用户名: 密码: 验证码:
面向光栅制造的宏微超精密进给系统的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型光学系统及高端科学仪器对我国科学研究、国防安全、经济建设和社会民生等各领域的进步和发展具有极其重要的作用。大面积、高精度衍射光栅则广泛应用于光学天文望远镜、惯性约束激光核聚变(ICF)装置、大型光刻系统和高分辨率中阶梯光栅全谱仪等场合。大面积、高精度光栅具有刻划幅面宽、行程长、刻槽结构复杂、槽形精度要求苛刻等特点,决定了机械刻划的制造加工方式。光栅刻划机要求在几百毫米的行程范围内,完成每毫米内几千甚至上万道刻线的刻划,并且保证很高的加工精度。同时,光栅质量与光栅刻线形态密切相关,而光栅刻线是由毛坯位置和刻刀位置共同决定,这就需要一套性能良好的超精密进给系统来完成对光栅毛坯在分度方向上的定位。
     针对光栅刻划的特殊需求,确定了宏微驱动的进给方式。分度系统的位移进给包括宏微驱动结构、位移测量反馈系统和计算机控制系统三个方面,针对分度系统的二级驱动模式,分析了宏驱动的丝杠螺母传动系统和微致动的压电驱动结构力学特性对系统定位精度的影响,并从状态空间角度,分析了光栅刻划机二级传动控制模型的可控性和可观性。由于宏微驱动的长传动链造成的刚度不足和间隙等问题,分析了在系统运行过程中产生的爬行现象与影响爬行的刚度、质量、摩擦系统、阻尼之间的关系。
     光栅刻划机微致动平台承载光栅毛坯实现分度方向上的位移进给,其定位精度直接影响着光栅的加工质量。微致动系统是基于柔性铰链的柔性机构,论文中对不同形状柔性铰链进行了对比分析,对柔性簧片进行了理论建模,基于半梁模型对微致动系统的刚度进行了分析,研究了铰链参数以及光栅毛坯质量对平台刚度的影响;同时,对微致动平台进行动力学建模,分析系统主要参数对模态的影响,并在此基础上对微致动平台关键零件柔性铰链的尺寸进行了优化。
     高定位精度要求的微致动平台,需要相应的控制系统。为了得到更适于光栅刻划进给系统的控制策略,就需要对系统进行辨识,从而获得相关参数。根据辨识模型的复杂性,和微致动平台本身的非线性和时变性等因素,需要控制算法在运行过程中具备一定的自学习和自适应特性。因此文中分析了基于单神经元PID和基于BP神经网络的PID控制算法的微致动进给方式,并将其定位数据与定长PID进行对比。光栅刻划控制实验研究表明,结合BP-PID自适应控制算法,工作台可实现近5nm的控制定位精度。通过对测试数据的数据统计分析,包括刻线的误差分析,验证了光栅刻划机分度进给系统控制策略选择的有效性。
Large optical systems and high-end science equipments play an important role in the development in the area of scientific research, national defense security, economic construction, people's livelihood, etc. Large-area, high-precision diffraction gratings are widely applied to the astronomical optics telescopes, ICF instruments, large lithography systems and echelle grating spectrometers. Because of the characteristic such as large ruling area, long stroke, complex Groove shapes and high accuracy demands, the diffraction grating can only be manufactured by machines. The diffraction grating ruling engine must scratch thousands of grooves per millimeter within the stroke of Hundreds of millimeters, which means that a long travel ultra-precision feeding system with high-quality performance is definitely crucially need to position the grating blanks. Considering with the special demand for the grating manufacturing, the dual-stage feed drive strategy is selected. The large stroke nano positioning system consists of macro-micro feeding system, measuring feedback system and control system. Since the coarse-fine positioning system may have impact on location accuracy, the dynamic and static characteristics of the macro/micro-drive device are analyzed in this paper, including the screw-nut-driven mechanism and piezoelectric-driven system. Besides, theoretical models of the coarse positioning system and the fine positioning system have been developed, and controllability and observability of the system is discussed. Moreover, considering that the stick slip phenomenon may arise during the manufacturing process, this paper studies the relationship between stick slip behavior and its impact factors, such as the friction coefficient and damping coefficient, mass, stiffness, etc.
     The fine positioning subsystem is a flexible mechanism based on the leaf spring. The different type of flexible components is discussed in this paper. Theoretical modeling of the flexible hinge is accomplished. On the basis of the half beam model, stiffness of the micro feed system is studied, research is carried out on the size of the flexible hinge and the mass of the blank (pressure on the stage), which influence the stiffness of the designed device. Meanwhile, dynamic equation of the flexible mechanism is established to analyze the main factors which influence the modal frequency of the fine positioning stage, focusing on the material types and dimension parameters of the leaf-spring. The SQP is adopted to optimize the main parameters of the mechanism to acquire better characteristic. The finite element analysis is also employed.
     The transport of the grating blank at the nanometer scale is key to the diffraction grating fabrication technology. The blank is placed on the fine actuate stage while the positioning accuracy Determines the grating processing quality. To achieve nanometer grade, the control system must be adopted. In order to investigate suitable nano-precision control strategy to the feeding system, system identification of the positioning system is a practical method to reveal the mechanism characteristics. Thus, the Neural Network Control is chosen. In this paper, the constant PID controller, the single neuron network based PID controller and the BP neuron network based PID controller are analyzed contrastively while grating manufacturing tests are carried out. Experiment data shows that the positioning precision of the designed feeding system can reach nearly5nm, which verifies the effectiveness of the chosen control strategy.
引文
Hyunpyo Shin and Jun-Hee Moon.2014. Design of a Double Triangular Parallel Mechanism for Precision Positioning and Large Force Generation [J]. IEEE/ASME Transactions on Mechatronics, 19(3):862-71.
    Perez-Diaz, JL, Valiente-Blanco, I, Diez-Jimenez, E, et al.2014. Superconducting Noncontact Device for Precision Positioning in Cryogenic Environments [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS,19(2):598-605.
    Marinescu, O and Epureanu, BI.2014. High-Precision Positioning of Laser Beams for Vibration Measurements [J]. JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME,136(1):011009.
    Huang, CX, Huang, HX, Toyoda, H, et al.2012. Correlation matching method for high-precision position detection of optical vortex using Shack-Hartmann wavefront sensor [J]. OPTICS EXPRESS,20(24):26099-26109.
    李燕青,郝德阜.2003.衍射光栅制造技术的发展[J].长春理工大学学报,26:66-68.
    Liu, LX, Zhou, JY, Deng, YF, et al.2014. Diffraction and shaping analysis of excimer laser through an ultrasonic grating [J]. OPTICS AND LASER TECHNOLOGY,58:71-75.
    Sakai, D, Fukuda, T and Harada, K.2013. New method of increasing diffraction efficiency of grating transferred in glass substrate by corona-charging treatment [J]. OPTICAL REVIEW,20(6): 504-508.
    George R. Harrison and George W. Stroke, Interferometric control of grating ruling with continuous carriage advance [J]. J. Opt. Soc. Am.,45(2):112-121 (1955).
    Stroke G W.1967. Diffraction gratings [J]. Handbuch der Physik/Encyclopedia of Physics, 5(29):426-754.
    George R. Harrison,1949. The production of diffraction gratings I. Development of the ruling art[J]. J. Opt. Soc. Am.,39(6):413-426.
    George R. Harrison,1949. The Production of Diffraction Gratings:II. The Design of Echelle Gratings and Spectrographs[J]. J. Opt. Soc. Am.39,522-527.
    Erwin G. Loewen and Evgeny Popov,1997. Diffraction Gratings and Applications[M], New York: Marcel Dekker.
    Jin Yi, Chu Biao and Zhu Changan.2012. Design, analysis and control of a precision feeding system of diffraction grating ruling engine [J]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics [C]. Kaohsiung, TAIWAN:160-165.
    Song Ying.2011. Control System of Lifting and Lowering Ruling Diamond Mechanism of Grating Ruling Engine [J]. Microcomputer Information,11:34-6.
    陈科位,齐向东,冯树龙,等.2011.大型衍射光栅刻划机等速系统的设计[J].光学精密工程.19(12):72-77.
    Wang Fang and Qi Xiang-dong.2008. Grating heterodyne interferometer of high accuracy controlling photoelectric grating ruling engine [J]. Laser Technology,32(5):474-6,526.
    唐玉国,朱继伟,巴音贺希格,齐向东,于宏柱.光栅刻划机控制系统(发明专利),201110453290.1
    C. Palmer, Diffraction Grating Handbook [M]. Richardson Grating Laboratory,4th edition (2000). Paul Thomas Konkola, Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions [D]. Ph.D. dissertation, Massachusetts Institute of Technology, Department of Mechanical Engineering, June 2003.
    George R. Harrison and Erwin G. Loewen, Ruled gratings and wavelength tables [J]. AppliedOptics,15(7):1744-1747 (1976).
    Tuma T, Haeberle W, Rothuizen H, et al.2014. Dual-Stage Nanopositioning for High-Speed Scanning Probe Microscopy [J]. IEEE/ASME Transactions on Mechatronics,19(3):1035-45.
    Yichao Tang, Chen Chen, Khaligh A, et al.2014. An ultracompact dual-stage converter for driving electrostatic actuators in mobile microrobots [J]. IEEE Transactions on Power Electronics, 29(6):2991-3000.
    Olfatnia M, Cui LQ, Chopra P, et al.2013. Large range dual-axis micro-stage driven by electrostatic comb-drive actuators [J]. JOURNAL OF MICROMECHANICS AND MICRO-ENGINEERING,23(10):105008.
    Fukada S, Fang B and Shigeno A.2011. Experimental analysis and simulation of nonlinear microscopic behavior of ball screw mechanism for ultra-precision positioning [J]. PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY,35(4):650-668.
    Peng Yu-xin, Gao Wei, Jun K, et al.2011. A linear micro-stage with a long stroke for precision positioning of micro-objects [J]. Nanotechnology and Precision Engineering,9(3):221-7.
    Kuo WM, Tarng YS, Nian CY, et al.2010. Two-stage rule-based precision positioning control of a piezoelectrically actuated table [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 41(5):521-536.
    胡兵.2013.基于直线电机宏微双重驱动大行程精密定位台的研究[D]:[硕士].广州:广东工业大学.
    Li. P, Li. JL, Salman. M, et al.2014. Effect of friction time on mechanical and metallurgical properties of continuous drive friction welded Ti6A14V/SUS321 joints [J]. MATERIALS & DESIGN,56:649-656.
    Itagaki, H and Tsutsumi, M.2014. Control system design of a linear motor feed drive system using virtual friction [J]. PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY,38(2):237-248.
    Qiu, ZC.2014. Adaptive nonlinear vibration control of a Cartesian flexible manipulator driven by a ballscrew mechanism [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING,30: 248-266.
    王占彬,2009.基于气体润滑静压工作台的若干关键技术[D]:[硕士].天津:天津大学.
    杨耀华,2011.磁控形状记忆合金驱动的微动工作台驱动器的设计与控制[D]:[硕士].杭州:杭州电子科技大学.
    Muhammad Tahir Akhtar and Wataru Mitsuhashi.2009. Improving performance of Fx-LMS algorithm for active noise control of impulsive noise [J]. Journal of Sound and Vibration,327: 647-656.
    Yun. CH, Yeo. LY, Friend. JR, et al.2012. Multi-degree-of-freedom ultrasonic micromotor for guidewire and catheter navigation:The NeuroGlide actuator [J]. APPLIED PHYSICS LETTERS, 100(16):164101.
    Bala, UB, Krantz, MC, and Gerken, M.2014. Electrode Position Optimization in Magnetoelectric Sensors Based on Magnetostrictive-Piezoelectric Bilayers on Cantilever Substrates [J]. IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 61(3):392-398.
    方菲.2012.宏微双驱动高精度二维运动平台的实现[D]:[硕士].杭州:浙江大学.
    米凤文,戴旭涵,沈亦兵等.2000.0.1μm大行程精密定位控制系统的研究[J].仪器仪表学报,21(1):89-94.
    李树秋.1994.双维精密定位工件台数控系统的研究[J].光学精密工程,2(4):93-100.
    孙立宁,孙绍云,曲东升等.2004.大行程高精度宏/微双重驱动机器人系统的研究[J].高技术通讯,14:50-52.
    孙绍云,曲东升,孙立宁等.2004.宏/微驱动定位系统滑膜变结构控制的研究[J].机器人,26(1):32-36.
    王立松,苏宝库,董申等.2001.大行程高精度两级定位工作台的控制方法研究[J].机械设计与制造,4:71-72.
    朱煜,尹文生,段广洪.2004.光刻机超精密工件台研究[J].电子工业专用设备,33(2):25-27.
    刘红忠,卢秉恒,丁玉成等.2003.超高精度定位系统及线性补偿研究[J].西安交通大学学报,3:277-281.
    刘学鹏,梅雪松,吴序堂.2004.表面电机的二级定位系统[J].中国机械工程,13:1176-1178.
    Liu C H, Jywe W Y, Jeng Y R, et al.2010. Design and control of a long-traveling nano-positioning stage [J]. Precision Engineering,34(3):497-506.
    Abdullah L, Jamaludin Z, Rafan NA, et al. Assessment on tracking error performance of Cascade P/PI, NPID and N-Cascade controller for precise positioning of xy table ballscrew drive system [J]. 5th International Conference on Mechatronics, Kuala Lumpur, MALAYSIA,53:012010.
    Liu Dong, Mei Xuesong, Feng Bin, et al. Frequency Response Identification for Ballscrew Servo Driven System Based on Symlets Wavelet [J]. Journal of Mechanical Engineering,47(13):153-9.
    J. H. Mao, H. Tachikawa, A. Shimokohbe.2003. Double-integrator control for precision positioning in the presence of friction [J]. Precision Engineering.27:419-428.
    J. H. Mao, H. Tachikawa, A. Shimokohbe.2003. Precision positioning of a DC-motor-driven aerostatic slide system [J]. Precision Engineering.27:32-41.
    Shinno H, Hashizume H.2001. High speed nanometer positioning using a hybrid linear motor [J]. CIRP Annals-Manufacturing Technology.50 (1):243-246.
    Shinno H. Yoshioka H, Taniguchi K.2001. A newly developed long range positioning table system with a sub-nanometer [J]. CIRP Annals-Manufacturing Technology.60(1):403-406.
    Heui Jae Pahk, Dong Sung Lee, Jong Ho Park.2001. Ultra precision positioning system for servo motor-Piezo actuator using the dual servo loop and digital filter implementation [J]. Maehine Tools & Manufaeture.41:51-63.
    Juhasz L, Maas J and Borovac B.2010. Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators [J]. Mechatronics,21(1); 329-338.
    Clayton, G.M., Dudley, C.J., Leang, K.K..2014. Range-based control of dual-stage nanopositioning systems [J]. Review of Scientific Instruments,85(4):045003 (6 pp.).
    Liu, YN.2013. Analytical dynamic model for suspension with PZT actuators [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS,19(9-10):1269-1274.
    Chen, WH, Jiang, J, Chen, WJ, et al.2013. A novel flexure-based uniaxial force sensor with large range and high resolution [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES,56(8): 1940-1948.
    Alici G, Shirinzadeh B.2006. Optimumdynamic balancing of planar parallel manipulators based on sensitivity analysis [J]. Mech Mach Theory.41(12):1520-1532.
    Liaw HC, Shirinzadeh B, Smith J.2007. Enhanced sliding modemotion tracking control of actuators[J]. Sensor Actuat A:Phys.138(1):194-202.
    Lu XD, Trumper DL.2004. Spindle rotary position estimation for fast tool servo trajectory generation. Int J Mach Tools Manuf.47(9):1362-1367.
    胡小唐,庄在龙,陈峰等.1996.用于扫描探针显微技术的空间超精微定位系统[J].天津大学学报.29(1):1-6.
    Yangmin Li and Qingsong Xu.2009. Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator [J]. IEEE TRANSACTIONS ON ROBOTICS.25(3):645-658.
    Y. Tian, B. Shirinzadeha, D. Zhang.2009. A flexure-based mechanism and control methodology for ultra-precision turning operation [J]. Precision Engineering.33(2):160-166.
    Kee-Bong Choi, Jae Jong Lee, and Min Young Kim.2007. Cartwheel flexure-based Compliant Stage for Large Displacement Driven by a Stack-Type Piezoelectric Element [C]. International Conference on Control, Automation and Systems 2007.2754-2758.
    李鸣鸣.2009.人工免疫系统动力学建模与计算[D]:[博士].上海:上海大学。
    Liyi Li, Donghua Pan, Jiaxi Liu, et al.2014. Analysis and Modeling of Air-Core Monopole Linear Motor for Nanopositioning System [J]. IEEE Transactions on Magnetics,49(7):964-7.
    Chen Jing.2013. Study on Driving Force Optimization of a Novel 4-axis CNC Machine Tool Driven by Linear Motors [J]. China Mechanical Engineering,24(8):1007-12.
    Fuzhong Wang, Fukai Zhang.2013. Linear Motor Positioning System Based On Acceleration Sensor [J]. International Journal of Digital Content Technology and its Applications,7(7):868-78.
    Xia, HJ, and Fei, YT.2010. Precise stage Design with Planar Diffraction Grating Interferometer [C].6th International Symposium on Precision Engineering Measurements and Instrumentation, Hangzhou, PEOPLES R CHINA,7544:754411.
    庞振基等.2010.精密机械设计[明.北京:机械工业出版社.
    卢礼华.2007.基于滚珠丝杠的大行程纳米定位系统建模和控制技术研究[D]:[博士].哈尔滨:哈尔滨工业大学.
    Tat Joo Teo, I-Ming Chen, Guilin Yang, et al.2010. A generic approximation model for analyzing large nonlinear deflection of beam-based flexure joints [J]. Precision Engineering.34:607-618.
    宗光华,余志伟,毕树生等.2007.直角切口柔性铰链平行四杆机构的屈曲分析[J].航空学报.28(3):729-735.
    宗光华,余志伟,毕树生.2007.直角切口柔性铰链串联支链的屈曲分析[J].机械工程学报.43(6):8-14.
    Wang RQ, Zhou XQ, and Zhu ZW.2013. Development of a novel sort of exponent-sine-shaped flexure hinges [J]. REVIEW OF SCIENTIFIC INSTRUMENTS,84(9):095008.
    Zhu BenLiang, Zhang XianMin, and Fatikow Serge.2014. Design of single-axis flexure hinges using continuum topology optimization method [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES,57(3):560-567.
    赵宏哲,毕树生,于靖军.2009.三角形柔性铰链的建模与分析[J].机械工程学报.45(8):1-5.
    乔涛,毕树生,赵宏哲等.2011.曲梁三角形柔性铰链力学建模与分析[J].机械工程学报.47(7):45-53.
    刘冰,徐兴平,李继志等.2010.基于序列二次规划算法的射孔水平井孔眼分布优化[J].中国石油大学学报(自然科学版).34(4):79-88.
    刘金琨,沈晓蓉,赵龙.2013,系统辨识理论及MATLAB仿真[M],北京:电子工业出版社.
    庞中华.2009.系统辨识与自适应控制MATLAB仿真[M].北京:北京航空航天大学出版社.
    Pereira JN, Silva P, Lima PU, et al.2014. Formalization, Implementation, and Modeling of Institutional Controllers for Distributed Robotic Systems [J]. ARTIFICIAL LIFE,20(1):127-141.
    Wu JW, Huang KC, Chiang ML, et al.2014. Modeling and Controller Design of a Precision Hybrid Scanner for Application in Large Measurement-Range Atomic Force Microscopy [J].2014. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,61(7):3704-3712.
    Zavari K, Pipeleers G and Swevers J.2014. Gain-Scheduled Controller Design:Illustration on an Overhead Crane [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,61(7): 3713-3718.
    魏强.2006.纳米定位微位移工作台的控制技术研究[D]:[博士].济南:山东大学.
    Tang YG, Li ZH and Guan XP,2014. Identification of nonlinear system using extreme learning machine based Hammerstein model [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION,19(9):3171-3183.
    王正林,王胜开,陈国顺等.2012MATLAB/Simulink与控制系统仿真[M].北京:电子工业出版社.
    Shibin Wang, Weiguo Huang and ZK Zhu.2011. Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis [J]. Mechanical Systems and Signal Processing,25(4):1299-1320.
    Gautier M, Janot A and Vandanjon PO.2013. A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics [J]. IEEE Transactions on Control Systems Technology,21(2):428-444.
    郭继峰,任万滨,康云志,等.2011.电动振动台模型辨识方法及其应用的研究[J].振动与冲击,30(7):241-244.
    于开平,牟晓明.2010.基于前向神经网络的非线性时变系统辨识改进EKF算法[J].振动与冲击,29:5-8.
    Wang FC, Chen LS, Tsai YC, et al.2014. Robust loop-shaping control for a nano-positioning stage [J]. JOURNAL OF VIBRATION AND CONTROL,20(6):885-900.
    Wu, R.C., Tsai, I.H., Wang, F.C., et al.2013. Design and control of a long-stroke nano-positioning stage [C].2013 IEEE/SICE International Symposium on System Integration (SII),14198210: 138-143.
    Chien-Hung Liua, Wen-Yuh Jyweb, Yeau-Ren Jeng, et al.2010. Design and control of a long-traveling nano-positioning stage [J]. Precision Engineering,34(3):497-506.
    侯媛彬,杜京义,汪梅.2007.神经网络[M].西安:西安电子科技大学出版.
    C. James Taylor, Arun Chotai and Wlodek Tych.2012. Linear and Nonlinear Non-minimal State Space Control System Design [J]. System Identification, Environmental Modelling, and Control System Design,2012:559-581.
    Lessard, L. and Lall, S.2011. A state-space solution to the two-player decentralized optimal control problem [C].201149th Annual Allerton Conference on Communication, Control, and Computing (Allerton),12537002:1559-1564.
    S Privara, J Cigler, Z Vana, et al.2012. Incorporation of system steady state properties into subspace identification algorithm [J]. International Journal of Modelling, Identification and Control,16(2):159-167.
    Y Hu and S Yurkovich.2011. Linear parameter varying battery model identification using subspace methods [J]. Journal of Power Sources,196(5):2913-2923.
    O Garpinger, T Hagglund and KJ Astrom.2014. Performance and robustness trade-offs in PID control [J]. Journal of Process Control, online 31.
    PEI Pounds, DR Bersak and AM Dollar.2012. Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control [J].33(1-2):129-142.
    Junghui Chen, Tien-Chih Huang.2004. Applying neural networks to on-line updated PID controllers for nonlinear process control [J]. Journal of Process Control.14(2):91-94.
    Liyi Li; Qiming Chen; Guangjun Tan, et al.2013. High precision position control of voice coil motor based on single neuron PID [C]. Eighth International Symposium on Precision Engineering Measurement and Instrumentation, Chengdu, China.
    Xiaoming Sang and Yun-Hae Kim.2013. Single Neuron PID Control of a Turbofan Engine with Inlet Pressure Distortion [C]. Advanced Materials Research,1534:753-755.
    YAN Jun, LI Bo, GUO Gang, et al.2012. Adaptive control for bucket position of excavator based on single neuron PID [J]. Journal of PLA University of Science and Technology,13(3):316-319.
    Guo Xing-ge, Wu Jiao-jiao, Liu Jing, et al.2013. Self-tuning fault-tolerant PID control for mine hoist based on BP neural network [J]. Industry and Mine Automation,39(6):45-8.
    Zheng Jian-ming, Xiao Min, Yang Ming-shun, et al.2013. Simulation of BP-PID Control for Electrohydraulic Proportional Position Servo System [J], International Journal of Online Engineering,9(3):40-4.
    Pingyuan Xi and Yandong Song.2011. Application Research on BP Neural Network PID Control of the Belt Conveyor [J]. Journal of Digital Information Management,9(6):266-70.
    师黎,陈铁军,李晓媛,等.2009.智能控制理论及应用[M].北京:清华大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700