用户名: 密码: 验证码:
高速涡轮轴系稳定性分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体轴承支承的高速涡轮轴系具有结构紧凑、轴承功耗低、转速高、功率密度大等优点,广泛应用于空气制冷机、高速永磁电机、微型燃气轮机等高速微型动力设备中。高转速下轴承非线性气膜力引起的气膜振荡是影响轴承-转子系统稳定性的关键问题之一。本文重点开展气体轴承-转子系统稳定分析与实验研究,主要工作内容如下:
     1.对气体轴承-转子系统稳定性进行定性分析。提出了包含旋转惯性项、轴颈涡动项、轴颈挤压项以及轴承供给压力项在内的有限长气膜力分析模型,以轴颈偏心率为函数给出工程稳定性判别准则及其推论,当ε≤εmax,且dε/dt≤0时,轴承-转子系统在工程上是可以稳定运行的;转子的偏心率在某转速点满足ε≤εmax,且偏心率对转速的导数小于0(即dε/dω≤0),作为转子继续升速的判据。并根据工程稳定性判别准则,从设计阶段和在线调整阶段,给出了提高轴承-转子系统稳定性的措施和方法。
     2.提出了基于图谱分析的转子非线性振动行为分析方法。以气膜振荡起始点为界,选用不同的图谱来分析气膜振荡前后的动力学特征,给出了气膜振荡发生前不平衡量引起同频涡动的分析图谱和气膜振荡发生后气膜非线性引起低频涡动与振荡的分析图谱,并在实验中验证了非线性振动行为分析方法的有效性和合理性。
     3.搭建高速气体轴承-转子系统实验台。完成动力单元、实验台本体、振动测试单元以及远程监控单元的设计与搭建工作,其轴系设计转速在60000rpm;实验台能够呈现气膜涡动与振荡等非线性振动现象,实现了轴承气参数可控、可测量,转子的振动数据可在线监测、离线存储与分析,并实现实验现场的远程监控。
     4.开展气膜约束状态下转子模态实验分析。制定模态实验方案,从激励的选取,测点布置方案的选取,激励与响应信号特征分析以及频响函数估计与评价几个方面论述模态实验过程,实验结果表明:设计转速内,转子平动、锥动、一阶弯曲固有频率随供气压力的增加而增加,且设计转速避开转子一阶弯曲和二阶弯曲临界转速值在合理裕度以上。模态实验结果为轴系升降速实验控制方案的制定,以及后续低频振动特性分析,提供基础性数据支撑。
     5.开展转速、轴承供气压力、金属橡胶对轴承-转子系统稳定性影响的实验研究。采用非线性振动行为分析方法,重点分析分岔点、分岔点前和分岔点后转子动力学行为特征,结果表明:随着转速的增加,气体轴承-转子系统发生气膜振荡,发生气膜振荡的工频转速在两倍于平动临界转速以上;合理的轴承供气压力能够推迟分岔点,即气膜振荡的起始点,进而提高轴系稳定运行的裕度;金属橡胶垫能够起到进一步推迟气膜振荡起始点的作用,同时降低轴系平动、锥动、一阶弯曲临界转速值及相应的振动幅值,提高轴系稳定性。
     6.将稳定调整措施在气体轴承支承的高速微型动力设备中进行工程应用验证。实验结果验证了基于图谱分析的非线性振动行为分析方法以及工程稳定判别准则的合理性和实用性。
High-speed turbomachinery shafts supported by gas bearing are widely used in high speed micro-turbomachinery, such as air refrigerating machines, high speed permanent magnet motors, micro gas turbines and so on, as it has the advantages of compact structures, low power consumption of gas bearings, high speed, high power density, et al. Gas whip induced by the nonlinear gas film force in high speed state is one of the key issues which affects on the stability of rotor-bearing system. In the following, the thesis presented here concentrates on theoretical analysis and experimental investigation on the stability of rotor-bearing system and the main work of the thesis is as follows:
     1. A qualitative analysis on stability of gas bearing-rotor system is carried out. The analytical model of gas-film force for finite length journal bearing including the items of rotary inertia, whirling, squeezing and bearing supply pressure is proposed. Engineering stability criterion and its inference are given by function of the eccentricity ratio and it means, when the eccentricity ratio ε≤εmax and dε/dt≤0, rotor-bearing system can be in stable operation state in the engineering and when the eccentricity ratio of rotor meets ε≤εmax and dε/dε≤0at a certain speed, the rotor speed can continue to rise up. According to engineering stability criterion, it presents the methods and measures for improving the stability of rotor-bearing system form the design of bench to the on-line adjustment of stability of rotor-bearing system.
     2. Based on the spectrum analysis, nonlinear vibration analysis method on the stability of rotor-bearing system is proposed. It means the different spectrum plots are used to analyze the dynamic characteristic of rotor system before or after the speed of bifurcation and gives the analysis methods of spectrum plots of synchronous whirl induced by the residual unbalance before the speed of bifurcation point and whirling and whip induced by nonlinear of gas film force after the speed of bifurcation point. This method is agreement with the experimental data.
     3. The bench of high-speed aerostatic bearing-rotor was built which included the design and building of unit of power element, test rig, the vibration signal testing and remote monitoring. The bench aims to achieve speeds to60000rpm, control and measure the parameters of bearing gas, monitor the vibration of rotor online and test rig remotely, store and analyze the data of vibration.
     4. Experimental modal analysis (EMA) was presented in gas film constraint state. It details analysis process including experimental scheme, selection of incentive and arrangement of measuring points, analysis on signal feature of incentive and response, estimation and evaluation of function for frequency response. The results show that the natural frequency of the cylindrical, conical and first bending modes increases along with supply pressure in design speed range and the design speed staggers the speed of first bending while the speed of second bending mode is above the design margin of safe speed. The results of EMA provide evidences for the regulation of run-up or coast-down experimental scheme and the analysis on characteristics of low frequency vibration.
     5. Experimental investigations of the effect of speed rate, bearing supply pressure and metal rubber on stability of rotor-bearing system were carried out. By analysis method of spectrum plots, the research concentrates on the dynamic characteristics of rotor system in/before/after the speed value of bifurcation state and the results show that when more than twice the cylindrical critical speed is reached, gas whip (i.e. a large vibration) will appear and the speed of bifurcation increases(i.e. gas whip onset speed)with the supply pressure increasing reasonably, thus improving the margin of stable operation of rotor system. The metal rubber pad can achieve to further postpone gas whip occurrence and reduces the cylindrical, conical and first bending critical speed as well as the vibration amplitude, thus improve the stability of rotor system.
     6. The application of stable adjustment measures of high-speed micro-turbomachinery in engineering field was verified. The analysis of spectrum plots on stability of rotor-bearing system is agreement with experimental results, thus it means the validity and practicability of engineering stability criterion.
引文
[1]李树森,郭永红,朱赞彬,等.精密机床静压气体轴承静特性分析及基本参数的优化[J].润滑与密封,2012,37(1):29-32.
    [2]任金禄.空气制冷机[J].制冷与空调,2008,8(6):15-21.
    [3]刘道平.美国的先进微型燃气轮机规划[J].能源研究与信息.2002,1:59-60.
    [4]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020年)[Z].北京,2006
    [5]林韶宁,夏葵,李军,等.空气制冷机在飞机空调系统中的应用[J].流体机械,2005,32(1 0):46-49.
    [6]陈纯正.150米~3/时制氧机的空气轴承透平膨胀机[J].深冷技术,1984,6:004.
    [7]Matsuo E, Yoshiki H, Nagashima T, et al. Towards the development of finger-top gas turbines[J]. Power (W),2003,50:50.
    [8]杨策,刘宏伟,李晓,买靖东.微型燃气轮机技术[J『].热能动力工程.2003,18(1):1-4.
    [9]翁一武,苏明,翁史烈.先进微型燃气轮机的特点与应用前景[J].热能动力工程.2003,18(2):111-115.
    [10]杨策,马朝臣,鲍捷等.带有动力涡轮的双轴原理型燃气轮机的研制[J].工程热物理学报.2002,23(4):445-448.
    [11]桑振远.100kW微型燃气轮机总体方案分析[D].哈尔滨:哈尔滨工程大学.2006.
    [12]吴文峰.100kW微型燃气轮机涡轮叶轮强度及振动分析[D].哈尔滨:哈尔滨工程大学.2008.
    [13]王继强.高速永磁电机的机械和电磁特性研究[D].沈阳:沈阳工业大学.2006.
    [14]王继强.高速电机磁力轴承-转子系统临界转速的计算[J].中国电机工程学报.2007,27(27):94-98.
    [15]周风争,沈建新,林瑞光.从电机设计的角度减少高速永磁电机转子损耗[J].浙江大学学报(工学版).2007,41(9):1587-1591.
    [16]马文琦,于贺春,孙昂.气体轴承-转子系统研究进展[J].润滑与密封.2010,35(6):121-125.
    [17]Kingsbury A. EXPERIMENTS WITH AN AIR-LUBRICATED JOURNAL[J]. Journal of the American Society for Naval Engineers,1897,9(2):267-292.
    [18]WJ Harrison, The Hydro-dynamical Theory of Lubrication with Special Reference to Air as a Lubricant[J], Trans. Camb. Phil. Soc.,22,39 (1913).
    [19]Constantinescu V N. Gas Lubrication[M]. New York ASME,1969.
    [20]十合晋一.气体轴承:设计、制作与应用[M].北京:宇航出版社.1988.
    [21]刘暾,刘育华,陈世杰.静压气体润滑[M].哈尔滨:哈尔滨工业大学出版社.1990.
    [22]王云飞.气体润滑理论与气体轴承设计[M].北京:机械工业出版社.1997.
    [23]池长青.气体动静压轴承的动力学及热力学[M].北京:北京航空航天大学出版社.2008.
    [24]陈汝刚,侯予,袁秀玲等.微小型气体轴承高速透平机械研究进展[J].润滑与密封.2008,33(9):85-90.
    [25]冯惠成,侯予,陈汝刚等.国内静压气体轴承润滑技术研究进展[J].润滑与密封.2011,36(4):108-113.
    [26]刘立强,陈纯正.低温供气条件下新型切向小孔气体轴承动特性的实验研究[J].低温与特气.2002,20(1):7-9.
    [27]刘立强,熊联友,侯予等.透平膨胀机新型切向小孔气体轴承稳定性的实验研究[J].低温工程.1999,(4):224-227.
    [28]王学敏,张启勇,庄明等.低温氦透平膨胀机静压气体径向轴承的改进设计[J].机械工程学报.2010,46(15):142-145.
    [29]王云飞.气体润滑轴承的研制和应用概况[J].轴承.1993,(5):6-8.
    [30]金文荣.航空高速涡轮制冷机用气体轴承的研制[J].固体润滑.1990,10(1):38-47.
    [31]王林忠,侯予,陈纯正.可倾瓦径向气体轴承的静动特性的理论研究[J].2006,(5):84-87.
    [32]杨利花.可倾瓦与弹性箔片动压气体轴承的性能研究[D].西安,西安交通大学.2009.
    [33]熊联友,侯予,吴刚等.平箔式箔片径向气体轴承的理论研究[J].西安交通大学.1998,32(9):56-59.
    [34]侯予,王秉琛,熊联友等.平箔式箔片径向气体轴承的试验研究[J].西安交通大学.1999,33(3):60-63.
    [35]徐方程.基于库伦摩擦效应的径向气体箔片轴承-转子系统振动特性[D].哈尔滨:哈尔滨工业大学.2013.
    [36]许怀锦,刘占生,吕伟剑等.气体润滑弹性波箔片轴承动态特性分析[J].航空动力学报.2011,26(5):1185-1193.
    [37]Lund J W. A Theoretical Analysis of Whirl Instability and Pneumatic Hammer for a Rigid Rotor in Pressurized Gas Journal Bearings. ASME J. Lubr. Technol.1967,89(2):154-163.
    [38]Liu LQ, Chen CZ. Mathematical Model for Gas Bearing With Holes of Tangential Supply. Journal of tribology.1999,121(2):301-305.
    [39]Su JC, Lie KN. Rotation Effects on Hybrid Air Journal Bearings. Tribology International. 2003,36(10):717-726.
    [40]Lo CY, Wang CC, Lee YH. Performance Analysis of High-Speed Spindle Aerostatic Bearings. Tribology International.2005,38(1):5-14.
    [41]Morosi S, Santos I F. On the modelling of hybrid aerostatic-gas journal bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J:Journal of Engineering Tribology,2011,225(7):641-653.
    [42]Morosi S, Santos I F. Active lubrication applied to radial gas journal bearings. Part 1: Modeling[J]. Tribology International,2011,44(12):1949-1958.
    [43]Morosi S, Santos I F. Experimental investigations of active air bearings[C]//ASME Turbo Expo 2012:Turbine Technical Conference and Exposition. American Society of Mechanical Engineers,2012:901-910.
    [44]Yao SM. Incompressible and Analytical Study on a Basic Model of a Complex Journal Gas Bearing. Tribology Transactions.2006,49(1):92-95.
    [45]张君安,呼晓青,方宗德.气体动静压径向轴承试验台研制及实现.西安理工大学学报.2006,22(004):415-418.
    [46]Reynolds O. On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil[J]. Proceedings of the Royal Society of London,1886,40(242-245):191-203.
    [47]Hagg A.C. Some dynamic properties of oil film journal bearings. ASME J.Engrs., 1956,3:302-306
    [48]Sternlicht B. Elastic and damping properties of cylindrical journal bearings[J]. ASME Journal of Basic Engineering.1959,81:101-108.
    [49]Lund J W. The stability of an elastic rotor in journal bearings with flexible, damped supports[J]. Journal of Applied Mechanics,1965,32(4):911-920.
    [50]J.Glienicke. Feder und Dampflungskonstanten von Gleitlagern fur Turbomaschinen unde dern Einfluss auf das Schwingungsverhalten eines einfachen Rotors. Dissertation TH Karlsruhe.1996:22-36.
    [51]闻邦椿,顾家柳,夏松波等.高等转子动力学[M].北京:机械工程出版社.2000.
    [52]Lyapunov A M. The general problem of the stability of motion[J]. International Journal of Control,1992,55(3):531-534.
    [53]杨金福,刘占生,于达仁,等.滑动轴承非线性动态油膜力及稳定性的研究[J].动力工程,2004,24(4):501-504.
    [54]秦元勋,王慕秋,王联.运动稳定性理论与应用[M].科学出版社,1981.
    [55]高为炳.运动稳定性基础[M].高等教育出版社,1987.
    [56]张卫,朱均.转子—滑动轴承系统的稳定裕度[J].机械工程学报,1995,31(2):57-62.
    [57]张卫,朱均.转子—轴承系统稳定性灵敏度分析的广义能量法[J].机械工程学报,1997,33(4):98-103.
    [58]El-Marhomy A A, Schlack A L. Dynamic stability of elastic rotor-bearing systems via Liapunov's direct method[J]. Journal of applied mechanics,1991,58(4):1056-1063.
    [59]Lund J W. Stability and damped critical speeds of a flexible rotor in fluid-film bearings[J]. Journal of Engineering for Industry,1974,96(2):509-517.
    [60]Vazquez J A, Barrett L E, Flack R D. Flexible bearing supports, using experimental data[J]. Journal of engineering for gas turbines and power,2002,124(2):369-374.
    [61]Wilde D A, San Andres L. Comparison of Rotordynamic Analysis Predictions with the test response of simple gas hybrid Bearings for oil free Turbomachinery[C]//ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. American Society of Mechanical Engineers,2003:619-632.
    [62]Bansal P N, Kirk R G. Stability and damped critical speeds of rotor-bearing systems[J]. Journal of Engineering for Industry,1975,97(4):1325-1332.
    [63]Rudloff L, Guingo S, Renard E, et al. Experimental Analysis of the Dynamic Characteristics of a Hybrid Aerostatic Bearing[J]. Journal of Engineering for Gas Turbines and Power,2012,134(8):082503.
    [64]Osborne D A, San Andres L. Experimental response of simple gas hybrid bearings for oil-free turbomachinery[J]. Journal of engineering for gas turbines and power,2006, 128(3):626-633.
    [65]Schiffmann J, Favrat D. Integrated design and optimization of gas bearing supported rotors[J]. Journal of Mechanical Design,2010,132(5):051007.
    [66]Su J C T, Lie K N. Rotor dynamic instability analysis on hybrid air journal bearings[J]. Tribology international,2006,39(3):238-248.
    [67]Leonard R, Rowe W B. Dynamic force coefficients and the mechanism of instability in hydrostatic journal bearings[J]. Wear,1973,23(3):277-282.
    [68]San Andres L, Ryu K. Hybrid gas bearings with controlled supply pressure to eliminate rotor vibrations while crossing system critical speeds[J]. Journal of Engineering for Gas Turbines and Power,2008,130(6):062505.
    [69]Morosi S, Santos I F. Active lubrication applied to radial gas journal bearings. Part 1: Modeling[J]. Tribology International,2011,44(12):1949-1958.
    [70]Morosi S, Santos I F. On the modelling of hybrid aerostatic-gas journal bearings[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,2011,225(7):641-653.
    [71]郭俊,刘宝玉,杨金福,等.气体轴承转子系统低频耦合涡动特性控制的试验研究[J].润滑与密封,2010(3):86-89.
    [72]陈纯正,郭有仪,叶士禄.空气轴承中压透平膨胀机试验研究[J].制冷学报,1982,4:002.
    [73]陈纯正.空分装置气体轴承透平膨胀机[J].制冷,1988,1:003.
    [74]于贺春.高速静压气体轴承—转子系统的特性研究[D].大连:大连海事大学,2011.
    [75]张翰乾.高速静压气体轴承转子系统的稳定性分析[D]哈尔滨:哈尔滨工业大学,2012.
    [76]张广辉.高速动静压混合气体轴承转子系统动力学特性研究[D].哈尔滨工业大学,2010.
    [77]杨金福,连中华.滑动轴承非线性油膜力研究[J].哈尔滨工业大学学报,2003,35(3):257-260.
    [78]杨金福,刘占生,于达仁,等.滑动轴承非线性动态油膜力及稳定性的研究[J].动力工程,2004,24(4):501-504.
    [79]杨金福.流体动力润滑及轴承转子系统的稳定性研究[D].北京:华北电力大学,2006.
    [80]Yang J F, Chen C, Yang S B, et al. An Analytic model of oil-film force on hydrodynamic journal bearing of finite length[C]//ASME Turbo Expo 2008:Power for Land, Sea, and Air. American Society of Mechanical Engineers,2008:947-952.
    [81]Yang J F, Yang S B, Chen C, et al. Research on nonlinear fluid-solid interaction dynamic lubrication in floating ring bearings[C]//ASME Turbo Expo 2009: Power for Land, Sea, and Air. American Society of Mechanical Engineers,2009:773-778.
    [82]陈策.轴承-转子系统非线性动力学行为及其耦合调频技术研究[D].北京:中国科学院工程热物理研究所,2008.
    [83]黄文虎,武新华等.非线性转子动力学研究综述[J].振动工程学报,2000,13(4):497-509.
    [84]焦映厚,陈照波等.非线性转子动力学的研究现状与展望[J].哈尔滨工业大学学报,1999,31(3):1-4.
    [85]Raghothama A, Narayanan S. Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method[J]. Journal of Sound and Vibration,1999,226(3): 469-492.
    [86]陈予恕,孟泉.非线性转子—轴承系统的分叉[J].振动工程学报,1996,9(3):266-275.
    [87]丁千,陈予恕,曹树谦,等.转子—轴承系统的非稳态分岔[J].振动工程学报,2003,16(2):189-193.
    [88]张新江,夏松波.非线性转子—轴承系统Hopf分叉点的计算[J].推进技术,2000,21(4):57-59.
    [89]张正松,沐华平.油膜失稳涡动极限环特性的Hopf分叉分析法[J].清华大学学报:自然科学版,1996,36(7):30-35.
    [90]褚福磊,李贵三.旋转机械常见故障的振动三维谱特征及其识别[J].清华大学学报:自然科学版,1996,36(7):86-91.
    [91]刘献栋,李其汉.小波变换在转子系统动静件早期碰摩故障诊断中的应用[J].航空学报,1999,20(3):220-223.
    [92]李舜酩,许庆余.转子轴心轨迹的谐波小波提纯[J].西北工业大学学报,2001,19(2):220-224.
    [93]史东锋.瞬态提纯轴心轨迹在回转机械诊断中的应用研究[J].西安交通大学学报,1999,33(3):104-107.
    [94]符向前,刘光临,蒋劲,等.基于不变性矩的径向基函数神经网络转子轴心轨迹自动识别[J].武汉大学学报:工学版,2003,36(2):133-136.
    [95]黎伟权.基于时域分析的旋转机械故障诊断方法研究[D].汕头大学,2007.
    [96]赵晨.空气膨胀制冷机高速性能试验研究[D].北京:中国科学院工程热物理研究所.2013.
    [97]王晓升,屈梁生.柔性转子键相信号初始相位及振动信号相位的确定[J].振动.测试与诊断,1996,16(3):15-21.
    [98]樊昌信.通信原理教程[M].北京:电子工业出版社,2005.
    [99]刘江.波箔动压空气径向轴承实验台设计[J].润滑与密封,2012,37(3):117-119.
    [100]卢其炎,周海峰.一种新型滑动轴承实验台的设计[J].机电技术,2008,31(3):37-38.
    [101]孟繁娟.液体动压径向滑动轴承实验台仿真软件的研制[D].北京交通大学,2008.
    [102]Suh N P,舒赫,友柏,等.公理设计:发展与应用[M].机械工业出版社,2004.
    [103]《航空发动机设计手册》总编委会编.航空发动机设计手册第19册:转子动力学及整机振动.北京:航空工业出版社.2001.
    [104]张占一.轴承-转子系统耦合涡动行为特征识别及控制方法试验研究[D].沈阳:东北大学.2009.
    [105]侯予,孙烨,黑丽民,等.橡胶圈加稳径向气体轴承偏心率和偏位角的特性研究[J].润滑与密封,2005(2):14-16.
    [106]侯予,熊联友,王秉琛,等.橡胶圈加稳切向小孔供气径向轴承的试验研究[J].润滑与密封,2005(5):39-40.
    [107]曹树谦,张文德,萧龙翔.振动结构模态分析:理论、实践与应用[M].天津:天津大学出版社.2001.
    [108]韩东江,杨金福,张占一.气膜约束对轴系固有频率影响的试验[J].航空动力学报,2012,27(7):1646-1651.
    [109]San Andres L, Ryu K. Hybrid gas bearings with controlled supply pressure to eliminate rotor vibrations while crossing system critical speeds[J]. Journal of Engineering for Gas Turbines and Power,2008,130(6):062505.
    [110]Zhu X, San Andres L. Rotordynamic performance of flexure pivot hydrostatic gas bearings for oil-free turbomachinery[J]. Journal of Engineering for Gas Turbines and Power,2007,129(4):1020-1027.
    [11 1]应用非线性动力学[M].航空工业出版社,2000.
    [112]董秀萍,刘国权,杨建春,等.金属橡胶用冷拉拔奥氏体不锈钢丝的微观组织[J].航空材料学报,2007,27(6):35-39.
    [113]寇宏宁,刘国权,杨建春,等.金属橡胶用Cr-Ni-Mn系不锈钢丝的微观组织及力学性能研究[J].航空材料学报,2006,26(4):32-33.
    [114]姜洪源,董春芳,敖宏瑞,等.航空发动机用金属橡胶隔振器动静态性能的研究[J].航空学报,2004,25(2):140-142.
    [115]秦钢,李敏,程尔玺.空气制冷机[M].北京:国防工业出版社.1980.
    [116]王湘卿,李中华.装甲车辆空气循环空调系统的概况和发展[J].车辆与动力技术,2006,101(1):52-57.
    [117]McCormick J A, Swift W L, Sixsmith H. Progress on the development of miniature turbomachines for low-capacity reverse-Brayton cryocoolers[M]//Cryocoolers 9. Springer US,1997:475-483.
    [118]张振迎.用于空调系统的湿空气循环制冷机性能分析[J].流体机械,2008,36(3):76-80.
    [119]孙郁,侯予,赵红利,等.逆布雷顿循环空气制冷机的性能分析[J].低温工程,2006,1:27-30.
    [120]骆如碧.透平膨胀机(膨胀涡轮)最佳参数选择的探讨[J].制冷学报,1981,2:002.
    [121]郭中纬,朱瑞琪.冷热联供的空气制冷不可逆循环分析[J].工程热物理学报,2004 (S1).
    [122]Spence S W, Doran W J, Artt D W. Optimisation of turbomachinery performance for air-cycle refrigeration systems[J].1997.
    [123]侯予,王瑾,熊联友,等.高速透平气体轴承试验台的建立[J].润滑与密封,2003(5):17-19.
    [124]郭涛.基于知识的透平膨胀机设计系统的研究与开发[D].浙江大学,2006.
    [125]肖晓劲,袁修干.高速电机驱动的空气循环制冷技术研究[J].中国安全科学学报,2004,14(1):80-83.
    [126]杜建通.空气制冷循环的特性及其在制冷空调中应用的关键技术[J].低温与超导,1999,27(3):33-39.
    [127]韩东江,杨金福,耿加民等.高速永磁电机气体轴承-转子系统振动特性.航空动力学报,2013,28(8):1791-1796.
    [128]Binns K J, Kurdali A. Permanent-magnet ac generators [J]. Electrical Engineers, Proceedings of the Institution of,1979,126(7):690-696.
    [129]韩东江,杨金福,陈昌婷.气体轴承-转子系统的典型振动特性分析.润滑与密封.2014,39(3):7-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700