用户名: 密码: 验证码:
基于球齿轮传动的新型指向平台系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
指向平台技术在航天和军工方面具有广泛应用,受到了众多学者的关注。我国深空探测、光通信、激光武器等新技术的飞速发展,对指向平台提出了更高的技术要求。受平台结构形式、驱动形式、传感器以及技术水平等因素制约,现有的指向平台在负载能力、体积重量、指向精度等方面存在一定的不足。因此,研制负载能力强、指向精度高且体积和重量小的指向平台对推动指向平台的技术发展具有重要意义。
     论文来源于国家部委预研项目“基于球齿轮传动的新型指向机构技术研究”。文章在总结现有指向平台优缺点的基础上,提出了一种新型指向平台设计方案。围绕该设计方案,论文进行了结构设计与分析、运动学和动力学建模研究、误差分析以及运动控制系统等方面的研究。主要研究内容如下:
     1.提出了基于球齿轮传动的新型指向平台系统设计方案。总结了现有指向平台的特点,指出其存在的不足。在此基础上,提出新型指向平台设计方案:采用宏动指向平台和微动指向平台相结合的二级指向平台形式;采用球齿轮齿盘传动和XY轴结构设计宏动指向平台;采用柔性铰链传动设计微动指向平台。对球齿轮齿盘传动以及碟形弹簧进行了设计与分析;对柔性铰链构型进行了改进设计,计算了其柔度和运动精度,进行了有限元验证,并对其性能进行了数值分析和比较。在此基础上设计了二维柔性铰链和微动指向平台。
     2.建立了新型指向平台的运动学和动力学模型。在分析球齿轮齿盘传动、XY轴结构形式的基础上,建立了宏动指向平台的运动学模型,并采用拉格朗日方程法建立了其动力学模型,并分别对其模型进行了仿真验证;在对微动指向平台结构进行一定简化的基础上,建立了微动指向平台的运动学模型,采用拉格朗日方程法建立其动力学模型,并进行了仿真验证。
     3.对新型指向平台的误差问题进行了研究。分析了指向平台的误差源,在运动学模型基础上,采用多体系统运动学方法建立了新型指向平台的误差模型。为进一步提高其指向精度,对部分结构的弹性变形等因素进行了详细分析。在上述误差模型的基础上,对系统指向误差进行了仿真研究,采用最小二乘法进行参数辨识,并对其补偿结果进行了仿真分析和验证。
     4.建立了新型指向平台的运动控制系统。提出了指向平台运动分层控制系统的总体方案,并对其硬件和软件设计进行了说明。根据动力学理论模型,推导了指向平台的被控模型。在此基础上,考虑前文建立的指向平台误差模型和系统非线性强耦合特性,设计了包含误差补偿器的BP网络PID解耦控制器,进行了控制系统仿真分析。
     5.建立了多套新型指向平台的原理样机并进行了相关的试验工作。为选择合适的设计方案,建立了采用不同驱动形式和传动形式的新型指向平台原理样机四套,并对其优缺点进行了详细分析和比较;在确定设计方案的基础上,对文中研究的指向平台进行了试验与分析,验证了文中的理论分析结果和原理样机的部分性能指标。
The technology of pointing platform is used widely in spaceflight and militaryindustry, and it attracts more and more attention of technologists. With the rapidlydevelopment of our project of exploring the deep space, laser communication, and laserweapons, the technology requirement for pointing platform system is improved.Restricted by the structure, driver motor, sensors, and the technology level, pointingplatform can not meet the requirements very well. Consequently, it is important toresearch on the novel pointing platform system with big load capability, precisionpointing capability, and small volume and weight.
     This paper is supported by the general equipement department pre research project“research on the novel pointing mechanism based on spherical gears”. After thesummarization of the existent pointing platform, a novel pointing platform designationis presented in this paper. Based on this designation, the structure designation andanalysis, kinematics and dynamics modeling, pointing error analysis, and movementcontrol system are discussed in this paper. The main contents are as follows:
     1. A novel pointing platform designation based on spherical gear transmission ispresented in this paper. Summarize the charicteristics of the existent pointing platformsand indicate the limitation of them. Then the desination of a novel pointing platform ispresented: the form of two stages, macro and micro pointing platform, is adopted, thespherical gear transmission and XY axis structure are adopted to design the macropointing platform, and the flexure hinge transmission is adopted to design the micropointing platform. The spherical gear and the dish spring are designed and analyzed.The flxure hing designation is improved, its compliance and rotate precison areanalyzed and verified through finite element analysis, and its performance is simulatednumerically. Based on the analysis of the flexure hinge, the flexure hinge with tworotate dimensions and the micro pointing platform are designed.
     2. Kinematics model and dynamics model of the novel pointing platform areestablished in this paper. Based on the analysis of the spherical gear transmission andthe XY axis structure, the kinematics model of macro pointing platform is established,the dynamics model is also established with Lagrange equation method, and the modelsare verified through simulation analysis. After several simplifications, the kinematicsmodel of the micro pointing platform is established, its dynamics model is alsoestablished with the Lagrange equation method, and the models are verified throughsimulation analysis.
     3. The error of the novel pointing platform is analyzed in this paper. The sources oferrors are discussed. Based on multibody kinematics method and the kinematics modelestablished, the error model of the pointing platform is established. To improve the precison of the pointing platform, elastic deformations of some parts are analyzed.Based on the error model of the pointing platform, the error is calculated, the errorparameters are recognized with the least squre method, and the result is verified throughsimulation analysis.
     4. The movement control system is established in this paper. The layeredcontrolsystem scheme is presented, and the designation of the hardware and software isindicated. Based on the dynamics model, the control model of the system is deduced.Considering the error model established in this paper and the nonlinear and strongcoupling characteristics of the system, the PID dismiss-coupling controller with BPneural network including error compensation is presented, and it is verified throughcontrol system simulation analysis.
     5. Several testing novel pointing platforms are constructed, and several tests areconducted. Four different testing pointing platforms are established and compared withthe structure and the driver form to choose the best desination. Based on the bestdesignation, the pointing platform is tested and then analyzed. The theoretic conclusionsdeduced in this paper and some requirements for the pointing platform are verified.
引文
[1]谢丰奕.全球通信卫星大盘点[J].卫星电视与宽带多媒体,2007,(1):26~28.
    [2]王余涛.2011年《全球卫星产业状况报告》[J].卫星应用,2011,4:14~19.
    [3]王琦.全球卫星产业2010年度述评[J].卫星与网络,2011,1:52~57.
    [4]王琦.对全球卫星产业的回顾与展望[J].卫星与网络,2007,7(2):41~47.
    [5] Guangren C. An Analysis on the Market Structure of the Global Fixed SatelliteOperation Industry[J].中国航天英文版,2006,7(2):4~7.
    [6]张赢,汪洲,廖学军.美军空间武器发展现状与趋势分析[J].四川兵工学报,2009,30(12):99~102.
    [7]石卫平.2005年世界军用卫星发展综述[J].中国航天,2006,2:10~13.
    [8]刘晓恩,曹秀云.美国空间武器发展分析[J].中国航天,2007,5:32~37.
    [9] Wilson K. Overview of the Ground to Orbit Lasecomm Demonstration[J].SPIE,1997,2990:23~30.
    [10]于思源,高惠德,王立松等.卫星光通信复合轴跟瞄控制方法研究[J].激光技术,2002,26(2):114~116.
    [11]孙兆伟,吴国强,孙宪仁等.国内外空间光通信技术发展及趋势研究[J].光通信技术,2005,9:61~64.
    [12]马晶,韩琦琦,谭立英等.卫星光通信技术发展及其影响因素分析[J].光通信技术,2004,10:45~47.
    [13]刘静江,黄永梅,傅承毓.空间光通信ATP系统中的跟瞄技术[J].光电工程,2003,30:4~7.
    [14] Lee S, Alexander JW, Jeganathan M. Pointing and Tracking SubsystemDesign for Optical Communications Link between the International Space Station andGround[J]. SPIE,2000,3932:150~157.
    [15]孙京,马兴瑞,于登云.星载天线双轴定位机构指向精度分析[J].宇航学报,2007,28(3):545~550.
    [16]李长江.基于虚拟样机技术的双轴定位机构建模、仿真与设计评估[D].长沙:国防科技大学,2004.
    [17]王淑一,宗红,李铁寿.嫦娥一号卫星双轴天线轨迹规划[J].空间控制技术与应用,2009,35(3):18~22.
    [18] H AE, E EM, M GR, et al. Satellite Ultraquiet Isolation TechnologyExperiment: electromechanical suly systems[C]. proceedings of the Part of the SPIEConference on Industrial and Commercial Applications of Smart StructuresTechnologies,1999.
    [19] E MJ, C HJ. Design and Control of Flexure Jointed Hexapods[J]. IEEETransactions on Robtics and Automation,2000,16(4):372~381.
    [20] D M. Occultation Pointing Maintenance and FOV for SAGE Ⅲon theExpress Pallet: proceedings of the AIAA Conference and Exhibit on International SpaceStation Utilization,[C].2001.
    [21]李伟鹏,黄海.基于Hexapod的精密跟瞄平台研究[J].宇航学报,2010,31(3):681~686.
    [22]罗二娟,牟德君,刘晓等.耦合型3自由度并联稳定平台机构及其运动特征[J].机器人,2010,32(5):681~694.
    [23]路英杰.大射电望远镜馈源支撑系统定位与指向控制研究[D].北京:清华大学,2007.
    [24]程佳.并联4TPS-1PS型电动稳定跟踪平台的特性及控制研究[D].杭州:浙江大学,2008.
    [25] Joerck, Lange H, Wolf G, et al. High Precision Line of Sight Stabilization for a1m Space Telescope with Onboard Image Processing[J]. SPIE,1990,1306:148~161.
    [26]李伟鹏,黄海,边边.精密跟瞄Hexapod平台研制及其振动控制[J].航空学报,2009,30(2):259~264.
    [27]李伟鹏,黄海,边边.空间精密跟瞄Hexapod平台作动器研制与实验[J].北京航空航天大学学报,2007,33(9):1017~1020.
    [28]张智永.光电稳定伺服机构的关键测控问题研究[D].长沙:国防科技大学,2006.
    [29]成刚.光电稳定跟踪的机械结构分析与研究[D].西安电子科技大学,2000.
    [30] Patel, R M. Energy-momentum-wheel for Satellite Power and Attitude ControlSystems[C]. proceedings of the International Energy Conference ConversionEngineering Conference and Exhibit,2000.
    [31]周庆方,王志坚,王春艳.光学稳像技术在空间通信及航空、航天中应用的探讨[J].空间科学学报,2004,24(1):74~80.
    [32] Seok HD, Lyou J. Digital Image Stabilization using Simple Estimation of theRotational and Translational Motion[J]. SPIE,2005,5810:170~181.
    [33] Zhong P. Research on Methods of Motion Estimation and Comprensation inElectronic Image Stabilization Technique[J]. SPIE,2005,5637:182~188.
    [34]韩绍坤,赵跃进.电子稳像技术及其发展[J].光学技术,2001,27(1):71~73.
    [35]罗护,范大鹏,张智永等.两轴陀螺稳定系统中陀螺安装的几种方法[J].兵工学报,2005,26(3):426~428.
    [36]纪明.光电二级稳定系统控制通道融合技术[J].兵工学报,2000,4:318~321.
    [37]纪明.武装直升机瞄准线粗精组合二级稳定技术[J].航空学报,1997,18(3):289~293.
    [38]纪明.车载机载稳瞄系统FSM补偿技术[J].火力与指挥控制,1997,1:58~63.
    [39]柳宗安.XY轴型跟瞄装置粗精复合控制系统建模与仿真[D].西安:西安电子科技大学,2005.
    [40]甘至宏,张葆等.机载光电稳定平台框架结构工程分析[J].光学精密工程,2008,16(12):2441~2446.
    [41]谭民,徐德,侯增广等.先进机器人控制[M].北京:高等教育出版社,2007.
    [42]杨义勇,金德闻.机械系统动力学[M].北京:清华大学出版社,2009.
    [43] Hu Q, Jia Y, Xu S. A New Computer-oriented Approach with EfficientVariables for Multibody Dynamics with Motion Constraints[J]. Acta Astronautica,2012,81:380~389.
    [44] Wu C, Wang H, Chen Y. A Novel5DOF Thin Coplanar Nanometer-scaleStage[J]. Precision Engineering,2008,32:239~250.
    [45] Khaliq AKM. A Predictor-corrector Scheme for Fourth Order Parabolic PartialDifferential Equations[J]. Computers Math Applic,1989,17(12):1563~1566.
    [46] Abdellatif H, Heimann B. Computational Efficient Inverse Dynamics of6DOF fully Parallel Maniopulators by using the Lagrangian Formalism[J]. Mechanismand Machine Theory,2009,44:192~207.
    [47] Dejima S, Gao W, Katakura K, et al. Dynamic Modeling, Controller Designand Experimental Validation of a Planar Motion Stage for Precision Positioning[J].Precision Engineering,2005,29:263~271.
    [48] Staicu S. Dynamics of the6-6Stewart Parallel Manipulator[J]. Robotics andComputer-Integrated Manufacturing,2011,27:212~220.
    [49] Santini P, Gasbarri P. General Background and Approach to MultibodyDynamics for Space Applications[J]. Acta Astronautica,2009,64:1224~1251.
    [50] Choi Y, Sreenivasan SV, Choi BJ. Kinematic Design of Large DisplacementPrecision XY Positioning Stage by using Cross Strip Flexure Joints andOver-constrained Mechanism[J]. Mechanism and Machine Theory,2008,43(724~737).
    [51] Li Y, Xu Q. Modeling and Performance Evaluation of a Flexure-based XYParallel Micromanipulator[J]. Mechanism and Machine Theory,2009,44:2127~2152.
    [52] Aslanov V, Kruglov G, Yudintsev V. Newton-Euler Equations of MultibodySystems with Changing Structures for Space Applications[J]. Acta Astronautica,2011,68:2080~2087.
    [53]张文博.导引头伺服机构工作机理与先进测控方法研究[D].长沙:国防科技大学,2009.
    [54]张立杰.新型复合式仿生轮-腿机构运动学及动力学研究[D].长沙:国防科技大学,2008.
    [55]田浩,赵阳,孙京等.双轴定位点波束天线波束指向计算[J].宇航学报,2007,28(5):1215~1218.
    [56]Rao SS, Bhatti PK. Probabilistic Approach to Manipulator Kinematics andDynamics[J]. Reliability Engineering and System Safety,2001,72:47~58.
    [57] Wang SC, Hikita H, Kubo H, et al. Kinematics and Dynamics of a6Degree-of-freedom Fully Parallel Manipulator with Elastic Joints[J]. Mechanism andMachine Theory,2003,38:439~461.
    [58]翟华,高洪.机械系统仿真原理与应用[M].合肥:合肥工业大学出版社,2008.
    [59]罗庆生,韩宝玲,赵小川等.现代仿生机器人设计[M].北京:电子工业出版社,2008.
    [60]高新亮,朱思洪,尹学军等.机器动力学[M].北京:科学出版社,2011.
    [61]贾晓辉,田延岭,张大卫.基于虚功原理的3-RRPR柔性精密定位工作台动力学分析[J].机械工程学报,2011,47(1):68~74.
    [62] Altuzarra O, Aginaga J, Hernandez A, et al. Workspace Analysis of PositoningDiscontinuities due to Clearances in Parallel Manipulators[J]. Mechanism and MachineTheory,2011,46:577~592.
    [63] W FJ, K RA. Confidence Limits for the Pointing Error of Gimbaled Sensors[J].IEEE Transactions on Areospace and Electronic Systems,1966,2(6):648~654.
    [64] A A, H A. Kinematic and Dynamic Sensitivity Analysis of a Three-axis RotaryTable: proceedings of the IEEE Conference on Control Applications,2003[C].
    [65] B KVS, M FP. Kinematic Modeling of Quasistatic Errors of Three-axisMaching Centers[J]. International Journal of Advanced Manufacturing Technology,1994,34(1):85~100.
    [66]李岩,范大鹏.多环架视轴稳定跟踪结构的运动学分析[J].应用光学,2008,29(1):18~22.
    [67]李岩,范大鹏.光电稳定机构指向误差建模与敏感度分析[J].国防科技大学学报,2008,30(1):104~109.
    [68]李岩,范大鹏.视轴稳定平台的装配误差机理分析与仿真[J].中国惯性技术学报,2007,15(1):35~38.
    [69]李岩,范大鹏.基于多体系统运动学理论的三轴转台装配误差建模分析[J].兵工学报,2007,28(8):981~987.
    [70]李岩.光电稳定跟踪装置误差建模与评价问题研究[D].长沙:国防科技大学,2008.
    [71]游斌第,赵阳,赵志刚等.柔性关节动态误差对星载天线扰动及控制[J].机械工程学报,2011,47(5):85~92.
    [72]李婷,潘存云,李强等.安装误差对球齿轮姿态调整机构指向精度的影响分析[J].兵工学报,2009,30(7):962~966.
    [73]张智永,周晓尧,范大鹏.光电探测系统指向误差分析、建模与修正[J].航空学报,2011,32.
    [74]张锋,丁洪生,付铁等.星载天线指向机构误差分析与建模[J].电子机械工程,2010,26(1):41~44.
    [75] K W, J KH. The Pointing Control System of SOFIA[J]. SPIE,2000,4014:3602369.
    [76] Haessig, Decotiis DJ, James. Modern Control Methods Applied to aLine-of-sight Stabilization and Tracking System: proceedings of the American ControlConference,1987[C].
    [77] Hilkert JM, Hullender DA. Adaptive Control System Techniques Applied toInertial Stabilization Systems[J]. SPIE,1306:190~206.
    [78] Lee, Tan TH, W LM. Composite Control of a Gyro Mirror Line-of-sightStabilization Platform-Design and Auto-Tunning[C]. Proceedings of the The WorldCongress on Intelligent Control and Automation,1998.
    [79] Moorty K, Marathe JAR, Rajeev, et al. Fuzzy Controller for Line-of SightStabilization Systems[J]. Optical Engineering,2004,43(6):1394~1400.
    [80] Cheng F, Chaofan K, Miao J, et al. A BPNN-PID Based Long-StrokeNanopositioning Control Scheme Driven by Ultrasonic Motor[J]. Precision Engineering,2012,36:485~493.
    [81] Zengqi S, Zhidong D. A Fuzzy Neural Network and its Application toControls[J]. Artificial Intelligence in Engineering,1996,10:311~315.
    [82] Lee C, Wang S. A Self-organizing Adaptive Fuzzy Controller[J]. Fuzzy Setsand Systems,1996,80:295~313.
    [83] Yldrm S. Adaptive Robust Neural Controller for Robots[J]. Robotics andAutonomous Systems,2004,46:175~184.
    [84] Buice ES, Otten D, Yang RH, et al. Design Evaluation of a Single-axisPrecision Controlled Positioning Stage[J]. Precision Engineering,2009,33:418~424.
    [85] Djouani K, Hamam Y. Feedback Optimal Neural Network Controller forDynamic Systems-A Ship Maneuvering Example[J]. Mathematics and Computers inSimulation,1996,41:117~127.
    [86] Lin J, Lian RJ. Hybrid Fuzzy-logic and Neural-network Controller for MIMOsystems [J]. Mechatronics,2009,19:972~986.
    [87] Wielen AMvd, Delbressine FLM, Schellekens PHJ. Overactuation: A Solutionfor the Accuracy-throughput Speed Contradiction in Parallel Axis PositioningSystems[J]. Mechanism and Machine Theory,2011,46:1732~1743.
    [88] Chuan Y, Qiang Z, Hairong W, et al. Study on Intelligent Control System ofTwo-dimensional Platform based on Ultra-precision Positioning and Large Range[J].Precision Engineering,2010,34:627~633.
    [89] Qiu Z, Zhang X, Ye C. Vibration Suppression of a Flexible PiezoelectricBeam Using BP Neural Network Controller[J]. Acta Mechanica Solida Sinica,2012,25(4):417~428.
    [90]骆顺奇.光电桅杆瞄准稳定最优控制(续)[J].舰船光学,1999,3:11~16.
    [91]骆顺奇.光电桅杆瞄准稳定最优控制系统[J].舰船光学,1999,2:1~4.
    [92]姬伟,李奇,杨海峰.精密光电跟踪转台的设计与伺服控制[J].光电工程,2006,33(3):11~16.
    [93]胡浩军.运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D].长沙:国防科技大学,2005.
    [94]柳朝军.捷联式三轴稳定跟踪平台的建模及动态模糊神经网络控制器研究
    [D].北京:北京理工大学,2000.
    [95]柳朝军,廖晓钟.捷联式三轴稳定跟踪系统的运动学建模与仿真[J].北京理工大学学报,2000,20(3):313~316.
    [96] Q LZ, X LG, M LH. Research on Cone Tooth Spherical Gear Transmission ofRobot Flexible Joint[J]. ASME,1990,26:56~60.
    [97] Tsai YC, Jehng WK. Rapid Prototyping and Manufacturing TechnologyApplied to the Forming of Spherical Gear Sets with Skew Axes[J]. Journal of MaterialsProcessing Technology,1999,95:169~179.
    [98] Jehng WK. Computer Solid Modeling Technologies Applied to Develop andForm Mathematical Parametric Tooth Profiles of Bevel Gear and Skew Gear Sets[J].Journal of Materials Processing Technology,2002,122:160~172.
    [99] Tsai YC, Jehng WK. A Kinematics Parametric Method to Generate New ToothProfiles of Gear Sets with Skew Axes[J]. Mechanism and Machine Theory,1999,34:857~876.
    [100] Chao LC, Tsay CB. Contact Characteristics of Spherical Gears[J].Mechanism and Machine Theory,2008,43:1317~1331.
    [101] Chao LC, Tsay CB. Tooth Flank, Undercutting and Tooth Pointing ofSpherical Gears[J]. Mechanism and Machine Theory,2011,46:534~543.
    [102] Yang SC, Chen CK, Li KY. A Geometric Model of a Spherical Gear with aDouble Degree of Freedom[J]. Journal of Materials Processing Technology,2002,123:219~224.
    [103] Yang SC. A Rack-cutter Surface Used to Generate a Spherical Gear withDiscrete Ring-Involute Teeth[J]. International Journal of Advanced ManufacturingTechnology,2005,27:14~20.
    [104]刘志全,李瑰贤,李华敏.机器人柔性关节准椭球面齿轮传动—节曲面的优化设计[J].机器人,1990,12.
    [105]刘志全.机器人柔性关节椭球面齿轮传动的原理与设计[D].哈尔滨:哈尔滨工业大学,1989.
    [106]李瑰贤,刘志全,李华敏.机器人柔性关节准椭球面齿轮传动—齿形分析与设计[J].机器人,1991.
    [107]毕诸明.机器人关节内环面齿准椭球齿轮传动及其图形仿真[D].哈尔滨:哈尔滨工业大学,1991.
    [108]郭吉丰,童忠钫,黄善均等.HRGP1喷漆机器人挠性手腕的传动原理及设计[C].第三届全国机器人会议论文集.
    [109]郭吉丰.机器人柔性手腕球面传动的原理与设计[D].哈尔滨:哈尔滨工业大学,1992.
    [110]吴波.机器人绕性手腕图形仿真结构改进[D].哈尔滨:哈尔滨工业大学,1994.
    [111]张昆,冯立群.机器人柔性手腕的球面齿轮设计研究[J].清华大学学报:自然科学版,1994,2.
    [112]袁斌,何兆太.双自由度锥形凹齿球面齿轮传动[J].黄石高等专科学校学报,2004,20(2):43~44.
    [113] Liu Huran. A new kind of Spherical Gear and its Application in a Robot'sWrist Joint[J]. Robotics and Computer-Integrated Manufacturing,2009,25:732~735.
    [114]潘存云,温熙森.渐开线环形齿球齿轮传动原理与运动分析[J].机械工程学报,2005,41(5):1~9.
    [115]潘存云,温熙森.基于渐开线球齿轮的机器人柔性手腕结构与运动分析[J].机械工程学报,2005,41(7):141~146.
    [116]潘存云,温熙森.球齿轮行星传动结构型式与驱动机构分析[J].国防科技大学学报,2004,26(3):93~98.
    [117]潘存云,温熙森.渐开线球齿轮齿廓曲面方程的推导[J].国防科技大学学报,2004,26(4):93~98.
    [118]潘存云.球齿轮传动原理与加工方法研究[D].长沙:国防科技大学,2001.
    [119]李婷,潘存云,张立杰等.球齿轮传动的齿面接触分析和应力分析[J].国防科技大学学报,2008,30(6):123~128.
    [120]李婷,潘存云.球齿轮传动齿廓接触特性分析[J].航空学报,2008,29(6):1680~1686.
    [121]李婷,潘存云.球齿轮的磨削加工和齿根过渡曲面方程的推导[J].机械设计与研究,2007,23(3):100~105.
    [122] Li Ting, Pan Cunyun. On Grinding Manufacture Technique and ToothContact and Stress Analysis of Ring-Involute Spherical Gears[J]. Mechanism andMachine Theory,2009,44:1807~1825.
    [123] J P, L W. How to Design Flexure Hinges[J]. Journal of Machine Design,1965,37:151~157.
    [124] St S, Dg C, Dk B. Design and Assessment of Monolithic High PrecisionTranslation Mechanisms[J]. Journal of Physics E: Science Instrument,1987,20:979~983.
    [125] Lobontiu N, Paine JSN, Malley EO, et al. Parabolic and Hyperbolic FlexureHinges: Flexibility, Motion Precision and Stress Characterization based on ComplianceClosed-form Equations[J]. Precision Engineering,2002,26:183~192.
    [126] Lobontiu N, Paine JSN, Garcia E, et al. Design of Symmetric Conic-sectionFlexure Hinges based on Closed-form Compliance Equations[J]. Mechanism andMachine Theory,2002,37:477~498.
    [127] Lobontiu N, Paine JSN, Garcia E, et al. Corner-filleted Flexure Hinges[J].Journal of Mechanical Design,2001,123:346~352.
    [128] Lobontiu N, Paine JSN. Design of Circular Cross-section Corner-filletedFlexure Hinges for Three-dimensional Compliant Mechanisms[J]. Journal of MachineDesign,2002,124:479~484.
    [129] Tian Y, Zhang D, Shirinzadeh B. Dynamic Modeling of a Flexure-basedMechanism for Ultra-precision Grinding Operation[J]. Precision Engineering,2011,35:554~565.
    [130] Tian Y, Xu Q. Modeling and Performance Evaluation of a Flexure-based XYParallel Micromanipulator[J]. Mechanism and Machine Theory,2009,44:2127~2152.
    [131] Tian Y, Shirinzadeh B, Zhang D, et al. Three Flexure Hinges for CompliantMechanism Designs based on Dimensionless Graph Analysis[J]. Precision Engineering,2010,34:92~100.
    [132] Tian Y, Shirinzadeh B, Zhang D. Closed-form Compliance Equations ofFilleted V-shaped Flexure Hinges for Compliant Mechanism Design[J]. PrecisionEngineering,2010,34:92~100.
    [133] Tian Y, Shirinzadeh B, Zhang D. Design and dynamics of3-DOFflexure-based parallel mechanism for micro/nano manipulation[J]. MicroelectronicEngineering,2010,87:230~241.
    [134] Chen G, Liu X, Du Y. Elliptical-arc-fillet Flexure Hinges: Toward aGeneralized Model for Commonly Used Flexure Hinges[J]. Journal of Machine Design,2011,133.
    [135] Vallance RR, Haghighian B, Marsh ER. A Unified Geometric Model forDesigning Elastic Pivots[J]. Precision Engineering,2008,32:278~288.
    [136] Lu Ykytf, Handley DC. Review of Circular Flexure Hinge Design Equationsand Derivation of Empirical Formulations[J]. Precision Engineering,2008,32:63~70.
    [137]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700