用户名: 密码: 验证码:
分层异重流背景下三峡水库典型支流水华生消机理及其调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡水库支流库湾水华暴发频次高,涉及范围广,严重影响了库区人民正常生活生产活动,已成为三峡水库当前最严重的水环境问题。如何有效防控支流水华、改善水库水质是三峡水库当前正常运行迫切需要解决的重要问题,直接关系到三峡库区生态文明建设和民生改善。然而,三峡水库因其自身的特殊性,支流水华生消机理至今尚未完全弄清。本文通过整理2008-2012年三峡水库干支流水文水质跟踪监测数据,从近年来发现的支流库湾分层异重流出发,系统分析了分层异重流的分布特征、形成机制及演变过程;研究了分层异重流对三峡水库支流库湾水体层化结构、营养盐补给过程的影响;利用多元示踪技术分析了香溪河库湾营养盐的主要界面交换过程和真光层内营养盐的主要补给模式;拓展了经典临界层理论并验证其在三峡水库的适应性,由此凝练了分层异重流背景下香溪河库湾水华生消机理;最后根据研究结果提出了防控三峡水库支流水华的“潮汐式”生态调度方法,分析了“潮汐式”生态调度在三峡水库应用的可行性。研究得到的主要结论包括:
     (1)在三峡水库干流,水体泥沙浓度逐年下降,近坝区域已低于0.5g/L;水体滞留时间在夏季低于20d,冬季超过80d;干流水体整体呈自水库上游流向下游的一维特性。在香溪河库湾,夏季水体滞留时间长期超过200d,冬季接近900d;库湾水流呈现复杂的分层异向流态,包括河口底部倒灌楔、底部倒灌异重流、中层倒灌异重流、表层倒灌异重流和上游来流底层顺坡异重流等5种异重流。三峡水库干、支流及上游来流水温差的变化导致了香溪河库湾水流流态的不断转化,是分层异重流形成的根本原因。
     (2)在三峡水库干流,最低水温出现在每年2月,但不低于9℃;最高水温出现在每年8月,在27℃左右;表底温差不超过3℃;水体整体为河流型,部分时期为过渡型,适合于经典水温分层理论。在香溪河库湾,水温分层在每年3月开始发育,夏季分层最显著,水库蓄水后表层分层开始消失,冬季处于混合状态;库湾春夏为湖泊型水体,但秋冬为过渡型水体;香溪河水温分层呈现下游“双‘混-斜’”型和上游“半U”型水温分层结构,且水体越深、分层越弱,水体越浅、分层越强;这种特殊水温分层主要是因气温和分层异重流相互作用形成,并伴随分层异重流的转化而改变,不符合经典水温分层理论。
     (3)建立的香溪河库湾立面二维水流水温模型能够很好地模拟库湾分层异重流以及特殊水温分层的时空差异及垂向分布特征。设置的五种水温边界工况包含了香溪河库湾典型的五种水流流态时的边界条件,模拟的无显著倒灌、底部倒灌楔、底层倒灌异重流、中层倒灌异重流和表层倒灌异重流的水流场和温度场与实测规律一致。凝练了香溪河库湾不同情形下的五类水流循环模式,这五种循环模式对分析香溪河库湾水华生消机理及其防控措施具有重要的生态环境意义。
     (4)香溪河库湾上游来流磷营养盐相对较高,氮、硅营养盐相对较低;长江干流总磷浓度相对略低,氮和硅营养盐相对较高。Na+和Cl-具有较好的相关性(R2=0.926),是进行干支流水团混合示踪的理想离子,其与氢氧同位素在长江干流、香溪河库湾和香溪河上游来流三者间的差异显著。常量离子示踪和同位素示踪计算结果均表明长江干流对香溪河库湾氮营养盐的贡献总体超过上游来流的贡献。干支流交换界面和上游来流入库界面是香溪河库湾营养盐来源的主要界面;真光层营养盐补给模式主要包括水平输移、中层补给、掺混补给、藻类分解和点面源输入等五种类型,除每年3月香溪河库湾真光层内营养盐多受上游来流影响外,其它时期均由长江倒灌异重流进行补给。
     (5)2010-2011年香溪河库湾均暴发了一定程度的水华,主要包括春季水华和夏季水华,夏季水华更为严重。临界层理论表明:当混合层深度小于光补偿深度时,浮游植物迅速增殖,水华风险最大;当混合层深度大于临界层深度时,浮游植物生长受到限制,水华消失;当混合层深度处于二者之间时,浮游植物缓慢生长,水华逐渐发育。香溪河冬季围隔实验验证了上述结论的正确性,且临界层理论能够很好解释2010-2011年香溪河库湾水华生消过程。在一般环境中临界层与真光层数值相似,可以用真光层底部来代表临界层深度值。香溪河库湾底层倒灌异重流和中层倒灌异重流导致的水温特殊分层是导致水华暴发的主要诱因,水温分层所衍生的光热特征是导致香溪河库湾浮游植物群落演替的主要原因。
     (6)三峡水库典型水位波动过程能够促使香溪河库湾水流由中层倒灌转变为表层倒灌,打破波动前的表层水温分层现象,使得库湾营养盐空间上分布均匀;能够增大库湾水体混合层深度,进而导致藻类叶绿素a浓度降低。基于临界层理论和中度扰动理论提出的防控支流水华的三峡水库“潮汐式”生态调度概念包括“春季潮汐式”调度方法、“夏季潮汐式”调度方法和“秋季提前分期蓄水”调度方法。与三峡水库设计水位调度过程线相比,“潮汐式”生态调度能够增大三峡水库的发电效益,其对三峡水库年度水华频率、夏季水华和秋季水华均具有很好的防控作用。三峡水库“潮汐式”生态调度在理论上能够应用于三峡水库并有效防控支流水华。
The algal bloom, happened frequently and covered a large area in some tributaries of the Three Gorges Reservoir (TGR), has done bad effects on water ecosystem, industry and agriculture, and is now the most serious environmental problem in the Three Gorges Reservoir Region. In order to improve the water quality in the TGR, it is very urgent and important to find useful methods to control and eradicate the algal bloom. However, up to now, the mechanism of the algal bloom is unclear. To solve this environmental problem in a short time is also very difficult.
     In this thesis, some work has been carried out to research the mechanism of the algal bloom and its controlled method in Xiangxi Bay (XXB) of the TGR. Firstly, the characteristics and mechanism of the special bidirectional density currents (BDDCs) in the XXB were analyzed based on a five year's monitoring data from2008to2012. A mathematical model was also established to study the water cycle processes and their patterns in the XXB. Secondly, the spatial distribution and temporal changes of the nutrient in the bay have been monitored and analyzed. The tracer method, based on the major ions (Cl~-and Na~+) and hydrogen and oxygen isotopes (δD and δ~(18)O), were used to estimate the contribution rates of the Yangtze River (CJ) and upstream of the XXB to the XXB. Thirdly, the Critical Depth Hypothesis was developed to be an applicative theory to clear the mechanism of the algal bloom. The relationships between the phytoplankton succession and water stratification were also analyzed based on the CDH theory. Finally, a "tide-type" water level fluctuation method was suggested to control the algal bloom in the tributaries of the XXB. Summary, followed6important results were shown below.
     (1) The sediment concentration was decreasing gradually in the CJ, which was less than0.5g/L in the area near the Three Gorges Dam (TGD). The water flowed as a one-dimensional pattern from the upstream of the TGR to the TGD directly. The water residence time in the TGR was less than20days in summers and more than80days in winters, while in the XXB, which was more than200days in summers and900days in winters most of the time. It is shown that the complex BBDCs were the dominated hydrodynamics in the XXB all through the years, which was more caused by the water temperature deference between the CJ, the XXB and the inflows of the XXB. Exactly, the BBDC could be divided into5different patterns in different season: reverse bottom-layer cuneal flow (RBCF), reverse bottom-layer density current (RBDC), reverse middle-layer density current (RMDC) and reverse surface-layer density current (RSDC) from the CJ, and downslope bottom-layer density current (DBDC) from the inflow of the XXB. Those5flow patterns were changed from one to another with the changes of the water temperature difference in different water body of TGR.
     (2) In the CJ, the lowest water temperature happened in February and was more than9℃, while the highest one was less than27℃and happened in August. The differ between the surface and bottom layer was less than3℃. So, water body in the CJ was shown as a complete mixing pattern (river-type) most of the year, except in March when a weak stratification happened. The CJ was suitable to the Hutchinson's typical classifications of the lakes in the north hemisphere. In XXB, the water stratification started to develop in March, peaked in summers, and disappeared in the impounding periods, and completely mixed in winters. Water body in the XXB was more shown as the lake-type pattern. However, the stratification in the XXB was not fit the Hutchinson's typical classifications. It was very unusual, in deep water area in the downstream of the XXB, there was a weak stratification as a "double mixolimnion-metalimnion "pattern, but in shallow area near the end of the XXB, the stratification became more stronger and was shown as a "right half of U" pattern. Those particular stratification patterns were in turn affected by the BDDCs and changed gradually with the development of the BDDCs.
     (3) The hydrodynamic-temperature mathematical model, based on the CE-QUAL-W2, could simulate the unusual characteristics of BBDCs and water temperature. The boundary conditions of the water temperature in the simulation processes covered all the situations happened in different hydrodynamic patterns. As a result, the simulated flow, during the periods of the one-dimensional pattern, the RBCF, RBDC, RMDC, RSDC and DBDC, could well fit the measured features.5different flow circulation patterns were summarized through the flow lines charts, which could be very significant and useful to research the mechanism of the algal bloom and its control methods in the XXB.
     (4) In the inflow water of the XXB, total phosphorus concentration (TP) was relatively very high, but total nitrogen (TN) and dissolved silicon (D-SiO2) were much lower than CJ. The linearly dependent coefficient between Na~+and Cl-was very high (R2=0.926), and the Na+and Cl~-could be effective tracer ions to estimate the contribution rates of different nutrient sources in the XXB. There were remarkable isotope (δD and δ18O) difference between the CJ and inflow of the XXB. The CJ and inflows of XXB were the main sources of the water and nutrient in the XXB. However, estimated results of constant ion tracer method and isotope tracer method were both shown that the contribution rates of the C J, both water and nutrient, always exceeded that of inflow of the XXB. The nutrient supplied processes-in the euphotic zone could be classified as five ways:horizontal transportation, middle-up in summers, overturn in winters, organic decomposition and points and no-points sources. Only in every March, euphotic zone could be more affected by the inflows of the XXB, which nutrient was almost mainly from the CJ in the other time.
     (5) There were serious and intermittent algal blooms both in springs and summers from2010to2011, while the summer algal bloom was much more serious. ************In fact, the critical depth could be estimated by the euphotic zone because the values of them were closed. There were three patterns, to affect the algal blooms, about the relationships between the mixing depth、compensation depth and critical depth according to Critical Depth Theory:in a water with a sufficient nutrient, the algal blooms could happened when mixing depth was less than composition depth, which could be restrained when the mixing depth exceeded the critical depth and develop when the mixing depth was less than the critical depth but deeper than the compensation depth. Those three inferences were proved to be credible in the XXB through a stratification experiment in winter. The algal blooms happened in2009-2010could also be illuminated by the critical depth theory. In XXB, the particular water stratification, caused by the BDDC, could be the main factor to trigger algal blooms. Conditions of water light intensity and stratification were also the main factors to affect phytoplankton succession.
     (6) The water level fluctuation of TGR could change the RMDC into RSDC, through which the stratification before the fluctuation would be destroyed. As a result, the mixing depth in the XXB increased and phytoplankton biomass decreased. Based on this situation, an eco-environmental friendly operation (EEFO) of the TGR, named"tide-type" water level fluctuation method, was suggested to control the algal bloom in those tributaries, consisted of a tide-type operation in the water releasing stage (TTOR), a tide-type operation in flood control stage (TTOF), and a stair-type impounding during the impounding stage (STII). The demonstration indicated that the EEFO could do great effects on algal blooms in the XXB. The algal blooms could be restricted in summers and autumn trough using the EEFO. What's more, the Critical Depth Theory and the Intermediate Disturbance Theory gave a theoretical supports to this EEFO to control the algal blooms in the tributaries of TGR.
引文
[1]中华人民共和国水利部.2010年全国水利发展统计公报[M].北京:中国水利水电出版社,2011.
    [2]中国环境监测总站.长江三峡工程生态与环境监测公报(http://ics.mep.gov.cn/hjzl/sxgb/).北京:中华人民共和国环境保护部,2004-2011.
    [3]吴晓青.完善环保标准,推进环保工作(http://www.gov.cn/zxft/ft 108/)北京:中华人民共和国环境保护部,2008.
    [4]Vannote R L, Minshall G W, Cumminus K W, Et Al. The river continuum concept[J]. Canadian Journal of Fisheries and Aquatic Science,1980,37(1):130-137.
    [5]Ward J V, Stanford J A, editor. The ecology of regulated streams. New York:Plennum Press, 1979.
    [6]Kawara O, Yura E, Fujii S, et al. A study on the role of hydraulic retention time in eutrophication of the Asahi River Dam reservoir[J]. Water Science and Technology,1998,37(2): 245-252.
    [7]Tarczynska M, Romanowska D Z, Jurczak T, et al. Toxic Cyanobacterial blooms in a drinking water reservoir-causes, consequences and management strategy[J]. Water Science & Technology: Water Supply,2001,1(2):237-246.
    [8]Frutiger A. Ecological impacts of hydroelectric power production on the River Ticino. Part 1: Thermal effects[J]. Archiv fur Hydrobiologie,2004,159(1):43-56.
    [9]Gary J J, Wojciech P. Understanding and management of cyanobacterial blooms in sub-tropical reservoirs of Queensland, Australia[J]. Water Science and Technology,1998,37(2): 161-168.
    [10]Lawrence I, Bormans M, Oliver R, et al, editors. Physical and nutrient factors controlling algal succession and biomass in Burrinjuck Reservoir[R]. Sydney, Cooperative Research Centre for Freshwater Ecology,2000.
    [11]Glenn B M, Larelle D F. Dominance of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) in Queensland tropical and subtropical reservoirs:Implications for monitoring and management[J]. Lakes & Reservoirs:Research & Management,2008,5(3):195-205.
    [12]Gilbert F W. The environmental effects of the high dam at aswan[J]. Environment:Science and Policy for Sustainable Development,1988,30(7):4-40.
    [13]Dillon P J, Rigler F H. A test of a simple nutrient budget model predicting the phosphorus concentration in lake water[J]. Journal of the Fisheries Research Board of Canada,1974,31(11): 1771-1778.
    [14]Humborg C, Ittekkot V, Cociasu A, et al. Effect of Danube river dam on Black Sea biogeochemistry and ecosystem structure[J]. Nature,1997,386(27 March 1997):385-388.
    [15]Garnier J, Leporcq B, Sanchez N, et al. Biogeochemical mass-balance(C, N, P, Si) in three large reservoirs of the Seine Basin (France)[J]. Biogeochemistry,1999,47(3):119-146.
    [16]王玲玲,戴会超,蔡庆华.河道型水库支流库湾富营养化数值模拟研究[J].四川大学学报(工程科学版),2009,41(2):18-23.
    [17]Qin B, Yang L, Chen F, Zhu G. Mechanism and control of lake eutrophication[J]. Chinese Science Bulletin,2006,51(19):2401-2412.
    [18]Grover J P. Phosphorus-dependent growth kinetics of 11 species of freshwater algae[J]. Limnology and Oceanography,1989,34(2):341-348.
    [19]Atkinson M J, Smith S V. C:N:P ratios of benthic marine plants[J]. Limnology and Oceanography,1983,28(3):568-574.
    [20]Diehl S. Phytoplankton, light, and nutrients in a gradient of mixing depths:theory[J]. Ecology, 2002,83(2):386-398.
    [21]Smayda T J. Harmful algal blooms:their ecophysiology and general relevance to phytoplankton blooms in the sea[J]. Limnology and Oceanography,1997,42(5):1137-1153.
    [22]Jacco K, Allan K, Luuc R M. Buoyancy regulation in light-limited continuous cultures of Microcystis aeruginosa[J]. Journal of Plankton Research,1988,10(2):171-183.
    [23]Richard D R, Tamar Z. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming Cyanobacteria[J]. New Zealand Journal of Marine and Freshwater Research,1987,21(3):391-399.
    [24]Hairston N G, Smith F E, Slobodkin L B. Community structure, population control, and competition[J]. The American Naturalist,1960,94(879):421-425.
    [25]Sverdrup H U. On conditions for the vernal blooming of phytoplankton[J]. Journal of Marine Science,1953,18(3):287-295.
    [26]Gadgil M, Solbrig O T. The concept pf r-and K-selection:evidence from wild flowers and some theoretical considerations[J]. The American Naturalist,1972,106(947):14-31.
    [27]Grime J P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory[J]. The American Naturalist,1977,111(982):1169-1194.
    [28]Reynolds C S. The ecology of phytoplankton. Cambridge:Cambridge University Press,2006.
    [29]Reynolds C S, Huszar V, Kruk C, et al. Towards a functional classification of the freshwater phytoplankton[J]. Journal of Plankton research,2002,24(5):417-428.
    [30]Hardin G. The competitive exclusion principle[J]. Science,1960,131(3409):1292-1297.
    [31]Hutchinson G E. The paradox of the plankton[J]. The American Naturalist,1961,95(882): 137-145.
    [32]Connell H J. Diversity in tropical rain forests and coral reefs[J]. Science,1978,199(4335): 1302-1310.
    [33]Reynolds C S, Padisak J, Sommer U. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity:a synthesis [J]. Hydrobiologia,1993, 249(1-3):183-188.
    [34]Walker K F, Thorns M C. Environmental effects of flow regulation on the lower river Murray, Australia[J]. Regulated Rivers:Research & Management,1993,8(1-2):103-119.
    [35]Mitrovic S M, Oliver R L, Rees C, et al. Critical flow velocities for the growth and dominance of Anabaena circinalis in some turbid freshwater rivers[J]. Freshwater Biology,2003, 48(1):164-174. [36] Flores L N, Barone R. Water-level fluctuations in mediterranean reservoirs:setting a dewatering threshold as a management tool to improve water quality[J]. Hydrobiologia,2005, 548(1):85-99.
    [37]Leston S, Lillebo A L, Pardal M A. The response of primary producer assemblages to mitigation measures to reduce eutrophication in a temperate estuary[J]. Estuarine, Coastal and Shelf Science,2008,77(4):688-696.
    [38]魏什涅夫斯基B U,(容致旋,译).关于德涅斯特罗夫水库利用调度进行自然保护的问题[J].水利水电快报,1994,14:7-11.
    [39]Higgins J M, Brock W G. Overview of reservoir release improvements at 20 TVA dams[J]. Journal of energy engineering,1999,125(1):1-17.
    [40]Horn H, Uhlmann D. Competitive growth of blue-greens and diatoms{Fragilaria) in the Saidenbach Reservoir, saxony[J]. Water Science and Technology,1995,32(4):77-88.
    [41]邬红娟,郭生练.水库水文情势与浮游植物群落结构[J].水科学进展,2001,12(1):51-55.
    [42]Geraldes A, Boavida M J. Seasonal water level fluctuations:Implications for reservoir limnology and management[J]. Lakes & Reservoirs:Research & Management,2005,10(1): 59-69.
    [43]蔡庆华.武汉东湖浮游植物水华的多元分析[J].水生生物学报,1990,14(1):22-31.
    [44]吴生才,陈伟民.微囊藻和栅列藻的垂直迁移及生态学意义[J].生态科学,2004,23(3):244-248.
    [45]杨正健,刘德富,易仲强,等.三峡水库香溪河库湾拟多甲藻的昼夜垂直迁移特性[J].环境科学研究,2010,(1):26-32.
    [46]成慧敏,邱保胜.蓝藻的伪空泡及其对蓝藻在水体中垂直分布的调节[J].植物生理学通讯,2006,42(5):974-980.
    [47]唐汇娟,谢平.围隔中不同密度鲢对浮游植物的影响[J].华中农业大学学报,2006,25(3):277-280.
    [48]王宇庭,孙建.春季水库浮游生物与鲢鳙生长的关系[J].海洋湖沼通报,2003,(1):43-51.
    [49]田利,王金鑫,张丽彬,等.芦台鲌鱼对富营养化水体中藻类的控制作用[J].生态环境,2008,17(4):1334-1337.
    [50]孙军,宋书群,王丹,等.中华哲水蚤(Calanus sinicus)对浮游植物和微型浮游动物的摄食速率估算[J].生态学报,2007,27(8):3302-3315.
    [51]操璟璟,廖庆生,蒋继宏,等.不同温度条件下几种枝角类浮游动物的抑藻净水效应研究[J].生物学杂志,2010,(1):57-60.
    [52]焦世珺.三峡库区低流速河段流速对藻类生长的影响[D].西南大学,2007.
    [53]黄钰铃,刘德富,陈明曦.不同流速下水华生消的模拟[J].应用生态学报,2008,19(10):2293-2298.
    [54]秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机—原因与对策[J].地球科学进展,2007,22(9):896-906.
    [55]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.
    [56]刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜[J].长江流域资源与环境,1999,8(3):312-319.
    [57]钟继承,刘国锋,范成新,等.湖泊底泥疏浚环境效应:I.内源磷释放控制作用[J].湖泊科学,2009,21(1):84-93.
    [58]刘春生,吴浩云.引江济太调水实验的理论和实践探索[J].水利水电技术,2003,34(1):4-8.
    [59]陈荷生.面向21世纪的太湖流域水资源统一管理[J].水利水电科技进展,2000,20(003):2-5.
    [60]黄真理.三峡水库水质预测和环境容量计算[M].北京:中国水利水电出版社,2006.
    [61]蔡庆华,胡征宇.三峡水库富营养化问题与对策研究[J].水生生物学报,2006,30(1).
    [62]张敏,蔡庆华,王岚,等.三峡水库香溪河库湾蓝藻水华生消过程初步研究[J].湿地科学,2009,7(3):230-236.
    [63]曹承进,郑丙辉,张佳磊,等.三峡水库支流大宁河冬,春季水华调查研究[J].环境科学,2009,30(12):3471-3480.
    [64]曹承进,秦延文,郑丙辉,等.三峡水库主要入库河流磷营养盐特征及其来源分析[J].环境科学,2008,29(2):310-315.
    [65]郑丙辉,曹承进,秦延文,等.三峡水库主要入库河流氮营养盐特征及其来源分析[J].环境科学,2008,29(1):1-6.
    [66]Ye L, Han X, Xu Y, et al. Spatial analysis for spring bloom and nutrient limitation in Xiangxi bay of three Gorges Reservoir[J]. Environmental monitoring and assessment,2007,127(1): 135-145.
    [67]刘学斌,刘晓霭,付道林.三峡水库蓄水前后大宁河水体中营养盐时空分布及水质变化趋势探讨[J].环境科学导刊,2009,28(2):22-24.
    [68]张晟,李崇明,郑坚,等.三峡水库支流回水区营养状态季节变化[J].环境科学,2009,30(1):64-69.
    [69]李崇明,黄真理,张晟,等.三峡水库藻类“水华”预测[J].长江流域资源与环境,2007,16(001):1-6.
    [70]周广杰,况琪军,胡征宇,等.三峡库区四条支流藻类多样性评价及“水华”防治[J].中国环境科学,2006,26(3):337-341.
    [71]郭劲松,陈杰,李哲,等.156m蓄水后三峡水库小江回水区春季浮游植物调查及多样性评价[J].环境科学,2008,29(10):1072-1081.
    [72]曾辉,宋立荣,于志刚,等.三峡水库“水华”成因初探[J].长江流域资源与环境,2007,16(3):336-339.
    [73]李锦秀,杜斌,孙以三.水动力条件对富营养化影响规律探讨[J].水利水电技术,2005,36(5):15-18.
    [74]李锦秀,禹雪中,幸治国.三峡库区支流富营养化模型开发研究[J].水科学进展,2005,16(6):777-783.
    [75]诸葛亦斯,欧阳丽,纪道斌,等.三峡水库香溪河库湾水华生消的数值模拟分析[J].中国农村水利水电,2009,5:18-22.
    [76]付长营,陶敏,方涛,等.三峡水库香溪河库湾沉积物对磷的吸附特征研究[J].水生生物学报,2006,30(1):31-36.
    [77]李凤清,叶麟,刘瑞秋,等.三峡水库香溪河库湾主要营养盐的入库动态[J].生态学报,2008,28(5):2073-2079.
    [78]Yang Z, Liu D, Ji D, et al. Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi bay [J]. Since China Technological Sciences,2010,53(4):1114-1125.
    [79]纪道斌,刘德富,杨正健,等.三峡水库香溪河库湾水动力特性分析[J].中国科学:物理学力学天文学,2010,40(1):101-112.
    [80]冉祥滨,姚庆祯,巩瑶,等.蓄水前后三峡水库营养盐收支计算[J].水生态学杂志,2009,2(2):1-8.
    [81]陈媛媛,刘德富,杨正健,等.分层异重流对香溪河库湾主要营养盐补给作用分析[J].环境科学学报,2013,33(3):762-770.
    [82]吉小盼,刘德富,黄钰铃,等。三峡水库泄水期香溪河库湾营养盐动态及干流逆向影响[J].环境工程学报,2010,4(12):2687-2693.
    f83] Fu B, Wu B, Lv Y, et al. Three gorges project:efforts and challenges for the environment[J]. Progress in Physical Geography,2010,34(6):741-754.
    [84]沈银武,刘永定,吴国樵.富营养湖泊滇池水华蓝藻的机械清除[J].水生生物学报,2004,28(2):131-136.
    [85]兰智文,赵鸣.藻类水华的化学控制研究[J].环境科学,1992,13(1):12-15.
    [86]Liu J, Xie P. Enclosure experiments on and lacustrine pacetice for eliminating Microcystis bloom[J]. Chinese Journal of Oceanology and Limnology,2002,20(2):113-117.
    [87]Zhou G, Zhao X, Bi Y, et al. Effects of silvercarp (Hypophthalmichthys molitrix) on spring phytoplankton community structure of Three-Gorges Reservoir (China):results from an enclosure experiment [J]. Journal Limnology,2011,70(1):26-32.
    [88]董哲仁,孙东亚,赵进勇.水库多目标生态调度[J].水利水电技术,2007,38(1):28-32.
    [89]蔡其华.三峡工程防洪与调度[J].中国工程科学,2011,13(7):15-19.
    [90]Yang Z, Liu D, Ji D, et al. An eco-environmental friendly operation:an effective method to mitigate the harmful blooms in the tributary bays of Three Gorges Reservoir[J]. Science China:Technological Sciences,2013,56(6):1458-1470.
    [91]王玲玲,戴会超,蔡庆华.香溪河生态调度方案的数值模拟[J].华中科技大学学报:自然科学版,2009,37(004):111-114.
    [92]富国.湖库富营养化敏感分级水动力概率参数研究[J].环境科学研究,2005,18(6):80-84+102.
    [93]张远,郑丙辉,富国.河道型水库基于敏感性分区的营养状态标准与评价方法研究[J].环境科学学报,2006,26(6):1016-1021.
    [94]任春坪,钟成华,邓春光,黄程.三峡库区冬季微囊藻水华探析[J].安徽农业科学,2009,37(11):5074-5077.
    [95]姚绪姣,刘德富,杨正健,等.三峡水库香溪河库湾冬季甲藻水华生消机理初探[J].环境科学研究,2012,25(6):645-651.
    [96]周建军.关于三峡电厂日调节调度改善库区支流水质的探讨[J].科技导报,2006,23(10):8-12.
    [97]袁超,陈永柏.三峡水库生态调度的适应性管理研究[J].长江流域资源与环境,2011,20(3):269-275.
    [98]刘德富,杨正健,纪道斌,等.一种通过水位调节控制河道型水库支流水华发生的方法.中国,2011.
    [99]郑守仁.优化调度三峡工程充分利用洪水资源[J].中国水利,2009,(19):29-29.
    [100]周建军.优化调度改善三峡水库生态环境[J].科技导报,2008,26(7):64-71.
    [101]Zeng H, Song L, Yu Z, et al. Distribution of phytoplankton in the Three-Gorge Reservoir during rainy and dry seasons[J]. Science of the Total Environment,2006,367(2-3):999-1009.
    [102]钟成华,幸治国,赵文谦,等.三峡水库蓄水后大宁河水体富营养化调查及评价[J].灌溉排水学报,2004,23(3):20-23.
    [103]王俊娜.改善三峡水库非汛期水质的调度方式研究[D].天津:天津大学,2008.
    [104]刘德富,黄钰铃,纪道斌,等.三峡水库支流水华与生态调度[M].北京:中国水利水电出版社,2013.
    [105]中华人民共和国环境保护部.长江三峡工程生态与环境监测公报(1997-2010).北京:http://jcs.mep.gov.cn/hjzl/sxgb/,2011.
    [106]陆佑楣,曹广晶.长江三峡工程(技术篇)[M].北京:中国水利水电出版社,2010.
    [107]黄真理,李玉樑,陈永灿,等.三峡水库水质预测和环境容量计算[M].北京:中国水利水电出版社,2006.
    [108]张晟,李崇明,付永川,等.三峡水库成库后支流库湾营养状态及营养盐输出[J].环境科学,2008,29(1):7-12.
    [109]唐涛,黎道丰,潘文斌,等.香溪河河流连续统特征研究[J].应用生态学报,2004,15(1):141-144.
    [110]王岚.三峡水库香溪河库湾浮游植物时空动态及藻类水华过程与模型研究[D].武汉:中国科学院水生生物研究所,2011.
    [111]马骏,刘德富,纪道斌,等.三峡水库支流库湾低流速条件下测流方法探讨及应用[J].长江科学院院报,201],28(6):30-54.
    [112]国家环境保护总局<水和废水监测分析方法>编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2005.
    [113]中华人民共和国水利部.二氧化硅可溶性的测定(硅钼蓝分光光度法)(SL91.2-1994).北京,1994.
    [114]中华人民共和国建设部.河流悬移质泥沙测验规范(GB50159—1992).北京:中国计划出版社,2007.
    [115]胡鸿钧,魏印心.中国淡水藻类—系统、分类及生态.北京:科学出版社,2006.
    [116]章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991.
    [117]Rolf G L, Todd D M. Topographically Induced Mixing Around a Shallow Seamount[J]. Science,1997,276(5320):1831-1833.
    [1181 Bertram B, Maitin S. Stratification of lakes[J]. Reviews of Geophysics,2008,46(2):1-27.
    [119]杨正健,刘德富,马骏,等.三峡水库香溪河库湾特殊水温分层对水华的影响[J].武汉大学学报(工学版),2012,45(1):1-9.
    [120]纪道斌,刘德富,杨正健,等.三峡水库香溪河库湾水动力特性分析[J].中国科学:物理学力学天文学,2010,40(1):101-112.
    [121]Clement D M, Gurvan M, Albert S F,et al. Mixed layer depth over the global ocean:An examination of profile data and a profile-based climatology[J]. Journal of Geophysical Research: Oceans,2004,109(C12):1-20.
    [122]Khanna D R, Bhutiani R, Chandra K S. Effect of the euphotic depth and mixingdepth on phytoplanktonic growth mechanism[J]. Internetional Journal of Environmental Research,2009, 3(2):223-228.
    [123]Sakshaug E, Bricaud A, Dandonneau Y, et al. Parameters of photosynthesis:definitions, theory and interpretation of results[J]. Journal of Plankton Research,1997,19(11):1637-1670.
    [124]张远,郑丙辉,刘鸿亮,等.三峡水库蓄水后氮、磷营养盐的特征分析[J].水资源保护,2005,21(6):23-26.
    [125]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983.
    [126]王光谦,方红卫.异重流运动基本方程[J].科学通报,1996,41(18):1715-1720.
    [127]钱宁,范家骅.异重流[M].北京:水利水电出版社,1958.
    [128]谭维炎.盐水楔运动规律的研究述评[J].水科学进展,1994,5(2):149-159.
    [129]曹巧丽.三峡水库香溪河库湾倒灌异重流运动特性研究[D].宜昌:三峡大学,2010.
    [130]罗专溪,朱波,郑丙辉,等.三峡水库支流回水河段氮磷负荷与干流的逆向影响[J].中国环境科学,2007,27(2):208-212.
    [131]韩其为.水库淤积[M].北京:科学出版社,2003.
    [132]秦文凯,韩其为.反坡异重流的研究[J].水动力学研究与进展(A辑),1996,10(6):637-647.
    [133]郑丙辉,张远,富国,等.三峡水库营养状态评价标准研究[J].环境科学学报,2006,26(6):1022-1030.
    [134]杨正健,刘德富,马骏,等.三峡水库香溪河库湾特殊水温分层对水华的影响[J].武汉大学学报(工学版),2012,45(1):1-9.
    [135]易仲强,刘德富,杨正健,等.三峡水库香溪河库湾水温结构及其对春季水华的影响[J].水生态学杂志,2009,2(5):6-11.
    [136]卞俊杰,陈峰.三峡水库蓄水后库区水温影响分析[J].水利水电快报,2006,27(19):7-]0.
    [137]Hutchinson G E. The thermal classification of lakes[J]. Proc Nat Acad Sci,1956,42:84-86.
    [138]徐汉兴.梅山水库水温特性的研究[J].海洋与湖沼,1964,6(2):135-151.
    [139]Yu Z, Wang L. Factors influencing thermal structure in a tributary bay of Three Gorges Reservoir[J]. Journal of Hydrodynamics,2011,23(4):407-415.
    [140]雒文生,谈戈[J].,():.三峡水库香溪河库湾水质预测[J].水电能源科学,2000,18(4):46-48.
    [141]余真真,王玲玲,戴会超.三峡水库香溪河库湾水温分布特性研究[J].长江流域资源与环境,2011,20(1):84-89.
    [142]Cole T, Wells S. CE-QUAL-W2:A two-dimensional, laterally averaged hydrodynamic and water quality model, Version 3.7[M].2000.
    [143]ColeT M, Buchak E M,Corps Of Engineers, Us Army Engineer Waterways Experiment Station, Environmental Laboratory. CE-QUAL-W2:A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 2.0. User Manual[M]. US Army Engineer Waterways Experiment Station,1995.
    [144]Hanna R B, Saito L, Bartholow J M, et al. Results of simulated temperature control device operations on in-reservoir and discharge water temperatures using CE-QUAL-W2[J]. Lake and Reservoir Management,1999,15(2):87-102.
    [145]Kim Y, Kim B. Application of a 2-Dimensional Water Quality Model (CE-QUAL-W2) to the Turbidity Interflow in a Deep Reservoir (Lake Soyang, Korea)[J]. Lake and Reservoir Management,2006,22(3):213-222.
    [146]Swayne D A, Yang W, Voinov A, et al. Modeling thermal structure variations in a stratified reservoir[J].
    [147]庄丽榕,潘文斌,魏玉珍CE-QUAL-W2模型在福建山仔水库的应用[J]J Lake Sci,2008,20(5):630-638.
    [148]Boegman L, Loewen M, Hamblin P, et al. Application of a two-dimensional hydrodynamic reservoir model to Lake Erie[J]. Canadian Journal of Fisheries and Aquatic Sciences,2001,58(5): 858-869.
    [149]Martin J L. Application of a Two-Dimensional Model of Hydrodynamics and Water Quality(CE-QUAL-W 2) to DeGray Lake, Arkansas[J]. Available from the National Technical Information Service, Springfield VA 22161 Technical Report E-87-1, March 1987 Final Report 79 p,24 fig,3 tab,31 ref, append,1987.
    [150]Borsuk M, Clemen R, Maguire L,et al. Stakeholder values and scientific modeling in the Neuse River watershed[J]. Group Decision and Negotiation,2001,10(4):355-373.
    [151]Wells S A. Hydrodynamic and water quality river basin modeling using CE-QUAL-W2 version 3[J]. Development and Application of Computer Techniques to Environmental Studies WIT Press, Boston,2000:195-204.
    [152]Bowen J D. A CE-QUAL-W2 model of Neuse estuary for total maximum daily load development[J]. Journal of water resources planning and management,2003,129(4):283-294.
    [153]Deliman P N, Gerald J A. Application of the two-dimensional hydrothermal and water quality model, CE-QUAL-W2, to the Chesapeake Bay-Conowingo Reservoir[J]. Lake and Reservoir Management,2002,18(1):10-19.
    [154]邓云,李嘉,李克锋,等.梯级电站水温累积影响研究[J].水科学进展,2008,19(2):273-279.
    [155]牛凤霞,肖尚斌,王雨春.等.三峡库区沉积物秋末冬初的磷释放通量估算[J].环境科学,2013,34(4):1308-1314.
    [156]冉祥滨.三峡水库营养盐分布特征与滞留效应研究[D].中国青岛:中国海洋大学,2009.
    [157]顾慰祖,陆家驹,赵霞,等.无机水化学离子在实验流域降雨径流过程中的响应及其示踪意义[J].水科学进展,2007,18(1):1-7.
    [158]陈敏,编著.化学海洋学[M].北京:海洋出版社,2009.
    [1591 Bertram B, Martin S. Stratification of lakes[J]. Reviews of Geophysics,2008,46(3):1-27.
    [160]娄保锋,印士勇,穆宏强,等.三峡水库蓄水前后干流总磷浓度比较[J].湖泊科学,2011,23(6):863-867.
    [161]李锦秀,廖文根.三峡库区富营养化主要诱发因子分析[J].科技导报,2003,2:49-52.
    [162]方丽娟,刘德富,杨正健,等.三峡水库香溪河库湾夏季浮游植物演替规律及其原因[J].生态与农村环境学报,2013,29(2):234-240.
    [163]廖平安,胡秀琳.流速对藻类生长影响的试验研究[J].北京水利,2005,(2):12-14.
    [164]Ye L, Cai Q, Liu R, Et Al. The influence of topography and landuse on water quality of Xiangxi River in Three Gorges Reservoir region[J]. Environmental Geology,2009,58:937-942.
    [165]张宇,刘德富,纪道斌,等.干流倒灌异重流对香溪河库湾营养盐的补给作用[J].环境科学,2012,待刊.
    [166]Xu Y, Zhang M, Wang L, Et Al. Changes in water types under the regulated mode of water level in Three Gorges Reservoir, China[J]. Quaternary International,2011,244(2):272-279.
    [167]张金屯,著.数量生态学[M].北京:科学出版社,2004.
    [168]Huisman J, Van O P, Weissing F J. Species dynamics in phytoplankton blooms:incomplete mixing and competition for light[J]. The American Naturalist,1999,154(1):46-68.
    [169]Huisman J, Thi N N P, Karl D M, et al. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum[J]. Nature,2006,439(7074):322-325.
    [170]Padisak J. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes[J]. Hydrobiologia,1993,249(1): 135-156.
    [171]Lei C. Sediment management in the Three Gorges reservoir[J]. International Journal on Hydropower and Dams,2008,15(3):115-122.
    [172]Oliver R L, Hart Bt, Olley J, et al., editors. The Darling river:algal growth and the cycling and sources of nutrients[R]. Commission Project,2000.
    [173]王浩.湖泊流域水环境污染治理的创新思路与关键对策研究[M].北京:科学出版社,2010.
    [174]Lindenschmidt K E, Chorus I. The effect of water column mixing on phytoplankton succession, diversity and similarity[J]. J Plankton Res,1998,20(10):1927-1951.
    [175]胡建林,刘国祥,等蔡庆华.三峡库区重庆段主要支流春季浮游植物调查[J].水生生物学报,2006,30(1):116-119.
    [176]Zhang Q, Xu C, Singh V P, Et Al. Multiscale variability of sediment load and streamflow of the lower Yangtze River basin:possible causes and implications[J]. Journal of Hydrology,2009, 368:96-104.
    [177]张莉莉,陈进.长江上游水沙变化分析[J].长江科学院院报,2007,24(6):34-37.
    [178]Chen X, Yan Y, Fu R, et al. Sediment transport from the Yangtze River,China,into the sea over the Post-Three Gorge Dam Period:A discussion[J]. Quaternary International 2008,186: 55-56.
    [179]Li X Guo S, Liu P, et al. Dynamic control of flood limited water level for reservoir operation by considering inflow uncertainty[J]. Journal of hydrology 2010,391:124-132.
    [180]Tockner K, Malard F, Ward J V. An extension of the flood pulse concept[J]. Hydrol Process, 2000,14:2861-2883.
    [181]董哲仁,张晶.洪水脉冲的生态效应.[J].水利学报,2009,40(3):281-288.
    [182]Richard S. Three Gorges Dam:into the unknown[J]. Science News,2008,321(1):628-632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700