用户名: 密码: 验证码:
新型聚碳酸亚丙酯/蒙脱土纳米复合材料的制备、性能及降解行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由CO2和环氧丙烷发生开环共聚反应生成的可降解塑料聚碳酸亚丙酯(PPC)的推广和使用是治理“白色污染”的有效途径,但低热稳定性和较差的力学性能使其应用范围受限。本文采用聚合物/层状硅酸盐纳米复合材料的研究思路,用有机阳离子修饰的蒙脱土改性PPC,达到提高其热稳定性和力学性能等的目的。
     为更好地说明有机修饰剂、蒙脱土(MMT)和PPC基质之间的相互作用对纳米复合材料结构、性能的影响,本文选用三种不同结构类型和体积大小的有机阳离子:咪唑季铵盐(HHMIB)、盐酸氨基酸盐(AUA)和低聚聚苯乙烯季铵盐(COPS),利用MMT的阳离子交换性分别对其进行修饰,通过测试修饰前后C含量的变化或利用热重分析(TG)计算出实际插层的阳离子量即交换容量。结果表明HHMIB的插层能力最弱,达到的交换容量仅为64.6mmol/100g; AUA的交换容量达到92.3mmol/100g;由于在插层之前先对MMT作了端面的硅烷化修饰,增大了MMT的亲油性,使COPS的交换容量达到97.6mmol/100g。X射线衍射(XRD)结果表明HHMIB插层后MMT的层间距由1.52nm增至2.60nm;由于AUA的体积最小,其插层后MMT的层间距只增至1.62nm;由于COPS的体积最大,其插层后MMT的层间距增至3.53nm以上。
     用上述有机蒙脱土分别和PPC熔融共混制备出三种不同蒙脱土质量分数的PPC/MMT复合材料,对复合材料的结构、热稳定性、力学性能和耐介质性进行了研究。XRD和透射电镜(TEM)显示聚碳酸亚丙酯/咪唑盐化-蒙脱土复合材料(PPC/H-MMT)和聚碳酸亚丙酯/盐酸氨基酸盐化-蒙脱土复合材料(PPC/A-MMT)是蒙脱土层间距分别为3nm和2nm的插层型纳米复合材料;聚碳酸亚丙酯/硅烷化-低聚聚苯乙烯化-蒙脱土复合材料(PPC/A-C-MMT)是剥离型纳米复合材料。TG分析表明相比PPC复合材料的热稳定性都提高:PPC/H-MMT、PPC/A-MMT和PPC/A-C-MMT的onset分别最大提高了64℃、41℃和82℃,T10%分别最大提高了64℃、46℃和76℃,T50%分别最大提高了47℃、27℃和47℃。剥离型结构产生的“纳米效应”使PPC/A-C-MMT热稳定性最高,相比PPC显著提升。静态拉伸力学性能测试显示复合材料的力学性能发生明显变化:相比PPC, PPC/H-MMT、PPC/A-MMT、PPC/A-C-MMT的拉伸强度分别最大增加了34.6%、78.4%和549%;弹性模量分别最大增加了69.7%、1425%和4382%;断裂伸长率分别最大降低了34%、52.3%和99.3%,但PPC/H-MMT和PPC/A-MMT的断裂伸长率绝对值很大,分别为900%和650%,材料依然具有优良的韧性,PPC/A-C-MMT的断裂伸长率为10.18%,韧性减弱,脆性增大。PPC/A-C-MMT的强度和硬度发生突跃性的改变同样是归功于剥离型结构产生的“纳米效应”。动态力学性能测试(DMA)显示复合材料的储能模量都高于PPC,刚性都得到增强;随着温度的升高,发生状态转变的温度都比PPC滞后:PPC/H-MMT、PPC/A-MMT和PPC/A-C-MMT由玻璃态向玻璃态-高弹态混合态转变的温度分别最大提高了约5℃、16℃和24℃,玻璃化转变温度(Tg)分别最大提高了2.4℃、10℃和18.5℃。将材料浸泡在水或机油中一定时问后,通过测试质量的变化表征其耐介质性。结果显示PPC的吸水率是4.4%,PPC/H-MMT的最大吸水率是13%,耐水性减弱;PPC/A-MMT和PPC/A-C-MMT的最大吸水率分别为3%和2%左右,耐水性增强。复合材料的吸油率很低,都在0.9%之内,具有优良的耐油性。
     复合材料材料分别在自然条件下光降解和土埋恒温恒湿条件下生物降解180天后,用凝胶渗透色谱法测试降解前后PPC的分子量表征其降解性。纯PPC的光降解率为83.9%;PPC/H-MMT、PPC/A-MMT和PPC/A-C-MMT的最大光降解率分别为82.6%、82.0%和65.4%。PPC的生物降解率为74.9%;PPC/H-MMT、PPC/A-MMT和PPC/A-C-MMT的最大生物降解率分别为78.1%、64.7%和28.4%。除了PPC/H-MMT的生物降解性比PPC增强,其它复合材料的光降解性和生物降解性相比PPC都下降。PPC/A-C-MMT的生物降解性偏低,但最大光降解率可达到65.4%,依然是光降解性较好的复合材料;其它两种复合材料具有良好的降解性。
     生物降解后PPC/MMT纳米复合材料对土壤质量的影响未见报道。本文用稀释平板计数法测定生物降解后填埋复合材料的土壤微生物菌落总数,氯仿熏蒸浸提法测定土壤微生物生物量碳。测试结果表明:复合材料的生物降解性越高,土壤中的微生物菌落总数和微生物生物量碳越高,土壤的肥力和生物活性越高;填埋复合材料的土壤的生物活性都比未填埋材料的土壤的生物活性高,都可提高土壤质量,使土壤生态系统良性循环,因此这三种复合材料的使用不会带来环境污染,是生态环境材料。又由于复合材料都具有较高的降解性,且具有比PPC高的热稳定性和力学性能,预计这三种复合材料特别是PPC/A-MMT和PPC/A-C-MMT的大力推广和使用会有效缓解由传统塑料使用带来的“白色污染”问题。
Degradable poly (propylene carbonate)(PPC) is derived from carbon dioxide and propylene oxide through ring-opening copolymerization. Its wide use would be an effective method to prevent "white pollution". However, low thermal stability and mechanical property have greatly limited its application. In this thesis, we try to build polymer/layered silicate nanocomposite, and organic cation was utilized to modify montmorillonite (MMT) to improve thermal stability and mechanical property of PPC.
     In order to illustrate interactions among organic modifier, MMT and PPC matrix which have an effect on performance of nanocomposite, Three organic cations with various structure and volume, i.e. imidazole quaternary ammonium salt (HHMIB), hydrochloric-amino acid salt (AUA), polystyrene oligomer quaternary ammonium salt (COPS) were adopted to modify MMT respectively. MMT modification was based on cation-exchange and actual amount of intercalated cation was calculated through change of C content or thermal gravimetric analysis (TG). It were indicated that intercalating ability of HHMIB was weakest, actual cation exchange capacity was only64.6mmol/100g; AUA was92.3mmol/100g; COPS was 97.6mmol/100g due to improved lipophilicity of MMT caused by silane-modification before intercalation. X-ray diffraction (XRD) showed that interlayer spacing of MMT was enlarged from1.52nm to2.60nm,1.62nm and over3.53nm after being intercalated by HHMIB, AUA and COPS respectively. The interlayer spacing of MMT modified by AUA is smallest because of its smallest volume and that of MMT modified by COPS is largest because of its largest volume.
     Three kinds of PPC/MMT nanocomposites with different mass fractions of MMT were prepared by melt blending using organic montmorillonites mentioned above. Structure, thermal stability, mechanical property and medium resistance of the composites were studied systematically. It was illustrated that poly (propylene carbonate)/imidazole salt modified-montmorillonite (PPC/H-MMT) and poly (propylene carbonate)/hydrochloric-amino acid salt modified-montmorillonite (PPC/A-MMT) were all intercalated nanocomposites with enlarged interlayer spacing of3nm and2nm respectively through XRD and transmission electron microscope (TEM) characterizations. It was similarly indicated that poly (propylene carbonate)/silane and polystyrene-modified-montmorillonite (PPC/A-C-MMT) was exfoliated nanocomposite. TG results demonstrated that thermal stabilities of the three composites were all improved. Maximum increments of ronset of PPC/H-MMT, PPC/A-MMT and PPC/A-C-MMT were64℃,41℃and82℃; maximum increments of T10%were64℃,46℃and76℃; maximum increments of T50%were47℃,27℃and47℃, respectively. Nano-effect derived from exfoliated structure made thermal stability of PPC/A-C-MMT to be significantly improved compared to PPC and to be highest of the three composites. Static tensile test demonstrated that mechanical properties of the composites changed. Maximum increments of tensile strength of PPC/H-MMT, PPC/A-MMT and PPC/A-C-MMT were34.6%,78.4%and549%; maximum increments of elastic modulus were69.7%,1425%和4382%. In addition the maximum decrements of elongation at break were34%,52.3%and99.3%, respectively. However, PPC/H-MMT and PPC/A-MMT still kept excellent toughness because of their large absolute value of900%and650%. Elongation at break of PPC/A-C-MMT was10.18%, its toughness decreased and brittleness increased. Significant reinforcement in strength and hardness of PPC/A-C-MMT was also owed to nano-effect caused by exfoliated structure. Dynamic mechanical property analyses (DMA) showed that rigidity of the three composites were all enhanced for their strengthened storage modulus. It was also showed by DMA that state transition of the composites lagged than pure PPC with increasing temperature:transition temperatures from glass state to glass-high elastic mixed state of PPC/H-MMT, PPC/A-MMT and PPC/A-C-MMT increased about5℃,16℃and24℃, glass temperatures increased2.4℃,10℃and18.5℃respectively. Medium resistances of the composites were characterized through detecting changes in quality after being soaked in water or oil for a certain time. Water absorption of PPC was4.4%, maximum water absorption of PPC/H-MMT, PPC/A-MMT, and PPC/A-C-MMT were about13%,3%and2%respectively. Accordingly, water resistance of PPC/H-MMT was wakened and that of PPC/A-MMT, PPC/A-C-MMT were enhanced. Oil absorption of all composites kept within0.9%and they had good oil resistance.
     Molecular weight of PPC was detected by gel permeation chromatography. Degradability was characterized through changes in molecular weight of PPC when the composites were placed in natural environment or buried in soil for180days. It was founded that photodegradation ratio and biodegradation ratio of pure PPC were83.9%and74.9%, maximum photodegradation ratio of PC/H-MMT, PPC/A-MMT, PPC/A-C-MMT were82.6%,82.0%,65.4%, maximum biodegradation ratio of the three composites were78.1%,64.7%,28.4%, respectively. The degradability of composites was all decreased in addition to improved biodegradability of PC/H-MMT. Results indicated that PPC/H-MMT, PPC/A-MMT have better degradability, and although biodegradability of PPC/A-C-MMT is low, its photodegradation ratio can reached65.4%which make it still a good photodegradable material.
     Influence of PPC/MMT nanocomposite on soil quality after biodegradation was not reported. Total numbers of microbial colonies in soil were determined by adopting dilution method of plate counting, microbial biomass carbon was detected through chloroform fumigation-extraction method in this work. Results indicated that the greater degradability of the composite was, the more number of microbial colonies and microbial biomass carbon in soil were, and the higher bioactivity and soil fertility were. Fertility of soil filled with composites was better than virgin soil, the composites can amend soil quality and make soil ecosystem in beneficial cycle. Therefore, the three composites are eco-materials and using them will not cause environmental pollution. Furthermore, because of good degradability and better thermal stability and mechanical property than PPC, we can predict that their wide use especial PPC/A-MMT and PPC/A-C-MMT will effectively mitigate "white pollution" caused by use of conventional plastics.
引文
[1]S S Ray, M Bousmina. Biodegradable polymers and their layered silicate nanocomposites:In greening the 21st century materials world. Prog. Mater Sci. [J],2005,50:962-1079
    [2]S Inoue, H Koinuma, T Tsuruta. Copolymerization of carbon dioxide and epoxide. J.Polym.Sci. B[J],1969,7:287-292
    [3]K Stephan, W L Maximilian, E A Carly, Recent advances in CO2/epoxide copolymerization-new strategies and cooperative mechanisms. Coord. Chem. Rev. [J],2011,255(13):1460-1479
    [4]S S Ray, M Okamot. Polymer/layered silicate nanocomposites:a review from preparation to processing. Prog. Polym. Sci. [J],2003,28:1539-1641
    [5]付宜飞,张铁帅.白色污染的危害与现状分析.环境科学与管理[J],2006,31(3):112-113
    [6]周明.白色污染及其防治.环境卫生工程[J],2006,14(5):57-59
    [7]刘恩冉.聚碳酸亚丙酯/层状硅酸盐纳米复合材料老化与降解性能的研究[D].武汉理工大学图书馆:武汉理工大学,2007.
    [8]GB/T20197-2006.降解材料的定义、分类、标识和降解性能要求[S].北京:中国标准出版社,2006.
    [9]王志钢,曹新鑫,韩云峰.生物降解塑料的应用研究进展.塑料助剂[J],2012,(4):1-10
    [10]S Ray,戈进杰,王国伟.生物降解聚合物以及其在工农业中的应用[M].北京:机械工业出版社,2010,10-16
    [11]V Siracusa, P Rocculi, S Romani, etc. Biodegradable polymers for foodpackaging:a review. Trends Food Sci.Technol.[J],2008,7:1-10
    [12]H M Park, X Li, C Z Jin, etc. Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol. Mater. Eng.[J],2002,287:553-558
    [13]L Yu, K Dean, L Li, etc. Polymer blends and composites from renewable resources. Prog. Polym. Sci. [J],2006,31(6):576-602
    [14]M Graeme. Chemical modification of starch by reactive extrusion. Prog. Polym. Sci. [J],2011, 36(2):218-237
    [15]F Vilaplana, E Stromberg, S Karlsson. Environmental and resource aspects of sustainable biocomposites. Polym. Degrad. Stab.[J],2010,95(11):2147-2161
    [16]严乐平,吴刚,王迎军.聚p-羟基烷酸酯的改性研究进展.化工进展[J],2006,25(11):1266-1269
    [17]张昌辉,刘冬梅,王佳.脂肪族聚酯材料的研究进展.塑料工业[J],2011,38(11):1-3
    [18]L J Chen, M Wang. Production and evaluation of biodegradable composites based on PHB-PHV copolymer. Biomater.[J],2002,22(13):2631-2639
    [19]S S Ray, K Yamada, M Okamoto, etc. New polylactide/layered silicate nanocomposites:5. designing of materials with desired properties. Polym.[J],2003,44:6633-6646
    [20]S S Ray, M Okamoto. Biodegradable polylactide/layered silicate nanocomposites:open a new dimension for plastics and composites. Macromol. Rapid. Commun.[J],2003,24:815-840.
    [21]K E Strawhecker, E Manias. Structure and properties of poly (vinyl alcohol)/Na+-montmorillonite nanocomposites. Chem. Mater.[J],2000,12:2943-2949
    [22]D Cohn, S Hotovely. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomater.[J],2005,26(15):2297-2305
    [23]H Cao. N Kuboyama. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone[J],2010,46(1):386-395
    [24]D J Xu, B H Guo. Poly(butylene succinate) and its copolymers:research, development and industrialization. Biotechnol.J. [J],2010,5(11):1149-1163
    [25]陈立班.二氧化碳共聚物的合成、性质和应用.高分子通报[J],1999,(3):128-133
    [26]A A Shah, F Hasan, A Hameed, etc. Biological degradation of plastics:A comprehensive review. Biotechnol. Adv. [J],2008,26(3):246-265
    [27]Y Kikkawa, T Murase, H Abe, etc. Real-time enzymatic degradation study of poly[(R)-3-hydroxybutyric acid] copolymer thin film by atomic force microscopy in buffer solution. Macromol. Biosci.[J],2002,2(5):189-194
    [28]张培娜,黄荣发,王彬芳.改性脂肪族聚酯的生物降解性研究.华东理工大学学报[J],2001,27(1):64-67
    [29]方俊,黄荣发,郭红梅等.脂肪族聚酯及共聚酯的生物降解性研究.功能高分子学报[J],2003,16(2):191-196
    [30]李云政,蔡博伟,朱鹤孙等.在可控条件下测定塑料生物降解性的试验评价方法.塑料[J],1999,28(3):43-48
    [31]S Uwe, R Peter, S Helmut, etc. development an devaluation of an online CO2 evolution test and multicomponent biodegradation test system. Appl. Environ. Microbiol.[J],2004,70(8): 4621-4628
    [32]Z Qin, Christophe M, S Lee, etc. Cobalt-based complexes for the copolymerization of propylene oxide and CO2:active and selective catalysts for polycarbonate synthesis. Angew. Chem. Int. Ed. [J],2003,42(44):5484-5487
    [33]G A. Luinstra. Poly (propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests:catalysis and material properties. Polym. Rev.[J],2008,48:192-219
    [34]S Inoue, H Koinuma, T Tsurata. Copolymerization of carbon dioxide and epoxide with organometallic compounds. Makromol. Chem. [J],1969,130:210-220
    [35]Q Zhu, Y Z Meng, Y L Bei. Kinetic analysis of thermal decomposition of poly (propylene carbonate). Polym. Degrad. Stab. [J],2005,89:282-288
    [36]X H Wang, Q Y Liu, Y G Zou, etc. Mechanic properties and thermal degradation kinetics of terpolymerpoly (propylene cyclohexene carbonate). Mater.Lett. [J],2008,62:3294-3296
    [37]B Liu, X Zhao, X H Wang etc. Thermal degradation kinetics of poly (propylenecarbonate) obtained from the copolymerization of carbon dioxide and propylene oxide. J. Appl. Polym. Sci.[J],2003,90:947-53
    [38]S D Thorat, P J Phillips, V Semenov, etc. Physical properties of aliphatic polycarbonates made from CO2 and epoxides. J. Appl. Polym. Sci. [J],2003,89 (5):1163-1176
    [39]A Rokicki, W Kuran. The application of carbon dioxide as a direct material for polymer synthesis in polymerization and polycondensation reactions. J. Macromol. Sci.-Rev. Macromol. Chem. [J],1981,21(1):135-186.
    [40]S B Khan, J Seo, E S Jang. Synthesis and characterization of novel PPC-silica hybrid with improved thermal, mechanical, and water sorption properties. Macromol. Res.[J],2011,19(9): 876-882
    [41]M M Reddy, S Vivekanandhan, M Misra. Biobased Plastics and Bionanocomposites:Current Status and Future Opportunities. Prog. Polym. Sci.[J],2013,38(10):1653-1689
    [42]孟跃中,吴静姝,肖敏等.可生物降解的C02共聚物的合成、性能及改性研究进展.石油化工[J],2010,3(39):241-247
    [43]L C Du, Y Z Meng, S J Wang, etc. Synthesis and degradation behavior of poly(propylene carbonate) derived from carbon dioxide and propylene oxide. J. Appl. Polym. Sci.[J],2004,92: 1840-1846.
    [44]孙广平,贾树盛,高贵天等.聚丙撑碳酸酯一淀粉共混物的力学性能与微观形态.高分子材料科学与工程[J],2004,20(5):144-246
    [45]孟跃中,关丽涛,肖敏等.全降解聚甲基乙撑碳酸酯发泡材料及其制备方法[P].中国:1670080,2005-09-21
    [46]X H Li, S C Tjong, Y Z Meng, etc. Fabrication and properties of poly (propylenecarbonate)/calcium carbonate composites. J. Polym. Sci. B, Polym. Phys. [J],2003, 41 (6):1806-1813
    [47]万春杰,余剑英,南文焕等.苎麻/聚碳酸亚丙酯复合材料力学性能的研究.武理工大学学报[J],2007,29(3):9-11
    [48]C Barreto, J Proppe, S Fredriksen, etc. Graphite nanoplatelet/pyromellitic dianhydride melt modified PPC composites:preparation and characterization.Polym.[J],2013,54(14):3574-3585
    [49]Z H Zhang, Q Shi, J Peng etc. Partial delamination of the organo-montmorillonite with surfactant containing hydroxyl groups in maleated poly (propylene carbonate). Polym.[J],2006, 47:8548-8555
    [50]M Yao, F Mai, H Deng, etc. Improved thermal stability and mechanical properties of poly (propylene carbonate) by reactive blending with maleic anhydride. J. Appl. Polym. Sci.[J], 2011,120(6):3565-3573
    [51]A Okada, S Kikuchi, T Yamada, etc. Alternating copolymerization of propylene oxide/alkylene oxide and carbon dioxide:tuning thermal properties of polycarbonates. Chem. Lett.[J],2011, 40(2):209-211
    [52]M Z Pang, J J Qiao, J Jiao, etc. Miscibility and properties of completely biodegradable blends of poly (propylene carbonate) and poly (butylenesuccinate). J. Appl. Polym. Sci.[J],2008, 107(5):2854-2860
    [53]Peng S, Wang X, Dong L. Special interaction between poly (propylene carbonate) and corn starch. Polym. Compos.[J],2005,26(1):37-41
    [54]Y Qin, L Chen, X Wang, etc. Enhanced mechanical performance of poly (propylene carbonate) via hydrogen bonding interaction with o-lauroyl chitosan. Carbohyd. Polym.2011,84(1):329- 334
    [55]冉祥海,庄宇刚,张坤玉等.四元复配完全生物降解聚乳酸型复合材料的制备工艺方法[P].中国:1749317,2006-03-22
    [56]J Seo, G Jeon, E S Jang, etc. Preparation and properties of poly (propylene carbonate) and nanosized ZnO composite films for packaging applications. J. Appl. Polym.Sci.[J],2011, 122(2):1101-1108
    [57]D J Darensbourg, R M Mackiewicz, A L Phelps, etc. Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Ace. Chem. Rev. [J],2004,37 (11):836-844
    [58]G W Coates, D R Moore. Diskrete metallkatalysatoren zur copolymerisatoin von CO2 mitepoxiden:entdeckung, reaktivitat, optimierung, mechanismus. Angew. Chem. [J],2004, 116:2-24
    [59]H S Kim, J J Kim, S D Lee. etc. New mechanstic insight into the coupling reactions of CO2 and epoxides in the presence of zinc complexes. Chem. Eur. J.[J],2003, (9):678-686
    [60]K Soga, E Imai, I Hattori. Alternating copolymerization of CO2 and propylene oxide with the catalysts prepared from Zn (OH) 2 and various carboxylic acids. Polym. [J],1981,13 (4):407-410
    [61]J S Kim, M Ree, T J Shin, etc. X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepares from various sources and their catalytic activities in the copolymerization. J. Catal.[J],2003,218 (1):209-219
    [62]M Ree, Y T Wang, H Kim etc. New findings in the catalytic activity of zinc glutarate and its application in the chemical fixation of CO2 into polycarbonates and their derivatives. Catal.Today [J],2006,115:134-145
    [63]D J Darensbourg, R M Mackiewicz, A L Phelps. etc. Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Ace. Chem. Rev.[J],2004,37 (11):836-844
    [64]R Eberhardt, M Allmendinger, M Zintl, etc. New zincdicarboxylate catalysts for the CO2/propylene oxide copolymerization reaction:activity enchancement through Zn(ii)-ethylsulfmate initiating groups. Macromol. Chem. Phys.[J],2004,205:42-47
    [65]D D Dixon, M E Ford, G J Mantell. Thermal stabilization of poly (alkylene carbonate)s. J. Polym. Sci. Polym. Lett. Ed. [J],1980,18:131-134
    [66]S Peng, Y An, C G Chen. etc. Thermal degradation kinetics of uncapped and end-capped poly (propylene carbonate). Polym. Degrad. Stab. [J],2003,80 (1):141-147
    [67]M J Yao, F Mai, H Deng, etc. Improved thermal stability and mechanical properties of poly (propylene carbonate) by reactive blending with maleic anhydride. J. Appl. Polym. Sci. [J], 2011,120:3565-3573
    [68]T Spencer, Y C Chen, R Saha, etc. Stabilization of the thermal decomposition of poly (propylene carbonate) through copper ion incorporation and use in self-patterning. J. Electron. Mater.[J],2011,3:1-14
    [69]L Lu, K Huang. Synthesis and characteristics of a novel aliphatic polycarbonate, poly [(propylene oxide)-co(carbon dioxide)-co-(gamma-butyrolactone)]. Polym. Int. [J],2005, 54:870-874
    [70]L Shi, X B Lu, R Zhang, etc. Asymmetric alternating copolymerization and terpolymerization of epoxides with carbon dioxide at mild conditions. Macromol. [J],2006,39:5679-5685
    [71]Y H Wang, J Jung, M Ree. Terpolymerization of CO2 with propylene oxide and epsiloncaprolactone using zinc glutarate catalyst. Macromol.[J],2003,36:8210-8212
    [72]Y F Liu, K L Huang, D M Peng. Etc. Synthesis, characterization and hydrolysis of an aliphatic polycarbonate by terpolymerization of carbon dioxide, propylene oxide and maleic anhydride. Polym.[J],2006,47 (26):8453-8461
    [73]X C Ge, X H Li, Q Zhu. etc. Preparation and properties of biodegradable poly (propylene carbonate)/starch composites. Polym. Eng. Sci. [J],2004,55:2134-2140
    [74]S S Zeng, S J Wang, M Xiao. Preparation and properties of biodegradable blend containing poly (propylene carbonate) and starch acetate with different degrees of substitution. Carbohydr. Polym.[J],2011,86:1260-1265
    [75]X LWang, R K Y Li, Y X Cao. Essential work of fracture analysis for starch filled poly (propylene carbonate) composites. Mater. Des. [J],2007,28:1934-1939
    [76]X F Ma, J G Yu, A Zhao. Properties of biodegradable poly (propylene carbonate)/starch composites with succinic anhydride. Compos. Sci. Technol.[J],2006,66:2360-2366
    [77]D X Wang, J Yu, J M Zhang, etc. Transparent bionanocomposites with improved properties from poly (propylene carbonate) (PPC) and cellulose nano whiskers (CNWs). Compos. Sci. Technol. [J],2013,85:83-89
    [78]X Hu, C L Xu, J Gao, etc. Toward environment-friendly composites of poly (propylene carbonate) reinforced with cellulose nanocrystals. Compos. Sci. Technol.[J],2013,78:63-68
    [79]C Y Xing, H T Wang, Q Q Hu, etc. Mechanical and thermal properties of eco-friendly poly (propylene carbonate)/cellulose acetate butyrate blends. Carbohydr. Polym. [J],2013,92: 1921-1927
    [80]Y S Qin, L J Chen, X H Wang, etc. Enhanced mechanical performance of poly(propylene carbonate) via hydrogen bonding interaction with o-lauroyl chitosan. Carbohydr. Polym.[J], 2011,84:329-334
    [81]J Li, M F Lai, J J Liu. Effect of poly (propylene carbonate) on the crystallization and melting behavior of poly (beta-hydroxybutyrate-co-beta-hydroxyvalerate). J. Appl. Polym.Sci.[J],2004, 92:2514-2521
    [82]J Li, M F Lai, J J Liu. Control and development of crystallinity and morphology in poly (beta-hydroxybutyrate-co-beta-hydroxyvalerate)/poly (propylene carbonate) blends. J. Appl. Polym. Sci. [J],2005,98:1427-1436
    [83]S Peng, Y An, C Chen. etc. Miscibility and crystallization behavior of poly(3-hydroxyvalerate-co-3-hydroxyvalerate)/poly (propylene carbonate) blends. J. Appl. Polym. Sci.[J],2003,90: 4054-4060
    [84]N Wang, X X Zhang, J G Yu, etc. Partially miscible poly (lactic acid)-blend-poly (propylene carbonate)filled with carbon black as conductive polymer composites. Polym. Int.[J],2008,57: 1027-1035
    [85]X Ma, J Yu, N Wang. Compatibility characterization of poly (lactic acid)/poly (propylene carbonate) blends. J. Polym. Sci. B Polym. Phys.[J],2006,44(1):94-101
    [86]W Ning, X Z Xing, Y J Gao, etc. Partially miscible poly (lactic acid)-blend-poly (propylene carbonate) filled with carbon black as conductive polymer composite. Polym. Int.[J],2008, 57(9):1027-1035
    [87]G A Luinstra, M Allmendinger, G R Haas, etc. Petrochemical polyhydroxybutyrate and carbon dioxide polymers. Macromol. React. Eng.[J],2007, (1):83-85
    [88]M Z Pang, J J Qiao, J Jiao, etc. Miscibility and properties of completely biodegradable blends of poly (propylene carbonate) and poly (butylenes succinate). J. Appl. Polym. Sci.[J],2008, 107:2854-2860
    [89]J Jiao, M Xiao, D Shu. etc. Preparation and characterization of biodegradable foams from calcium carbonate reinforced poly (propylene carbonate) composites. J. Appl.Polym. Sci.2006, 102:5240-5247.
    [90]J Seo, G Jeon, E S Jang, etc. Preparation and properties of poly (propylene carbonate) and nanosized ZnO composite films for packaging applications. J. Appl. Polym. Sci.[J],2011, 122:1101-1108
    [91]X C Ge, Q Zhu, Y Z Meng. Fabrication and characterization of biodegradable poly (propylene carbonate)/wood fluor composites. J. Appl. Polym. Sci.[J],2006,99:782-787
    [92]X H Li, Y Z Meng, S J Wang. etc. Completely biodegradable composites of poly (propylene carbonate) and short, lignocellulose fiber hildegardia populifolia. J. Polym. Sci. B, Polym. Phys. [J],2004,42:666-675
    [93]J Bian, X W Wei, S J Gong, etc. Improving the thermal and mechanical properties of poly (propylene carbonate) by incorporating functionalized graphite oxide, J. Appl. Polym. Sci.[J], 2012,123:2743-2752
    [94]C Barreto, J Proppe, S Fredriksen, etc. Graphite nanoplatelet/pyromellitic dianhydride melt modified PPC composites:preparation and characterization. Polym.[J],2013,54(14):3574-3585
    [95]X W Bian, H L Wei. Preparation and characterization of modified graphite oxide/poly (propylene carbonate) composites by solution intercalation. Polym. Degrad. Stab. [J],2011,96: 1833-1840
    [96]J Gao, F Chen, K Wang, etc. A promising alternative to conventional polyethylene with poly (propylene carbonate) reinforced by grapheme oxide nanosheets. J. Mater. Chem.[J],2011, 44(21):17627-30
    [97]T Yu, Y Zhou, K Liu, etc. Improving thermal stability of biodegradable aliphatic polycarbonate by metal ion coordination. Polym. Degrad. Stab. [J],2009,94(2):253-258
    [98]Z H Zhang, J H Lee. Morphology thermal stability and rheology of poly propylene carbonate/organoclay nanocomposites with different pillaring agents. Polym [J],2008,49: 2947-2956
    [99]C J Wan, J Y Yu, X J Shi, etc. Preparation of poly propylene carbonate/orgaophilic rectorite nanocomposites via direct melt intercalation. Trans. Nonferr. Met. Soc. China [J],2006,16: 508-511
    [100]J Xu, R Li, Y Xu, etc. Preparation of poly propylene carbonate/organo-vermiculite nanocomposites via direct melt intercalation. Eur. Polym. J.[J],2005,41:881-888
    [101]L C Du, B J Qu. Structural characterization and thermal and mechanical properties of poly (propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation. Compos. Sci. TechnoL [J],2011,66:913-918
    [102]L C Du, B J Qu, Y Z Meng, etc. Structural characterization and thermal and mechanical properties of poly (propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation. Compos. Sci. Technol.[J],2006,66:913-918
    [103]J T Wang, Q Zhu, X L Lu, etc. ZnGA-MMT catalyzed the copolymerization of carbon dioxide with propylene oxide. Eur. Polym. J. [J],1995,41:1108-1114
    [104]J Xu, R K Y Li, Y Z Meng. Biodegradable poly (propylene carbonate)/montmorillonite nanocomposites prepared by direct melt intercalation. Mater. Res. Bull. [J],2006,41:244-252
    [105]X D Shi, Z H Gan. Preparation and characterization of poly propylene carbonate montmorillonite nanocomposites by solution intercalation. Eur. Polym. J.[J],2007,43:4852-4858
    [106]周庆海,高凤翔,卢会敏等,聚碳酸1,2-丙二酯/蒙脱土复合材料的制备与性能.高分子学报[J],2008,(12):1124-1128
    [107]B K Sher, A Kalsoom, J Seo. Effect of nano-filler dispersion on the thermal, mechanical and water sorption propertites of green environmental polymer. Chin. J. Polym. Sci.[J],2012, 30(5):735-743
    [108]S Pavlidou, C D Papaspyrides. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci.[J],2008,32(12):1119-1198
    [109]张兵兵.蒙脱土的提纯、有机化研究及聚碳酸酯/蒙脱土纳米复合材料的制备[D].内蒙古大学图书馆:内蒙古大学,2008.
    [110]P Kiliaris, C D Papaspyrides. Polymer/layered silicate (clay) nanocomposites:an overview of flame retardancy. Prog. Polym. Sci.[J],2010,35(7):902-958
    [111]A Walther, I Bjurhager, J-M Malho, etc. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett.[J],2010,10(8):2742-2748
    [112]V Mittal. Mechanical and gas barrier properties of polypropylene layered silicate nanocomposites:a review. The Open Macromol. J.[J],2012,6:37-52
    [113]李金梅.聚酯(PC, PET)蒙脱土纳米复合材料的合成、表征及性能研究[D].内蒙古大学图书馆:内蒙古大学,2006.
    [114]T Ogasawara, Y Ishida, T Ishikawa, etc. Helium gas permeability of montmorillonite/epoxy nanocomposites. Compos. Part A-Appls.[J],2006,37:2236-2240
    [115]Z Ke, B Yongping. Improve gas barrier property of PET film with montmorillonite by in situ interlayer polymerization. Mater. Lett.[J],2005,59:3348-3351
    [116]B Chen, J Evans. Poly(a-caprolactone)-clay nanocomposites:structure and mechanical properties. Macromol.[J],2006,39:747-754
    [117]赵春贵,阳明书,冯猛.氯硅烷改性蒙脱土的制备与性能.高等化学学报[J],2003,24(5):928-931
    [118]H Ishida, S Campbell, J Blackwell. General approach to nanocomposite preparation. Chem. Mater.[J],2000, (12):1260-1267
    [119]J M Yeh, S J Lion, Y Lin, etc. Anticorrosively enhanced PMMA-clay nanocomposite materials with quaternary alkylphosphonium salt as an intercalating agent. Chem. Mater.[J], 2002,14(1):154-161
    [120]H N Tarte, L Q Cui, S Woo. Polyolefin/layered silicate nanocomposites prepared by in situ polymerization. Adv. Polym.Sci. [J],2013, unpublished
    [121]普鲁特曼.硅烷和钛酸酯偶联剂[M].上海:上海科学技术文献出版社,1987,205-210
    [122]高金凤.聚碳酸酯/蒙脱土纳米复合材料的合成、表征及性能研究[D].内蒙古大学图书馆:内蒙古大学,2005.
    [123]X Kornmann, H Lindberg, LA Berglund. Synthesis of epoxy-clay nanocomposites:influence of the nature of the clay on structure. Polym.[J],2001,42:1303-1310
    [124]A S Adriana, D Karim, G S Bluma. Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/epoxy nanocomposites. Appl. Clay Sci.[J],2011,54(2): 151-158.
    [125]G B Hang, C H Ge, B J He. Preparation, characterization and properties of amino-functionalized montmorillonite and composite layer-by-layer assembly with inorganic nanosheets. Appl. Surf. Scl[J],2011,257(16):7123-7128
    [126]Y Q Rao, J M Pochan. Mechanics of polymer-clay nanocomposites. Macromol.[J],2007, 40(2):290-296
    [127]E Naveau, Z Dominkovics, C Detrembleur, etc. Effect of clay modafication on the structure and mechanical properties of polyamide-6 nanocomposites. Eur. Polym. J.[J],2011,47(1):5-15
    [128]B K G Theng. Chapter 6-some practical applications of the clay-polymer interaction. Develop. Clay Sci. [J],2012,4:153-199
    [129]M Kurian, A Dasgupta, M E Galvin, etc. A novel route to inducing disorder in model polymer-layered silicate nanocomposites. Macromol. [J],2006,39(5):1864-1871
    [130]H Q Su, J F Gao, Y Q Wang, etc. Proceedings of 2005 international conference on advanced fibers and polymer materials (ICAFPM)[C]. Shanghai:Chemical Industry Press,2005.739-743
    [131]苏海全,高金凤.无机盐学术年会论文汇编[C].深圳:中国化工学会无机酸碱盐专业委员会,2005,114-117
    [132]黄晓玲,王晓丽,张兵兵等.聚对苯二甲酸丁二醇酯/聚甲基丙烯酸甲酯季铵盐修饰蒙脱土纳米复合材料的制备与性能.化工进展[J],2011,30(5):1045-1049
    [1]S S Ray, M Okamoto. Polymer/layered silicate nanocomposites:a review from preparation to processing. Prog. Polym. Sci.[J],2003,28(11):1539-1641
    [2]S S Ray.1-An overview of pure and organically modified clays. Clay-containing Polymer Nanocomposites[J],2013, (4):1-24
    [3]李金梅.聚酯(PC、PET)/蒙脱土纳米复合材料的合成、表征及性能研究[D].内蒙古大学图书馆:内蒙古大学,2006.
    [4]S M Lee, D Tiwari. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions:an overview. Appl. Clay Sci.[J],2012,59:84-102
    [5]S Y Hwang, M J Ham, S Soon. Influence of clay surface modification with urethane groups on the crystallization behavior of in situ polymerized poly (butylene succinate) nanocomposites. Polym. Degrad. Stab.[J],2010,95(8):1313-1320
    [6]C-W Chiu, T K Huang, Y C Wang. Intercalation strategies in clay/polymer hybrids. Prog.Polym. Sci.[J],2013, Available online 13 July
    [7]J A Mbey, S Hoppe, F Thomas. Cassava starch-kaolinite composite film. Effect of clay content and clay modification on film properties. Carbohydr. Polym.[J],2012,88(1):213-222
    [8]J P Rath, T K Chaki, D Khastgir. Development of natural rubber-fibrous nano clay attapulgite: composites the effect of chemical treatment of filler on mechanical and dynamic mechanical properties of composites. Procedia Chem.[J],2012,4:131-137
    [9]A Olad, R H Azar, A A Babaluo. Investigation on the mechanical and thermal properties of intercalated epoxy/layered silicate nanocomposites. Polym.Mater.[J],2012,61(13):1035-1049
    [10]X Kornmann, H Lindberg, L A Berglund. Synthesis of epoxy-clay nanocomposites:influence of the nature of the clay on structure. Polym. [J],2001,42:1303-1310
    [11]A S Adriana, D Karim, G S Bluma. Nanostructure and dynamic mechanical properties of silane-functionalized montmorillonite/epoxy nanocomposites. Appl. Clay Sci.[J],2011,54(2): 151-158.
    [12]E Naveau, Z Dominkovics, C Detrembleur. Effect of clay modification on the structure and mechanical properties of polyamide-6 nanocomposites. Eur. Polym. J.[J],2011,47(1):5-15
    [13]B K G Theng. Chapter 6-some practical applications of the clay-polymer interaction. Develop. Clay Sci.[J],2012,4:153-199
    [14]王晓丽.聚酯(PC、PET、PBT)/蒙脱土纳米复合材料的制备、表征及性能研究[D].内蒙古大学图书馆:内蒙古大学,2007.
    [15]高金凤.聚碳酸酯/蒙脱土纳米复合材料的合成、表征及性能研究[D].内蒙古大学图书馆:内蒙古大学,2005.
    [16]林庆杨,黄继泰.氨基偶联剂与酸活化粘土的偶联效果检测.华侨大学学报[J],1990,11(3):298-302
    [17]J Langat, S Bellayer, P Hudrlik, etc. Synthesis of imidazolium salts and their application in epoxy montmorillonite nanocomposites. Polym.[J],2006,47(19):6698-6709.
    [18]J Pandey, V K Tiwari, S S Verma, etc. Synthesis and antitubercular screening of imidazole derivatives. Eur. J. Med. Chem.[J],2009,44(8):3350-3355
    [19]S Khabnadideh, Z Rezaei, A Khalafi-Nezhad, etc. Synthesis of N-Alkylated derivatives of imidazole as antibacterial agents. Bioorg. Med. Chem. Lett.[J],2003,13(17):2863-2865
    [20]A Lehmann, B Volkert, M Hassan-Nejad, etc. Synthesis of thermoplastic starch mixed esters catalyzed by the in situ generation of imidazolium salts. Green Chem. [J],2010, (12):2164-2171
    [21]M L Guo, J Fang, H K Xu, etc. Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells. J. Membr. Sci. [J], 2010,362(1):97-104.
    [22]M Weitman, L Lerman, S Cohen, etc. Facile structural elucidation of imidazoles and oxazoles based on NMR spectroscopy and quantum mechanical calculations. Tetrahedron [J],2010, 66(7):1465-1471
    [23]K Chrissopoulou, K S Andrikopoulos, S Fotiadou, etc. Structure and dynamics of hyperbranched polymer/layered silicate nanocomposites. Macromol.[J],2011,44(24):9710-9722
    [24]I J Chin, T Thurn-Albrecht, H C Kim, etc. On exfoliation of montmorillonite in epoxy. Polym.[J],2001,42:5947-5952
    [25]万朴,周玉林,彭同江.非金属矿物相及性能测试与研究[M].武汉:武汉工业大学出版社,1992.97-99
    [26]G B Hang, C H Ge, B J He. Preparation, characterization and properties of amino-functionalized montmorillonite and composite layer-by-layer assembly with inorganic nanosheets. Appl. Surf. Sci.[J],2011,257(16):7123-7128
    [27]F Piscitelli, P Posocco, R Toth, etc. Sodium montmorillonite silylation:unexpected effect of the aminosilane chain length. J.Colloid Interface Sci. [J],2010,351(1):108-115
    [28]Y J Xie, C A S Hill, Z F Xiao, etc. Silane coupling agents used for natural fiber/polymer composites:a review. Composites Part A [J],2010,41(7):806-819
    [29]冯猛,赵春贵,巩方玲等.氨基硅烷偶联剂对蒙脱石的修饰改性研究.化学学报[J],2004,62(1):83-87
    [30]赵春贵,阳明书,冯猛.氯硅烷改性蒙脱土的制备与性能.高等学校化学学报[J],2003,24(5):928-931
    [31]X Kornmann, H Lindberg, L A Berglund. Synthesis of epoxy-clay nanocomposites:influence of the nature of the clay on structure. Polym.[J],2001,42:1303-1310
    [1]S Pavlidou, C D Papaspyrides. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci.[J],2008,32(12):1119-1198
    [2]黄晓玲,王晓丽,张兵兵等.聚对苯二甲酸丁二醇酯/聚甲基丙烯酸甲酯季铵盐修饰蒙脱土纳米复合材料的制备与性能.化工进展[J],2011,30(5):1045-1049
    [3]A Walther, I Bjurhager, J-M Malho, etc. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett.[J],2010,10(8):2742-2748
    [4]C Barreto, E Hansen, S Fredriksen. Novel solventless purification of poly (propylene carbonate): tailoring the composition and thermal properties of PPC. Polym. Degrad. Stab.[J],2012,97: 893-904
    [5]G A. Luinstra. Poly (propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests:catalysis and material properties. Polym. Rev.[J],2008,48:192-219
    [6]S Inoue, H Koinuma, T Tsurata. Copolymerization of carbon dioxide and epoxide with organometallic compounds. Makromol. Chem. [J],1969,130:210-220
    [7]Q Zhu, Y Z Meng, Y L Bei. Kinetic analysis of thermal decomposition of poly (propylene carbonate). Polym. Degrad. Stab. [J],2005,89:282-288
    [8]Y Q Rao, J M Pochan. Mechanics of polymer-clay nanocomposites. Macromol.[J],2007,40(2): 290-296
    [9]M Kurian, A Dasgupta, M E Galvin, etc. A novel route to inducing disorder in model polymer-layered silicate nanocomposites. Macromol.[J],2006,39(5):1864-1871
    [10]X Kornmann, H Lindberg, LA Berglund. Synthesis of epoxy-clay nanocomposites:influence of the nature of the clay on structure. Polym.[J],2001,42:1303-1310
    [11]G B Hang, C H Ge, B J He. Preparation, characterization and properties of amino-functionalized montmorillonite and composite layer-by-layer assembly with inorganic nanosheets. Appl. Surf. Sci.[J],2011,257(16):7123-7128
    [12]S S Ray, M Bousmina. Biodegradable polymers and their layered silicate nanocomposites:in greening the 21st century materials world. Prog. Mater Sci. [J],2005,50:962-1079
    [13]S Inoue, H Koinuma, T Tsuruta. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci. B[J],1969,7:287-292
    [14]G A. Luinstra. Poly (propylene carbonate), old copolymers of propylene dxide and carbon dioxide with new interests:catalysis and material properties. Polym. Rev.[J],2008,48:192-219
    [15]Z H Zhang, J H Lee, S H Lee, et al. Thermal and photocatalytic stability enhancement mechanism of poly (propylene carbonate) due to Cu(I) impurities. Polym. Degrad. and Stab.[J], 2012,97(9):1829-1837
    [16]H W Yan, W R Cannon, D J Shanefield. Thermal decomposition behaviour of poly (propylene carbonate). Ceramics Int.[J],1998,24 (6),433-439
    [17]何曼君,张红东,陈维孝等.高分子物理[M].第三版.上海:复旦大学出版社,2008.236-280
    [18]M J Yao, F Mai, H Deng, etc. Improved thermal stability and mechanical properties of poly (propylene carbonate) by reactive blending with maleic anhydride. J. Appl. Polym. Sci.[J], 2011,120:3565-3573
    [19]万春杰.聚碳酸亚丙酯/层状硅酸盐纳米复合材料的制备与性能研究[D].武汉大学图书馆:武汉大学,2007.
    [20]X C GE, X H LI, Q ZHU. Preparation and properties of biodegradable poly (propylene carbonate)/starch composites. Polym. Eng. Sci.[J],2004,44(11):2134-2140
    [21]T Yu, Yong Zhou, K P Liu, Improving thermal stability of biodegradable aliphatic polycarbonate by metal ion coordination. Polym. Degrad. Stab.[J],2009,94:253-258
    [22]S Pavlidou, C D Papaspyrides. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci.[J],2008,32(12):1119-1198
    [23]D Bikiaris. Can nanoparticles really enhance thermal stability of polymers? part II:an overview on thermal decomposition of polycondensation polymers. Thermochim. Acta[J], 2011,523:25-45
    [24]M Kurian, A Dasgupta, M E Galvin, etc. A novel route to inducing disorder in model polymer-layered silicate nanocomposites. Macromol.[J],2006,39(5):1864-1871
    [25]Y Q Rao, J M Pochan. Mechanics of polymer-clay nanocomposites. Macromol.[J],2007,40(2): 290-296
    [26]A Usuki, A Koiwai, Y Kojima, etc. Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid. J. Appl. Polym. Sci.[J],1995,55:119-123
    [27]Lingaiah, S Shivakumar, K Sadler, etc. A method of visualization of dispersion of nanoplatelets in nanocomposites.Compos. Sci. Technol.[J],2005,14:2276-2280.
    [28]Hermes, E Helen, Frielinghaus, etc. Quantitative analysis of small angle neutron scattering data from montmorillonite dispersions. Polym.[J],2006,6:2147-2155
    [29]Z H Zhang, Q Shi, J Peng etc. Partial delamination of the organo-montmorillonite with surfactant containing hydroxyl groups in maleated poly (propylene carbonate).Polym. [J], 2006,47:8548-8555
    [30]E Manias, A Touny, L Wu, etc. Polypropylene/montmorillonite nanocomposites. review of the synthetic routes and materials properties. Chem. Mater.[J],2001,13:3516-3523
    [31]B K Sher, A Kalsoom, J Seo. Effect of nano-filler dispersion on the thermal, mechanical and water sorption properties of green environmental polymer. Chin. J. Polym. Sci.[J],2012,30(5): 735-743
    [32]X H Li. Y Z Meng. J A Wang. Completely biodegradable composites of poly (propylene carbonate) and short lignocelluloses fiber populifolia. J.PolymSci.Part B[J],2004,42:666-675
    [33]Z H Zhang, J H Lee. Morphology thermal stability and rheology of poly propylene carbonate/organoclay nanocomposites with different pillaring agents. Polym. [J],2008,49: 2947-2956
    [34]宋军,仇卓,邓军.聚丙烯/蒙脱土纳米复合材料研究.化学工程师[J],2004,(4):5-7
    [35]M Kurian, A Dasgupta, M E Galvin, etc. A novel route to inducing disorder in model polymer-layered silicate nanocomposites. Macromol.[J],2006,39(5):1864-1871
    [36]Y Q Rao, J M Pochan. Mechanics of polymer-clay nanocomposites. Macromol.[J],2007,40(2): 290-296
    [37]M Kurian, A Dasgupta, M E Galvin, etc. A novel route to inducing disorder in model polymer-layered silicate nanocomposites. Macromol.[J],2006,39(5):1864-1871
    [38]王晓丽.聚酯(PC、PET、PBT)/蒙脱土纳米复合材料的制备、表征及性能研究[D].内蒙古大学图书馆:内蒙古大学,2007.
    [49]D Arijit, K Bhabani. Satapathy. Structural, thermal, mechanical and dynamic mechanical properties of cenosphere filled polypropylene composites. Mater. Des.[J],2011,32:1477-1484
    [40]D R Paul, L M Robeson. Polymer nanotechnology:nanocomposites. Polym.[J],2008,49(15): 3187-3204
    [1]S S Ray, M Bousmina. Biodegradable polymers and their layered silicate nanocomposites:in greening the 21st century materials world. Prog. Mater Sci. [J],2005,50:962-1079
    [2]付宜飞,张铁帅.白色污染的危害与现状分析.环境科学与管理[J],2006,31(3):112-113
    [3]周明.白色污染及其防治.环境卫生工程[J],2006,14(5):57-59
    [4]陈荣国,游瑞云,肖良建等.降解塑料标准化及其生物降解性能测试.福建师范大学学报[J],2008,24(4):95-101
    [5]王宁,于九皋,马骁飞.生物降解热塑性材料的研究进展.石油化工[J],2007,36(1):1-8
    [6]李云政,蔡博伟,朱鹤孙等.在可控条件下测定塑料生物降解性的试验评价方法.塑料[J],1999,28(3):43-48
    [7]中国科学院南京土坡研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.54-57
    [8]E D Vance, P C Brookes. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. [J],1987, (19):703-707
    [9]胡婵娟,刘国华,吴雅琼.土壤微生物生物量及多样性测定方法评述.生态环境学报[J],2011,20(6):1161-1167
    [10]GB/T20197-2006.降解材料的定义、分类、标识和降解性能要求[S].北京:中国标准出版社,2006.
    [11]B Liu, X Zhao, X Wang. Thermal degradation kinetics of poly (propylene carbonate) obtained from the copolymerization of carbon dioxide and propylene oxide, J. Appl. Polym. Sci.[J], 2003,90:947-953
    [12]G A Luinstra. Poly (propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests:catalysis and material properties. Polym. Rev.[J],2008,48(1):192-199
    [13]Q Zhu, Y Z Meng, Y L Bei. Kinetic analysis of thermal decomposition of poly (propylene carbonate). Polym. Degrad. Stab. [J],2005,89:282-288
    [14]刘恩冉.聚碳酸亚丙酯/层状硅酸盐纳米复合材料老化与降解性能的研究[D].武汉理工大学图书馆:武汉理工大学,2007.
    [15]T J. Spencer, P A. Kohl. Decomposition of poly (propylene carbonate) with UV sensitive iodonium salts. Polym. Degrad. Stab.[J],2011,96(4):686-702
    [16]A Rivaton, S Chambon, M Manceau, etc. Light-induced degradation of the active layer of polymer-based solar cells. Polym. Degrad. Stab.[J],2010,95(3):278-284
    [17]A P Kumar, D Depan, N S Tomer, etc. Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog. Polym. Sci.[J],2009,34(6):479-515
    [18]A A Shah, F Hasan, A Hameed, etc. Biological degradation of plastics:a comprehensive review. Biotechnol. Adv. [J],2008,26(3):246-265
    [19]方俊,黄荣发,郭红梅等.脂肪族聚酯及共聚酯的生物降解性研究.功能高分子学报[J],2003,16(2):191-196
    [20]张培娜,黄荣发,王彬芳.改性脂肪族聚酯的生物降解性研究.华东理工大学学报[J],2001,27(1):64-67
    [21]N A Laban, D Selesi, T Rattei. Etc. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ. Microbiol. [J], 2010,12(10):2783-2796
    [22]K Okamoto, S Sray, M Okamoto. New poly (butylenesuceinate)/layered silicate nanocomposites:2. effect of organically modified layered silicates on morphology, materials properties, melt rheology, and biodegradability. J. Polym. Sci. Part B:Polym. Phys.[J],2003, 41:3160-3170
    [23]S R Lee, H M Park, H L Lim, etc. Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polym. [J],2002,43:2495-2500
    [24]S S Ray, M Okamoto. Biodegradable polylactide/layered silicate nanocomposites:open a new dimension for plastics and composites. Macromol. Rapid. Commun.[J],2003,24:815-840.
    [25]刘保华,张敏,余爱芳等.聚碳酸亚丙酯多元醇的降解机理.高分子材料科学与工程[J],2004,20(3):76-79
    [26]周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用.生物多样性[J],2007,15(2):162-171
    [27]蒋婧,宋明华.植物与土壤微生物在调控生态系统养分循环中的作用.植物生态学报[J],2010,34(8):979-988
    [28]李小方,邓欢,黄益宗.土壤生态系统稳定性研究进展.生态学报[J],2009,29(12): 6712-6722
    [29]顾爱星,范燕敏,武红旗.天山北坡退化草地土壤环境与微生物数量的关系.草业学报[J],2010,19(2):116-123
    [30]王珊,李廷轩,张锡洲.设施土壤中微生物数量及其生物量碳的变化研究.中国农学通报[J],2005,21(4):198-201
    [31]贺纪正,李晶,郑袁明.土壤生态系统微生物多样性-稳定性关系的思考.生物多样性[J],2013,21(4):411-420
    [32]L Elsgaard, M H Jorgensen, S Elmholt. Effects of band-stea ming on microbial activity and abundance in organic farming soil. Agriculture, Ecosystems & Environment [J],2010,137(3): 223-230
    [33]M Kurian, A Dasgupta, M E Galvin, etc. A novel route to inducing disorder in model polymer-layered silicate nanocomposites. Macromol. [J],2006,39(5):1864-1871

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700