds P S, et al. Cooperation in evolving socialnetworks[J]. Management Science.2007,53(7):1036-1050.
    [60] Cares J R, Christian R J, Manke R C. Fundamentals of distributed, networkedmilitary forces and the engineering of distributed systems[R]. DTIC Document,2002.
    [61] Dekker A H. Measuring the agility of networked military forces[J]. Journal ofBattlefield Technology.2006,9(1):19-24.
    [62] Dekker A. Applying social network analysis concepts to military C4ISRarchitectures[J]. Connections.2002,24(3):93-103.
    [63]汪海.基于复杂网络理论的指挥控制组织分析研究[D].长沙:国防科学技术大学,2007.
    [64]马秀丽,孙可心,王红霞.基于复杂网络理论的C2组织网络拓扑结构研究[J].火力与指挥控制.2010,35(2):69-71.
    [65]朱涛,常国岑,施笑安.基于复杂网络的作战系统结构研究[J].火力与指挥控制.2008,33(z1):136-137,140.
    [66]朱涛,常国岑,张水平等.基于复杂网络的指挥控制信息协同模型研究[J].系统仿真学报.2008,20(22):6058-6065.
    [67]尹晓虎.装备维修系统的动力学分析技术研究[D].长沙:国防科学技术大学,2008.
    [68] Cares J. Distributed network operations[M]. New York: Alidade Press,2006.
    [69]王文峰,刘亚杰,郭波.战役装备维修保障网络设计问题研究[J].兵工学报.2008,29(12):1501-1508.
    [70]王文峰.装备保障网络优化设计问题研究[D].长沙:国防科学技术大学,2008.
    [71]雷延军,李向阳.军事供应链"超网络"结构模型研究[J].物流科技.2006,29(12):60-62.
    [72] Hess A, Calvello G, Frith P. Challenges, issues, and lessons learned chasing the"Big P": Real predictive prognostics part1[C]. Big Sky, MT, United States:2005IEEE Aerospace Conference, IEEE Computer Society,2005:3610-3619.
    [73] Luo J, Namburu M, Pattipati K, et al. Model-based prognostic techniques[C].Anaheim, CA, United States: IEEE Systems Readiness Technology Conference(AUTOTESTCON2003), IEEE,2003:330-340.
    [74] Schwabacher M A. A survey of data-driven prognostics[C]. Arlington, VA,United States: InfoTech at Aerospace: Advancing Contemporary AerospaceTechnologies and Their Integration, American Institute of Aeronautics andAstronautics Inc.,2005:887-891.
    [75] Si X, Wang W, Hu C, et al. Remaining useful life estimation-A review on thestatistical data driven approaches[J]. European Journal of Operational Research.2011,213(1):1-14.
    [76] Sankavaram C, Pattipati B, Kodali A, et al. Model-based and data-drivenprognosis of automotive and electronic systems[C]. Bangalore, India:2009IEEE International Conference on Automation Science and Engineering (CASE2009), IEEE Computer Society,2009:96-101.
    [77] Vichare N M, Pecht M G. Prognostics and health management of electronics[J].IEEE Transactions on Components and Packaging Technologies.2006,29(1):222-229.
    [78] Pecht M. G.,Kapur K. C.,康锐等.可靠性工程基础[M].北京:电子工业出版社,2011.
    [79] Mishra S, Pecht M, Goodman D L. In-situ sensors for product reliabilitymonitoring[C]. Cannes, France: Design, Test, Integration, and Packaging ofMEMS/MOEMS2002, The International Society for Optical Engineering,2002:10-19.
    [80] Pecht M, Jie G. Physics-of-failure-based prognostics for electronic products[J].Transactions of the Institute of Measurement and Control.2009,31(3-4):309-322.
    [81] Gu J, Pecht M. Prognostics and health management using physics-of-failure[C].Las Vegas, NV, United States:54th Annual Reliability and MaintainabilitySymposium (RAMS2008), IEEE,2008:481-487.
    [82] Pecht M G. Prognostics and health management of electronics[M]. Hoboken,New Jersey: John Wiley&Sons, Inc,2008.
    [83] Goebel K, Saha B, Saxena A, et al. Prognostics in battery health management[J].IEEE Instrumentation and Measurement Magazine.2008,11(4):33-40.
    [84] Saha B, Goebel K, Poll S, et al. Prognostics methods for battery healthmonitoring using a bayesian framework[J]. IEEE Transactions onInstrumentation and Measurement.2009,58(2):291-296.
    [85] Saha B, Goebel K, Christophersen J. Comparison of prognostic algorithms forestimating remaining useful life of batteries[J]. Transactions of the Institute ofMeasurement and Control.2009,31(3-4):293-308.
    [86] Orchard M E, Tang L A, Saha B, et al. Risk-sensitive particle-filtering-basedprognosis framework for estimation of remaining useful life in energy storagedevices[J]. Studies in Informatics and Control.2010,19(3):209-218.
    [87] Gebraeel N. Sensory-updated residual life distributions for components withexponential degradation patterns[J]. IEEE Transactions on Automation Scienceand Engineering.2006,3(4):382-393.
    [88] Gebraeel N, Lawley M, Liu R, et al. Residual life predictions fromvibration-based degradation signals: A neural network approach[J]. IEEETransactions on Industrial Electronics.2004,51(3):694-700.
    [89] Gebraeel N, Pan J. Prognostic degradation models for computing and updatingresidual life distributions in a time-varying environment[J]. IEEE Transactionson Reliability.2008,57(4):539-550.
    [90] Gebraeel N, Elwany A, Pan J. Residual life predictions in the absence of priordegradation knowledge[J]. IEEE Transactions on Reliability.2009,58(1):106-117.
    [91] Chakraborty S, Gebraeel N, Lawley M, et al. Residual-life estimation forcomponents with non-symmetric priors[J]. IIE Transactions.2009,41(4):372-387.
    [92] Gebraeel N Z, Lawley M A, Li R, et al. Residual-life distributions fromcomponent degradation signals: A Bayesian approach[J]. IIE Transactions.2005,37(6):543-557.
    [93] Elwany A, Gebraeel N. Real-time estimation of mean remaining life usingsensor-based degradation models[J]. Journal of Manufacturing Science andEngineering, Transactions of the ASME.2009,131(5):510051-510059.
    [94] Chen C, Vachtsevanos G, Orchard M E. Machine remaining useful lifeprediction: An integrated adaptive neuro-fuzzy and high-order particle filteringapproach[J]. Mechanical Systems and Signal Processing.2012,28:597-607.
    [95] Vachtsevanos G, Lewis F, Roemer M, et al. Intelligent fault diagnosis andprognosis for engineering systems[M]. New Jersey: John Wiley&Sons, Inc.,2006.
    [96] Chen C, Zhang B, Vachtsevanos G, et al. Machine condition prediction basedon adaptive neuro-fuzzy and high-order particle filtering[J]. IEEE Transactionson Industrial Electronics.2011,58(9):4353-4364.
    [97] Chinnam R B, Baruah P. Autonomous diagnostics and prognostics inmachining processes through competitive learning-driven HMM-basedclustering[J]. International Journal of Production Research.2009,47(23):6739-6758.
    [98] Camci F, Chinnam R B. Hierarchical HMMs for autonomous diagnostics andprognostics[C]. Vancouver, BC, Canada: International Joint Conference onNeural Networks2006(IJCNN2006), IEEE Computer Society,2006:2445-2452.
    [99] Brown D W, Kalgren P W, Byington C S, et al. Electronic prognostics-A casestudy using global positioning system (GPS)[J]. Microelectronics Reliability.2007,47(12):1874-1881.
    [100] Watson M, Byington C, Edwards D, et al. Dynamic modeling and wear-basedremaining useful life prediction of high power clutch systems[J]. Tribology andLubrication Technology.2005,61(12):38-48.
    [101] Byington C S, Watson M J, Sheldon J S, et al. Shaft coupling model-basedprognostics enhanced by vibration diagnostics[J]. Insight: Non-DestructiveTesting and Condition Monitoring.2009,51(8):420-425.
    [102] Wang W, Carr M. An adapted brownion motion model for plant residual lifeprediction[C]. Macau, China:2010Prognostics and System HealthManagement Conference (PHM2010), IEEE Computer Society,2010:1-7.
    [103] Carr M J, Wang W. An approximate algorithm for prognostic modelling usingcondition monitoring information[J]. European Journal of Operational Research.2011,211(1):90-96.
    [104] Carr M J, Wang W. Modeling failure modes for residual life prediction usingstochastic filtering theory[J]. IEEE Transactions on Reliability.2010,59(2):346-355.
    [105]徐正国,周东华.基于马尔可夫链蒙特卡罗的实时可靠性预测方法研究[J].机械强度.2007,29(5):765-768.
    [106]陈敏泽,周东华.动态系统的故障预报技术[J].控制理论与应用.2003,20(6):819-823.
    [107]徐贵斌,周东华.非线性动态系统故障预测方法[J].华中科技大学学报(然科学版).2009,37(SI):23-27.
    [108]周东华,徐正国.工程系统的实时可靠性评估与预测技术[J].空间控制技术与应用.2008,34(4):3-10.
    [109]杨志波,董明.动态贝叶斯网络在设备剩余寿命预测中的应用研究[J].计算机集成制造系统.2007,13(9):1811-1815.
    [110] Dong M, Yang Z. Dynamic bayesian network based prognosis in machiningprocesses[J]. Journal of Shanghai Jiaotong University (Science).2008,13E(3):318-322.
    [111]廖雯竹,潘尔顺,王莹等.统计模式识别和自回归滑动平均模型在设备剩余寿命预测中的应用[J].上海交通大学学报.2011,45(7):1000-1005.
    [112]奚立峰,黄润青,李兴林等.基于神经网络的球轴承剩余寿命预测[J].机械工程学报.2007,43(10):137-143.
    [113]徐东,徐永成,陈循等.基于临界曲面的改进Paris定律球轴承疲劳寿命预测方法[J].机械工程学报.2011,47(2):51-57.
    [114]吕克洪,邱静,刘冠军.基于时间应力及隐马尔可夫模型的焊点故障预测技术[J].机械工程学报.2008,44(4):222-227.
    [115]程哲,胡茑庆,高经纬.基于物理模型和修正灰色模型的行星轮系疲劳裂纹故障预测方法[J].机械工程学报.2011,47(9):78-84.
    [116]曾庆虎,邱静,刘冠军等.基于KPCA-HSMM设备退化状态识别与故障预测方法研究[J].仪器仪表学报.2009,30(7):1341-1346.
    [117] Hu C, Si X, Chen M, et al. An adaptive wiener-maximum-process-based modelfor remaining useful life estimation[C]. Shenzhen, China:2011Prognostics andSystem Health Management Conference (PHM-Shenzhen2011), IEEEComputer Society,2011:1-5.
    [118] Si X, Wang W, Hu C, et al. Remaining useful life estimation based on anonlinear diffusion degradation process[J]. IEEE Transactions on Reliability.2012,61(1):50-67.
    [119] Si X, Hu C, Chen M, et al. An adaptive and nonlinear drift-based Wienerprocess for remaining useful life estimation[C]. Shenzhen, China:2011Prognostics and System Health Management Conference (PHM-Shenzhen2011), IEEE Computer Society,2011:1-5.
    [120]景博,杨洲,张劼等.故障预测与健康管理系统验证与确认方法综述[J].计算机工程与应用.2011,47(21):23-27.
    [121]景博,黄以锋,张建业.航空电子系统故障预测与健康管理技术现状与发展[J].空军工程大学学报(自然科学版).2010,11(6):1-6.
    [122]方甲永,肖明清,周越文等.电子产品动态损伤最优估计与寿命预测[J].仪器仪表学报.2011,32(4):807-812.
    [123]方甲永,肖明清,黄宏伟等.电子装备故障预测参数选取与设置[J].空军工程大学学报(自然科学版).2010,11(4):11-15.
    [124]许丽佳,龙兵,王厚军.基于LSSVM-HMM的发射机故障预测研究[J].仪器仪表学报.2008,29(1):21-26.
    [125]许丽佳,王厚军,龙兵.基于贝叶斯网络的复杂系统故障预测[J].系统工程与电子技术.2008,30(4):780-784.
    [126]朱丽,龙兵,刘震.基于ARMA的雷达发射机故障预测及其实现[J].计算机测量与控制.2010,18(11):2460-2461,2468.
    [127]朱顺鹏,黄洪钟,谢里阳.考虑小载荷强化的模糊疲劳寿命预测理论[J].航空学报.2009,30(6):1048-1052.
    [128]张磊,李行善,于劲松等.一种基于高斯混合模型粒子滤波的故障预测算法[J].航空学报.2009,30(2):319-324.
    [129]张磊,李行善,于劲松等.基于关联向量机回归的故障预测算法[J].系统工程与电子技术.2010,32(7):1540-1543.
    [130]贾占强,蔡金燕,梁玉英等.基于综合环境加速寿命试验的电子装备故障预测研究[J].电子学报.2009,37(6):1277-1282.
    [131]马伦,康建设,赵强.基于HMM的设备剩余寿命预测框架及其实现[J].计算机仿真.2010,27(5):88-91.
    [132]康建设,马伦,李望伟等.基于HMM的设备故障预测方法研究[J].系统仿真技术.2009,5(3):166-170.
    [133]张小丽,陈雪峰,李兵等.机械重大装备寿命预测综述[J].机械工程学报.2011,47(11):100-116.
    [134] Saha B, Goebel K. Uncertainty management for diagnostics and prognostics ofbatteries using bayesian techniques[C]. Big Sky, MT, United States:2008IEEEAerospace Conference, IEEE Computer Society,2008:1-11.
    [135] Tang L, Kacprzynski G J, Goebel K, et al. Methodologies for uncertaintymanagement in prognostics[C]. Big Sky, MT, United States:2009IEEEAerospace Conference, IEEE Computer Society,2009:1-12.
    [136] Engel S J."Prognosis requirements and V&V," panel discussion on PHMcapabilities: verification, validation, and certification issues[C]. Denver, CO,United States: International Conference on Prognostics and Health Management,IEEE Computer Society,2008:1-8.
    [137] Engel S J, Gilmartin B J, Bongort K, et al. Prognostics, the real issues involvedwith predicting life remaining[C]. Big Sky, MT, United States:2000IEEEAerospace Conference, IEEE Computer Society,2000:457-469.
    [138] Vachtsevanos G. Performance metrics for fault prognosis of complexsystems[C]. Anaheim, CA, United States: IEEE Systems Readiness TechnologyConference (AUTOTESTCON2003), IEEE,2003:341-345.
    [139] Kacprzynski G J, Liberson A, Palladino A, et al. Metrics and development toolsfor prognostic algorithms[C]. Big Sky, MT, United States:2004IEEEAerospace Conference, IEEE Computer Society,2004:3809-3815.
    [140] Hess A, Calvello G, Frith P, et al. Challenges, issues, and lessons learnedchasing the "Big P": Real predictive prognostics part2[C]. Big Sky, MT,United States:2006IEEE Aerospace Conference, IEEE Computer Society,2006:1-19.
    [141] Banjevic D. Remaining useful life in theory and practice[J]. METRIKA.2009,69(2-3):337-349.
    [142] Luna J J. Metrics, models, and scenarios for evaluating PHM effects onlogistics support[C]. San Diego, CA, United States: Annual Conference of thePrognostics and Health Management Society2009, IEEE,2009:1-9.
    [143] Leao B P, Yoneyama T, Rocha G C, et al. Prognostics performance metrics andtheir relation to requirements, design, verification and cost-benefit[C]. Denver,United States:2008International Conference on Prognostics and HealthManagement (PHM2008), IEEE Computer Society,2008:1-8.
    [144] Line J K, Clements N S. Prognostics usefulness criteria[C]. Big Sky, MT,United States:2006IEEE Aerospace Conference, IEEE Computer Society,2006:1-7.
    [145] Saxena A, Celaya J, Balaban E, et al. Metrics for evaluating performance ofprognostic techniques[C]. Denver, United States:2008International Conferenceon Prognostics and Health Management (PHM2008), IEEE Computer Society,2008:1-17.
    [146] Saxena A, Celaya J, Saha B, et al. Metrics for offline evaluation of prognosticperformance[J]. International Journal of Prognostics and Health Management.2010(1):1-20.
    [147] Saxena A, Celaya J, Saha B, et al. On applying the prognostic performancemetrics[C]. San Diego, CA, United States: Annual Conference of thePrognostics and Health Management Society2009, IEEE,2009:1-16.
    [148] Tang L, Orchard M E, Goebel K, et al. Novel metrics and methodologies for theverification and validation of prognostic algorithms[C]. Big Sky, MT, UnitedStates:2011IEEE Aerospace Conference, IEEE Computer Society,2011:1-8.
    [149] Wheeler K R, Kurtoglu T, Poll S D. A survey of health Management userobjectives related to diagnostic and prognostic metrics[C]. San Diego,California, USA: Proceedings of the ASME2009International DesignEngineering Technical Conferences&Computers and Information inEngineering Conference (IDETC/CIE), ASME,2009:1-19.
    [150] Wang T, Lee J. On performance evaluation of prognostics algorithms[C].Dayton, OH: Proceedings of MFPT2009, ASME,2009:219-226.
    [151] Dekker R. Applications of maintenance optimization models: a review andanalysis[J]. Reliability Engineering and System Safety.1996,51(3):229-240.
    [152] Nakagawa T. Maintenance theory of reliability[M]. London: Springer-VerlagLondon Limited,2005.
    [153] Wang H. A survey of maintenance policies of deteriorating systems[J].European Journal of Operational Research.2002,139(3):469-489.
    [154]王凌.维修决策模型和方法的理论与应用研究[D].杭州:浙江大学,2007.
    [155] Chiang J H, Yuan J. Optimal maintenance policy for a Markovian system underperiodic inspection[J]. Reliability Engineering and System Safety.2001,71(2):165-172.
    [156] Chen C T, Chen Y W, Yuan J. On a dynamic preventive maintenance policy fora system under inspection[J]. Reliability Engineering and System Safety.2003,80(1):41-47.
    [157] Sloan T W. A periodic review production and maintenance model with randomdemand, deteriorating equipment, and binomial yield[J]. Journal of theOperational Research Society.2004,55(6):647-656.
    [158] Ivy J S, Nembhard H B. A modeling approach to maintenance decisions usingstatistical quality control and optimization[J]. Quality and ReliabilityEngineering International.2005,21(4):355-366.
    [159] Wang K S, Wu C T, Tsai L C, et al. Study of preventive maintenance behaviorsbased on Markov process[J]. Journal of the Chinese Society of MechanicalEngineers (Transactions of the Chinese Institute of Engineers, Series C).2005,26(1-2):127-132.
    [160]程志君,高大化,黄卓等.不完全维修条件下的视情维修优化模型[J].系统工程与电子技术.2006,28(7):1106-1108.
    [161]程志君,郭波.基于半Markov决策过程的劣化系统检测与维修优化模型[J].自动化学报.2007,33(10):1101-1104.
    [162] Tomasevicz C L, Asgarpoor S. Optimum maintenance policy usingsemi-Markov decision processes[J]. Electric Power Systems Research.2009,79(9):1286-1291.
    [163] Soro I W, Nourelfath M, Ait-Kadi D. Performance evaluation of multi-statedegraded systems with minimal repairs and imperfect preventivemaintenance[J]. Reliability Engineering and System Safety.2010,95(2):65-69.
    [164] Xiang Y, Cassady C R, Pohl E A. Optimal maintenance policies for systemssubject to a Markovian operating environment[J]. Computers and IndustrialEngineering.2012,62(1):190-197.
    [165] Byon E, Ding Y. Season-dependent condition-based maintenance for a windturbine using a partially observed markov decision process[J]. IEEETransactions on Power Systems.2010,25(4):1823-1834.
    [166] Berenguer C, Chu C, Grall A. Inspection and maintenance planning: anapplication of semi-Markov decision processes[J]. Journal of IntelligentManufacturing.1997,8(5):467-476.
    [167]刘繁茂,朱海平,邵新宇等.状态不完全可观条件下设备检修策略研究[J].计算机集成制造系统.2009,15(8):1628-1632,1663.
    [168]苏春,周小荃.基于半马尔科夫决策过程的风力机状态维修优化[J].机械工程学报.2012,48(2):44-49.
    [169]刘宇.多状态复杂系统可靠性建模及维修决策[D].电子科技大学,2010.
    [170] Abdel-Hameed M. Inspection, maintenance and replacement models[J].Computers and Operations Research.1995,22(4):435-441.
    [171] Abdel-Hameed M. Inspection and maintenance policies of devices subject todeterioration[J]. Advances in Applied Probability.1987(19):917-931.
    [172] Abdel-Hameed M. Life distribution properties of devices subject to a pure jumpdamage process[J]. Journal of Applied Probability.1984(21):816-825.
    [173] Van N J. A survey of the application of gamma processes in maintenance[J].Reliability Engineering and System Safety.2009,94(1):2-21.
    [174] Tan L, Cheng Z, Guo B, et al. Condition-based maintenance policy for gammadeteriorating systems[J]. Journal of Systems Engineering and Electronics.2010,21(1):57-61.
    [175] Li C, Xu M, Guo S, et al. Multiobjective maintenance optimization of thecontinuously monitored deterioration system[J]. Journal of SystemsEngineering and Electronics.2010,21(5):791-797.
    [176]Klutke G. Models for inspected systems under general degradation[C]. Houston,TX, United States:2001Engineering Technology Conference on Energy,American Society of Mechanical Engineers,2001:1019-1024.
    [177] Klutke G, Yang Y. The availability of inspected systems subject to shocks andgraceful degradation[J]. IEEE Transactions on Reliability.2002,51(3):371-374.
    [178] Yang Y, Klutke G A. Lifetime-characteristics and inspection-schemes for Levydegradation processes[J]. IEEE Transactions on Reliability.2000,49(4):377-382.
    [179] Yang Y, Klutke G. A distribution-free lower bound for availability ofquantile-based inspection schemes[J]. IEEE Transactions on Reliability.2001,50(4):419-421.
    [180]Yang Y, Klutke G. Improved inspection schemes for deteriorating equipment[J].Probability in the Engineering and Informational Sciences.2000,14(4):445-460.
    [181] Zequeira R I, Berenguer C. An inspection policy with opportunisticreplacements[C]. Estoril, Portugal: European Safety and Reliability Conference2006(ESREL2006), Taylor and Francis/Balkema,2006:655-660.
    [182] Zequeira R I, Berenguer C. Optimal inspection policies with predictive andpreventive maintenance[J]. Engineering Optimization.2005,37(5):541-550.
    [183] Zequeira R I, Berenguer C. Optimal scheduling of non-perfect inspections[J].IMA Journal of Management Mathematics.2006,17(2):187-207.
    [184] Grall A, Berenguer C, Dieulle L. A condition-based maintenance policy forstochastically deteriorating systems[J]. Reliability Engineering and SystemSafety.2002,76(2):167-180.
    [185] Castanier B, Berenguer C, Grall A. A sequential condition-basedrepair/replacement policy with non-periodic inspections for a system subject tocontinuous wear[J]. Applied Stochastic Models in Business and Industry.2003,19(4):327-347.
    [186] Khoury E, Deloux E, Grall A, et al. An adaptive sequential maintenancedecision for a deteriorating system with covariates and maintenanceconstraints[C]. Troyes, France: European Safety and Reliability Conference:Advances in Safety, Reliability and Risk Management (ESREL2011), Taylorand Francis Inc.,2012:2271-2278.
    [187] Newby M. Monitoring and maintenance of spares and one shot devices[J].Reliability Engineering and System Safety.2008,93(4):588-594.
    [188] Barker C T, Newby M. Optimal inspection and maintenance to meet prescribedperformance standards[C]. Estoril, Portugal: European Safety and ReliabilityConference2006(ESREL2006), Taylor and Francis/Balkema,2006:475-482.
    [189] Newby M, Dagg R. Optimal inspection and perfect repair[J]. IMA Journal ofManagement Mathematics.2004,15(2):175-192.
    [190] Barker C T, Newby M J. Optimal non-periodic inspection for a multivariatedegradation model[J]. Reliability Engineering and System Safety.2009,94(1):33-43.
    [191] Cui L R, Loh H T, Xie M. Sequential inspection strategy for multiple systemsunder availability requirement[J]. European Journal of Operational Research.2004,155(1):170-177.
    [192] Zhao X, Fouladirad M, Berenguer C, et al. Nonperiodic inspection/replacementpolicy for monotone deteriorating system with covariates[C]. Barcelona, Spain:7th IFAC International Symposium on Fault Detection, Supervision and Safetyof Technical Systems (SAFEPROCESS2009), IFAC Secretariat,2009:1617-1622.
    [193] You M, Li L, Meng G, et al. Cost-effective updated sequential predictivemaintenance policy for continuously monitored degrading systems[J]. IEEETransactions on Automation Science and Engineering.2010,7(2):257-265.
    [194] Golmakani H R, Fattahipour F. Optimal replacement policy and inspectioninterval for condition-based maintenance[J]. International Journal of ProductionResearch.2011,49(17):5153-5167.
    [195] Golmakani H R, Fattahipour F. Age-based inspection scheme forcondition-based maintenance[J]. Journal of Quality in Maintenance Engineering.2011,17(1):93-110.
    [196] Golmakani H R, Fattahipour F. Optimal replacement policy with age-basedinspection scheme for condition-based maintenance[C]. Las Vegas, NV,United States:11th IEEE International Conference on Information Reuse andIntegration (IRI2010), IEEE Computer Society,2010:253-257.
    [197] Golmakani H R. Cost-effective condition-based inspection scheme forcondition-based maintenance[C]. Las Vegas, NV, United States:12th IEEEInternational Conference on Information Reuse and Integration (IRI2011),IEEE Computer Society,2011:327-330.
    [198] Jardine A K S, Banjevic D, Wiseman M, et al. Optimizing a mine haul truckwheel motors' condition monitoring program: Use of proportional hazardsmodeling[J]. Journal of Quality in Maintenance Engineering.2001,7(4):286-301.
    [199] Jardine A K S, Makis V, Banjevic D, et al. A decision optimization model forcondition-based maintenance[J]. Journal of Quality in Maintenance Engineering.1998,4(2):115-121.
    [200] Banjevic D, Jardine A K S, Makis V, et al. A control-limit policy and softwarefor condition-based maintenance optimization[J]. INFOR.2001,39(1):32-50.
    [201]满强,陈丽,夏良华等.基于比例风险模型的状态维修决策研究[J].装备指挥技术学院学报.2008,19(6):36-39.
    [202] Ghasemi A, Yacout S, Ouali M S. Optimal condition based maintenance withimperfect information and the proportional hazards model[J]. InternationalJournal of Production Research.2007,45(4):989-1012.
    [203] Tian Z, Liao H. Condition based maintenance optimization formulti-component systems using proportional hazards model[J]. ReliabilityEngineering and System Safety.2011,96(5):581-589.
    [204] Wang W, Hussin B, Jefferis T. A case study of condition based maintenancemodelling based upon the oil analysis data of marine diesel engines usingstochastic filtering[J]. International Journal of Production Economics.2012,136(1):84-92.
    [205]王英,王文彬,方淑芬等.状态维修两阶段预知模型研究[J].哈尔滨工程大学学报.2007,28(11):1278-1281.
    [206]王英.设备状态维修系统结构与决策模型研究[D].哈尔滨:哈尔滨工业大学,2007.
    [207] Kaiser K A, Gebraeel N Z. Predictive maintenance management usingsensor-based degradation models[J]. IEEE Transactions on Systems, Man, andCybernetics Part A:Systems and Humans.2009,39(4):840-849.
    [208] Wu S J, Gebraeel N, Lawley M A, et al. A neural network integrated decisionsupport system for condition-based optimal predictive maintenance policy[J].IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems andHumans.2007,37(2):226-236.
    [209] You M, Liu F, Wang W, et al. Statistically planned and individually improvedpredictive maintenance management for continuously monitored degradingsystems[J]. IEEE Transactions on Reliability.2010,59(4):744-753.
    [210]樊红东,胡昌华,丁力.动态指数分布模型的一种预测算法[J].统计与决策.2005(24):14-15.
    [211]蒋云鹏,陈茂银,周东华.带隐含退化过程非线性动态系统预测维护策略[J].华中科技大学学报.2009,37(SI):14-17.
    [212] Scanff E, Feldman K L, Ghelam S, et al. Life cycle cost impact of usingprognostic health management (PHM) for helicopter avionics[J].Microelectronics Reliability.2007,47(12):1857-1864.
    [213] Scanff E, Feldman K, Ghelam S, et al. Life cycle cost estimation of usingprognostic health management for helicopter avionics[J]. MicroelectronicReliability.2007,47:1857-1864.
    [214] Sandborn P A, Wilkinson C. A maintenance planning and business casedevelopment model for the application of prognostics and health management(PHM) to electronic systems[J]. Microelectronics Reliability.2007,47(12):1889-1901.
    [215] Feldman K, Sandborn P, Jazouli T. The analysis of return on investment forPHM applied to electronic systems[C]. Denver, United States:2008International Conference on Prognostics and Health Management (PHM2008),IEEE Computer Society,2008:1-9.
    [216] Feldman K, Sandborn P. Analyzing the return on investment associated withprognostics and health management of electronic products[C]. New York City,NY, United States:2008ASME International Design Engineering TechnicalConferences and Computers and Information in Engineering Conference(DETC2008), ASME,2008:1401-1409.
    [217] Feldman K, Jazouli T, Sandborn P A. A methodology for determining the returnon investment associated with prognostics and health management[J]. IEEETransactions on Reliability.2009,58(2):305-316.
    [218] Van Horenbeek A, Pintelon L. Optimal prognostic maintenance planning formulti-component systems[C]. Troyes, France: European Safety and ReliabilityConference: Advances in Safety, Reliability and Risk Management (ESREL2011), Taylor and Francis Inc.,2012:910-917.
    [219] Khoury E, Grall A, Berenguer C. A comparison of RUL-based anddeterioration-based maintenance policies for gradually deteriorating systems[C].Rhodes, Greece: Proceedings of the European Safety and ReliabilityConference2010, IEEE,2010:1-8.
    [220] Rausch M T. Condition based maintenance of a single system under spare partinventory constraints[D]. Wichita State University,2008.
    [221]谭林.考虑不完全维修的随机劣化系统自适应维修决策模型研究[D].长沙:国防科学技术大学,2010.
    [222]苏锦霞,赵学靖,李维国.基于剩余寿命的劣化系统最优维修策略[J].兰州大学学报(自然科学版).2011,47(4):103-107.
    [223]廖雯竹.基于设备衰退机制的预知性维护策略及生产排程集成研究[D].上海:上海交通大学,2011.
    [224] Kennedy W J, Wayne P J, Fredendall L D. An overview of recent literature onspare parts inventories[J]. International Journal of Production Economics.2002,76(2):201-215.
    [225] Armstrong M J, Atkins D A. Note on joint optimization of maintenance andinventory[J]. IIE Transactions.1998,30(2):143-149.
    [226] Armstrong M J, Atkins D R. Joint optimization of maintenance and inventorypolicies for a simple system[J]. IIE Transactions.1996,28(5):415-424.
    [227] Cavalieri S, Garetti M, Macchi M, et al. A decision-making framework formanaging maintenance spare parts[J]. Production Planning and Control.2008,19(4):379-396.
    [228]陈凤腾,左洪福.基于可靠性和维修性的航空备件需求和应用[J].机械科学与技术.2008,27(6):779-783.
    [229]包兴,季建华,连海佳.核心备件的订货策略与模型[J].上海交通大学学报.2007,41(7):1097-1101.
    [230]司书宾,贾大鹏,兑红炎等.带有横向调度的两级维修备件库存系统优化方法研究[J].西北工业大学学报.2008,26(6):765-770.
    [231]司书宾,贾大鹏,孙树栋等.服务水平约束下的多-单维修备件协同库存控制模型及其仿真研究[J].中国机械工程.2007,18(23):2844-2847.
    [232]司书宾,孙树栋,蔡志强.基于供应成本的维修备件协同库存控制模型及其算法研究[J].西北工业大学学报.2006,24(5):662-666.
    [233]司书宾,孙树栋,蔡志强等.基于协同供应的维修备件协同库存控制模型及其算法研究[J].西北工业大学学报.2007,25(5):636-641.
    [234] Zohrul K A, Farrash S H. Simulation of an integrated age replacement andspare provisioning policy using SLAM[J]. Reliability Engineering and SystemSafety.1996,52(2):129-138.
    [235] Zohrul K A, Al-Olayan A S. Stocking policy for spare part provisioning underage based preventive replacement[J]. European Journal of Operational Research.1996,90(1):171-181.
    [236] Dohi T, Shibuya T, Osaki S. Models for1-out-of Q systems with stochastic leadtimes and expedited ordering options for spares inventory[J]. European Journalof Operational Research.1997,103(1):255-272.
    [237] Chelbi A, At-Kadi D. Spare provisioning strategy for preventively replacedsystems subjected to random failure[J]. International Journal of ProductionEconomics.2001,74(1-3):183-189.
    [238] Wang W. A stochastic model for joint spare parts inventory and plannedmaintenance optimisation[J]. European Journal of Operational Research.2012,216(1):127-139.
    [239] Wang W. A joint spare part and maintenance inspection optimisation modelusing the Delay-Time concept[J]. Reliability Engineering and System Safety.2011,96(11):1535-1541.
    [240] Diallo C, Ait-Kadi D, Chelbi A.(s,Q) Spare parts provisioning strategy forperiodically replaced systems[J]. IEEE Transactions on Reliability.2008,57(1):134-139.
    [241] Chen M C, Hsu C M, Chen S W. Optimizing joint maintenance and stockprovisioning policy for a multi-echelon spare part logistics network[J]. Journalof the Chinese Institute of Industrial Engineers.2006,23(4):289-302.
    [242]陈晓慧,盛天文,易树平.等周期预防维修下多部件系统的备件订货策略[J].华南理工大学学报(自然科学版).2009,37(4):95-99.
    [243] Nosoohi I, Hejazi S R. A multi-objective approach to simultaneousdetermination of spare part numbers and preventive replacement times[J].Applied Mathematical Modelling.2011,35(3):1157-1166.
    [244] Tu F, Ghoshal S, Luo J, et al. PHM integration with maintenance and inventorymanagement systems[C]. Big Sky, MT, United States:2007IEEE AerospaceConference, IEEE Computer Society,2007:1-12.
    [245] Kaiser K M. A simulation study of predictive maintenance policies and howthey impact manufacturing systems[D]. Iowa City: University of Iowa,2007.
    [246] Rausch M, Liao H. Joint production and spare part inventory control strategydriven by condition based maintenance[J]. IEEE Transactions on Reliability.2010,59(3):507-516.
    [247] Khalak A, Tierno J. Influence of prognostic health management on logisticsupply chain[C]. Minneapolis, MN, United States:2006American ControlConference, IEEE,2006:3737-3742.
    [248] Wang L, Chu J, Mao W. A condition-based replacement and spare provisioningpolicy for deteriorating systems with uncertain deterioration to failure[J].European Journal of Operational Research.2009,194(1):184-205.
    [249] Wang L, Chu J, Mao W. An optimum condition-based replacement and spareprovisioning policy based on Markov chains[J]. Journal of Quality inMaintenance Engineering.2008,14(4):387-401.
    [250]胡容兵,谢君.寿命预先维修与备件订货联合模型研究[J].武汉理工大学学报.2010,32(6):163-167.
    [251] Wang W, Liu Y, Pecht M. A theoretical model to minimize the operational costfor canary-equipped electronic system's health management[C]. Qingdao, China:The First International Symposium on System Informatics and Engineering(ISSIE2011), IEEE Computer Society,2011:233-238.
    [252]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [253]郭雷,许晓鸣.复杂网络[M].上海:上海科技教育出版社,2006.
    [254] Strogatz S H. Exploring complex networks[J]. Nature.2001(410):268-276.
    [255]王众托,王志平.超网络初探[J].管理学报.2008,5(1):1-8.
    [256]吴冬梅,王文平,沈秋英等.基于服务网络与制造网络互动的制造型集群超网络研究[J].西安电子科技大学学报(社会科学版).2010,20(3):13-18.
    [257] Emesto E A, Juan A R. Subgraph centrality and clustering in complexhyper-networks[J]. Physica A.2006,364(1):581-594.
    [258] Frank H, Page J, Myrnah W. Networks and farsighted stability[J]. Journal ofEconomics Theory.2005,120(2):257-269.
    [259] Nagurney A, Dong J. Super-networks:Decision making for the informationage[M]. Cheltenham: Edward Elgar Publishing,2002.
    [260]王建方.超图的理论基础[M].北京:高等教育出版社,2006.
    [261]王志平,王众托.超网络理论及应用[M].北京:科学出版社,2008.
    [262]黄建华,党延忠.基于时间阈值的多标准快递超网络优化方法[J].系统工程理论与实践.2010,30(12):2129-2136.
    [263]宣金钊,张纪会,张海滨.电力供应链的超网络模型与均衡分析研究[J].复杂系统与复杂性科学.2011,08(1):20-26.
    [264] Pete A, Kleinman D L, Pattipati K R. Structural congruence of tasks andorganizations[C]. NPS,Monterey, CA: Proceedings of the1994Symp. onCommand and Control Research and Decision Aids,1994:168-175.
    [265]阳东升,张维明,刘忠等. C2组织的有效测度与设计[J].自然科学进展.2005,15(3):349-356.
    [266]修保新. C2组织结构设计方法及其鲁棒性、适应性分析[D].长沙:国防科学技术大学,2006.
    [267] Albert R, Barabasi A. Statistical mechanics of complex networks[J]. Reviews ofModern Physics.2002,74(1):47-97.
    [268]龙真真,张策,王维平.基于复杂网络的作战网络分析[J].火力与指挥控制.2010,35(8):8-12.
    [269]谭劲松,何铮.集群自组织的复杂网络仿真研究[J].管理科学学报.2009,12(4):1-14.
    [270]徐杰.物流组织网络结构及运作问题研究[D].北京:北京交通大学,2007.
    [271]徐杰.物流组织网络:结构与运作[M].北京:社会科学文献出版社,2008.
    [272]马骏,唐方成,郭菊娥等.复杂网络理论在组织网络研究中的应用[J].科学学研究.2005,23(2):173-178.
    [273] Lin Y, Desouza K C, Roy S. Measuring agility of networked organizationalstructures via network entropy and mutual information[J]. Applied Mathematicsand Computation.2010,216(10):2824-2836.
    [274]吕克洪.基于时间应力分析的BIT降虚警与故障预测技术研究[D].国防科学技术大学,2008.
    [275]胡迪鹤.随机过程论:理论,基础,应用[M].武汉:武汉大学出版社,2000.
    [276]劳斯S. M.随机过程[M].北京:中国统计出版社,1997.
    [277]毛用才,胡奇英.随机过程[M].西安:电子科技大学出版社,2001.
    [278]梁剑.基于成本优化的民用航空发动机视情维修决策研究[D].南京:南京航空航天大学,2004.
    [279] Wang H, Pham H. Reliability and Optimal Maintenance[M]. London:Springer-Verlag London Limited,2006.
    [280] Castanier B, Grall A, Berenguer C. A condition-based maintenance policy withnon-periodic inspections for a two-unit series system[J]. Reliability Engineeringand System Safety.2005,87(1):109-120.
    [281] Goodman D, Vermeire B, Ralston-Good J, et al. A boardlevel prognosticmonitor for MOSFET TDDB[C]. Big Sky, MT, United States:2006IEEEAerospace Conference, IEEE Computer Society,2006:1-6.
    [282] Anderson N, Wilcoxon R. Framework for prognostics of electronic systems[C].Seattle, WA, United States: Proc. Int. Mil. Aerosp./Avionics COTS Conf.,2004:21-26.
    [283]曹继平,宋建社,方文斌等.装备维修备件存储策略[J].火力与指挥控制.2008,33(4):8-11.
    [284]周江华,肖刚,苗育红.战略储备系统备件最优储备技算的解析方法[J].航空学报.2002,23(4):334-337.
    [285]张建军,李树芳,张涛等.备件保障度评估与备件需求量模型研究[J].可靠性与环境适应性理论研究.2004(6):34-36.
    [286]张建军,刘芳,张涛等.基于BCMP排队网络的作战单元备件保障度评估模型[J].兵工学报.2009,30(1):110-113.
    [287] Perry W L, Moffat J. Information sharing among military headquarters: theeffects on decision-making[R]. Santa Monica: RAND Corporation, MG-226,2002.
    [288]卜先锦.军事组织协同的建模与分析[M].北京:国防工业出版社,2009.
    [289]王小念,皮军明,余巍等.一种网络中心战中信息效能度量方法[J].现代防御技术.2007,35(5):14-18.
    [290]周永务,王圣东.库存控制理论与方法[M].北京:科学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700