用户名: 密码: 验证码:
再生水灌溉土壤—地下水重金属污染特征与风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北京市东南郊再生水灌区为主要研究对象,采用灌区调查、田间灌溉试验、河道入渗试验相结合的系统方法开展了再生水灌溉土壤、地下水重金属污染特征与风险评价研究。揭示了再生水灌区土壤与地下水重金属的空间分布特征与污染来源,明晰了再生水输配水和灌溉过程中重金属的迁移规律与影响机制,识别了再生水灌溉地下水重金属特征风险污染物,提出了北京市东南郊地区再生水灌溉污染风险分区发展对策。
     通过构建再生水灌区环境重金属长期监测网络,揭示了土壤、地下水重金属的空间分布规律。研究表明长期再生(污)水灌溉土壤重金属含量总体处于较低水平,低于《土壤环境质量标准》二级限值。灌区土壤重金属汞(Hg)、铜(Cu)、铅(Pb)随污灌历史增加而增加,河道渠系周边田块灌溉水保证率较高会导致重金属的累积。土壤重金属空间分布与全铁(TFe2O3)、有机质、阳离子交换量、颗粒组分含量显著相关(p<0.05)。重金属溯源分析表明Hg、Cu、Pb为再生水灌区土壤优先控制污染物。地下水中Hg、砷(As)在灌区北部污灌历史较长区域有明显累积。As、Cd在灌区地表、地下水中含量具有较好相关性(RAs=0.554、RCd=0.485),土壤与地下水中重金属含量无明显相关性。
     提出了再生水长期入渗试验与小区灌溉试验相结合的重金属污染风险识别方法,明晰了再生水输配水、灌溉条件下重金属在土壤、地下水中迁移特征与影响因素。研究发现:以地下水灌溉为对照,10年再生水灌溉土壤剖面Hg累积程度最高(45.85%);Cd、Pb、Cu也出现显著累积(p<0.05);Hg、Pb、Cu、Cd为长期再生水灌溉土壤重金属风险污染物指标,风险高低排序为:Hg>Cd>Cu>Pb。长期再生水灌溉改变了土壤中重金属与其它共存元素间的相互作用机制;粘粒含量、pH值、有机质以及钠吸附比均为影响再生水灌溉土壤重金属行为特征的重要因素。地表再生水长期入渗对浅层地下水中As、铁(Fe)、锰(Mn)累积产生显著影响(p<0.05);距河岸不同距离和层位含水层重金属含量处于较低水平,试验区砂粘交替包气带结构对重金属具有较好的防护性能。
     识别了再生水灌溉地下水重金属特征风险污染物,提出了北京市东南郊地区地下水重金属污染风险分区发展对策,将再生水利用区域分为低、中和高三类风险区,面积分别为775km2、1040km2和122km2,占总区域面积比例分别为40%、53.7%和6.3%。
The objective of ths study is to ascertain pollution risk of heavy metals in soil andgroundwater of reclaimed water irrigated district in the surth-easten area of Beijing, China,based on district investigation, field irrigation experiment and in situ infiltration experiment.The spatical distribution and origin of heavy metals in soil and groundwater of the long-termreclaimed water (or wastewater) irrigation were determined. The characteristic of migrationand influencing factors of heavy metal in soil-groundwater system at the process of watertransportion and irrigation were found in this study. The groundwater risk zoning strategy wasproposed.
     The heavy metal monitor system of long-term reclaimed water irrigated district wasestablished. The spatical distribution, origin and affect factor of heavy metals in soil andgroundwater of such area were determined by the investigation. Compared with other sewageirrigation areas, both domestic and international, the mean contents of As, Cd, Cr, Cu, Hg, Pb,Zn, Se, and Mn in soils were still at a relatively low level in the study area, and the contents ofall of the examined heavy metals were below national standard limits (GB15618-1995). Thelonger time of wastewater irrigation led to the accelerated enrichments of Hg, Cu and Pb.Significant heavy metal enrichments occurred in the areas around reclaimed water outfalls inthe irrigation area and canals, in which the wasterwater could be more easily lifted than theinterior areas., The TFe2O3content, OM, CEC and particle components of the soils werefound to be the major influencing factors affecting the accumulation and absorption of heavymetals in the soils. Our comprehensive analysis, combining the assessment of various sourcesof heavy metals, enrichment levels and the toxicity levels of heavy metals, suggested that Hg,Cu and Pb are the pollutants that should be given priority in control measures implemented inthe sewage irrigation district. Spatial distribution characteristics and sources of heavy metalsin the shallow groundwater in the district were detected. The longer time of wastewaterirrigation led to the accelerated enrichments of Hg and As. Fe and Mn in soil were relativelyhigher correlated with that in the shallow groundwater (RFe=0.497、RMn=0.375). As and Cd inthe shallow groundwater relatively were higher correlated with that in the surface water(RAs=0.554、RCd=0.485).
     The detect method of heavy metal pollution was established, which contained thelong-term reclaimed water irrigation experiment and in situ mornitoring infiltrationexperiment. Compared with the the groundwater treatment, the significantly higher levels ofTotal metal (Cd, Pb, and Hg) were found at50~70cm,30~40cm, respectively (p<0.05), and the significantly higher concentrations of DTPA-extractable metals (Cd, Cu, Fe) at deeperdepths of50~90cm (p<0.05). Hg, Cd, Cu, and Pb are the pollutants that should be givenpriority in control measures implemented which from high risk to low with the long-termreclaimed water irrigation. The contents of pH, OM, clay, sand, and SAR were the mainlyfactors which affect the accumulation and transfer of heavy metals in soil profiles.The inputof extra metals and nutrients by the process of reclaimed water irrigation has led to thesignificantly difference of the correlation between metals and other elements the soilsirrigated with reclaimed water and groundwater. Except for Fe and Mn, the other heavymetals were at a low level in the deffrent shadow groundwater depths which were at distanceof5m,15m,35m longitudinal to the reclaim water river. The vadose zone and the shallowaquifer in this study area contain a large amount of clay and sand-clay interlayers, which hascertain anti-pollution properties.
     Four metals parameters were selected as representative contaminants for groundwaterpollution risk assessment under reclaimed water irrigation. Groundwater heavy metalpollution risk zoning for the groundwater of study area was proposed and the district wasdivided into relatively low-, intermediate-and high-risk areas. with the area of775km2(40%of total area),1,040km2(53.7%) and122km2(6.3%) respectively. The strategies andmeasures are proposed in order to prohibit groundwater pollution in developing reclaimedwater irrigation.
引文
AATSE-Australian. Academy of Technological Sciences and Engineering, WaterRecycling in Australia, AATSE, Victoria, Australia,2004.
    Abdu N, Abdulkadir A, Agbenin J O, Buerkert A. Vertical distribution of heavy metals inwastewaterirrigated vegetable garden soils of three West African cities. Nutr. Cycl.Agroecosyst,2011,89:387~397.
    Al-Adamat R A N, Foster I D L,. Groundwater vulnerability and risk mapping for theBasaltic aquifer of the Azraq basin of Jordan using GIS. Remote sensing and DRASTIC.Applied Geography2003,23:303~324.
    Aller L, Bennett T, Lehr J H, et al. DRASTIC: a standardized system for evaluatingground water pollution potential using hydrogeologic settings. EPA-600/2-87-035, EPA,Washington, DC.1987.
    Alloway B J, Ayres D C. Chemical Principles of Environmental Pollution. BlackieAcademic and Professional. An imprint of Chapman and Hall, Oxford, UK,1993, p291.
    Anikwe M.A., Nwobodo K C. Long-term effect of municipal waste disposal on soilproperties and productivity of sites used for urban agriculture in Abakaliki. Nigeria.Bioresource Technol.2002,83(3):241~250.
    Atteia J P, Webster R.. Geostatistical analysis of soil contamination in the Swiss Jura.Environmental Pollution.1994,86:315~327.
    Bao Z, Wu W Y, Liu H L, Yin S Y, Chen H H. Geostatistical analyses of spatialdistribution and origin of soil nutrients in long-term wastewater-irrigated area in Beijing,China. Acta Agriculturae Scandinavica, Section B-Soil&Plant Science.http://dx.doi.org/10.1080/09064710.2014.902987.
    Baddesha H S, Rao D L N, Abrol I P, Chhabra R. Irrigation and nutrient potential of rawsewage waters of Haryana. Indian J. Agric. Sci.,1986,56(8):584-591,
    Baveye P, Mcbride M B, Bouldin D, et al. Mass balance and distribution of sludge-bornetrace elements in a silt loam soil following long-term applica-tions of sewage sludge. Sci.Total. Environ,1999,227(1):13~28.
    Bhogal A, Nicholson F A, Chambers B J, et al. Effects of past sewage sludge additions onheavy metal availability inlight textured soils: implications for crop yields and metal uptakes.Environ. Pollut.,2003,121(3):413~423.
    Biasioli M, Barberis R, Ajmone-Marsan F. The influence of a large city on some soilproperties and metals content. Science of the Total Environment,2006,356:154~164.
    Bohn H L, McNeal B L,. O’Connor A G. Soil Chemistry, seconded. Wiley-InterSciencePublications, NY, USA,1985, p341.
    Boulding J R. Description and Sampling of Contaminated Soils. A Field Guide,2nd ed.Lewis Publishers. Boca Raton. FL, Chapter3,1994.
    Cai Q, Long M L, Zhu M, et al. Food chain transfer of cadmium and lead to cattle in alead–zinc smelter in Guizhou, China. Environ Pollut.,2009,157(30):78~82.
    Carlon C, Critto A, Marcomini A, et al. Risk based characterization of contaminatedindustrial site using multivariate and geostatistical tools. Environmental Pollution,2001,111:417~427.
    Carlos A, Lucho C, Francisco P G, et al. Chemical fractionation of boron and heavymetals in soils irrigated with wastewater in central Mexico. Agriculture, Ecosystems andEnvironment,2005,18:57~71.
    Carreira P, Marques J, Pina A,·et al. Groundwater Assessment at Santiago Island (CaboVerde): A Multidisciplinary Approach to a Recurring Source of Water Supply, WaterResources Management.2010,24(6):1139~1159.
    Chary N S, Kamala C T, Raj D S. Assessing risk of heavy metals from consuming foodgrown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf.2008,69(5):13~24.
    Daly D, Dassargues A, Drew D, et al. Main concepts of the " European approach" tokarst-groundwater-vulnerability assessment and mapping. Hydrogeology Journal,2002,10:340~345.
    Datta S P, Biswas D R, Saharan N, et al. Effect of long term application of sewageeffluents on organic carbon, bioavailable phosphorus, potassium and heavy metal status ofsoil and content of heavy metal in crop grown there on. J. Indian Soc. Soil Sci.2000,48(4):836~839.
    Dixon B, Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool.Applied Geography,2005,25:327~347.
    Doerfliger N, Jeannin P Y, Zwahlen F. Water vulnerability assessment in karstenvironments: A new method of defining protection areas using a multi-attribute approach andGIS tools (EPIK method). Environmental Geology,1999,39(2):165~176.
    Domínguez-Mariani E, Carrillo-Chávez A, Ortega A, et al. Wastewater reuse inValsequillo agricultural area, Mexico: Environmental impact on groundwater. Water, Air, andSoil Pollution2004,155(1-4):251~267.
    Drechsel P, Scott C A, Raschid-Sally L, Redwood M, Bahri A. Wastewater Irrigation andHealth-Assessing and Mitigating Risk in Low-Income Countries.2010,5.
    Evans B M, Mayers W L. A GIS-based approach to evaluating regional groundwaterpollution potential with DRASTIC. Journal of Soil and Water Conservation,1990,45:242~245.
    Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and GIS based approach toidentify heavy metal sources in soils. Environmental Pollution.2001,114:245~276.
    Feigin A, Vaisman I, Bielorai H, Drip irrigation of cotton with municipal effluents: II.Nutrient availability in soil. J Environ Qual,1984,13(2):234~238.
    Fetter C W. Contaminant Hydrogeology, Second Edition. Waveland Press, Inc,2008.p320.
    Fpereira B F, He Z L, Silva M S, et al. Reclaimed wastewater: Impact on soil-plantsystem under tropical conditions. Journal of Hazardous Materials.2011,192:54~61.
    Gogu R C, Dassargues A, Current trends and future challenges in ground watervulnerability assessment using overly and index methods. Environmental Geology,2000,39(6):549~559.
    Gwenzi W, Munondo R. Long-term impacts of pasture irrigation with treated sewageeffluent on nutrient status of a sandy soil in Zimbabwe. Nutr. Cycl. Agroecosyst.,2008,82:197~207.
    Hamza M H, Added A, Rodriguez R. et al. A GIS-based DRASTIC vulnerability and netrecharge reassessment in an aquifer of a semi-arid region. Journal of EnvironmentalManagement,2007,84(1):9-12.
    Harman W A, Allanand C J, Forsythe R D. Assessment of potential groundwatercontamination sources in a wellhead protection area. Journal of Environmental Management,2001,62:271~282.
    Ibe K M, Collin M L, Melloula J. Assessment of ground water vulnerability and itsapplication to the development of protection strategy for the water supply aquifer in Owerrisouthern Nigeria. Environmental Monitoring and Assessment,2001,67:323~360.
    Kalavrouziotis I K, Koukoulakis P H, Papadopoulos A H, et al. Heavy metalaccumulation in Brussels sprouts after irrigation with treated municipal wastewater. J. PlantInteract,2009,4:41~48.
    Kass, A., Gavrieli, I., Yechieli. Y, et al, The impact of freshwater and wastewaterirrigation on the chemistry of shallow groundwater: a case study from the Israeli CoastalAquifer. Journal of Hydrology,2005,300:314-331.
    Keraita B, Jiménez B, Drechsel P. Extent and implications of agricultural reuse ofuntreated, partly treated and diluted wastewater in developing countries. Agriculture.Veterinary Science. Nutrition and Natural Resources,2008,3(58):15~21.
    Khan S, Cao Q, Zheng Y M, et al. Health risks of heavy metals in contaminated soils andfood crops irrigated with wastewater in Beijing, China. Environmental Pollution.2008,152:686-692.
    Liu W H, Zhao J Z, Ouyang Z Y, et al. Impacts of sewage irrigation on heavy metaldistribution and contamination in Beijing, China. Environment International.2005,31:805-812.
    Li Y Z, Li B G. Migration of solute in soil. Science Press, Beijing, China,1998, p28.
    Liu G S, Jiang N H. The analysis of soil physicochemical properties and soil profiledescription. China Standard Publishing House. Beijing,1996.
    Lu A X, Sun J, Wang J H, et al. Annual Variability and Characteristics Analysis of HeavyMetals in Agricultural Soil of Beijing. Scientia Agricultura Sinica.2011,44(18):3778~3789.
    Lu A X, Wang J H, Qin X Y, et al. Multivariate and geostatistical analyses of the spatialdistribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China.Science of the Total Environment,2012,425:66~74.
    Lucho-constantino C A, Prieto-garc′ia F, Del razo L M, et al. Chemical fractionation ofboron and heavy metals in soils irrigated with wastewater in central Mexico. Agriculture,Ecosystems and Environment.2005,108:57~71.
    Luo W, Wang T Y, Lu Y L, et al. Landscape ecology of the Guanting Reservoir, Beijing,China: Multivariate and geostatistical analyses of metals in soils. Environmental Pollution,2007,146:567~576.
    Luo W, Wang T Y, Lu Y L, et al. Landscape ecology of the Guanting Reservoir, Beijing,China: Multivariate and geostatistical analyses of metals in soils. Environmental Pollution.2007,146:567~576.
    Mapanda F, Mangwayana E N, Nyamangara J, et al. The effect of long-term irrigationusing wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe.Agriculture, Ecosystems and Environment,2005,107:151~165.
    Margat J. Vulnerabilite desnappes d’eau souterraine ala pollution [Ground watervulnerability to contamination](in French). Bases de la cartographic, BRGM,68SGL198HYD, Orleans, France.1968.
    Mauricio P F, Fontesa, Paulo C G. Simultaneous competitive adsorption of heavymetalsby the mineral matrix of tropical soils. Applied Geochemistry,2003,18:795~804.
    Menahem, R.,2004. Desalinization of reclaimed wastewater to prevent salinization ofsoils and groundwater. Desalinination2:143~149.
    Ramirez-Fuentes E, Lucho-Constantino C, Escamilla-Silva E, Dendooven L.Characteristics, carbon and nitrogen dynamics in soil irrigated with wastewater for differentlengths of time. Bioresource Technology,2002,85:179~187.
    Rattan R K, Datta S P, Chhonkar P K, et al. Long-term impact of irrigation with sewageeffluents on heavy metal content in soils, crops and groundwater-a case study. AgricultureEcosystems Environment.2005,109:310~322.
    Sami K, Abderlkrim C, Lamia A, et al. Effect of irrigation with treated wastewater ongeochemical properties (saltiness, C, N and heavy metals) of isohumic soils (Zaouit Sousseperimeter, Oriental Tunisia). Desalination,2010,253:180~187.
    Singh B. in: Smith D, Fityus S, Allman M (eds). Geo. Environment: Proceeding of the2nd Australia and NewZealand Conference on Environmental Geotechnics, Newcasle,NSW[M]. Australian Geochemical Society, Newcastle,2001:77~93.
    Singh P K, Deshbhratar P B, Ramteke D S. Effects of sewage wastewater irrigation onsoil properties, crop yield and environment. Agricultural Water Management,2012,103:100~104.
    Smith C J, Hopmans P, Cook F J. Accumulation of Cr, Pb, Cu, Ni, Zn, and Cd in soilfollowing irrigation with treated urban effluent in Australia. Environ. Pollut.,1996,94:317~323.
    Song Y F, Wilke B M, Song X Y, et al. Polycyclic aromatic hydrocarbons (PAHs),polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity insoil after long-term wastewater irrigation. Chemosphere,2006,65:1859~1868.
    Soutter M, Musy A. Coupling1D monte-carlo simulations and geostatistics to assessgroundwater vulnerability to pesticide contamination on a regional scale. Journal ofContaminant Hydrology,1998,32:25~39.
    Speir T W, Van Schaik A P, Percival H J, et al. Heavy metals in soil, plants andgroundwater following high-rate sewage sludge application to land. Water, Air, and SoilPollution,2003,150:319~358.
    Sridhara C N, Kamala C T, Samuel-Suman R D. Assessing risk of heavy metals fromconsuming food grown on sewage-irrigated soils and food chain transfer. Ecotoxicology andEnvironmental Safety.2008,69:513~524.
    Thirumalaivasan D, Karmegam M, Venugopal K. AHP-DRASTIC: software for specificaquifer vulnerability assessment using DRASTIC model and GIS. Environmental Modelling&Software,2003,18:645~656.
    Uricchio V F, Giordano R, Lopez N, A fuzzy knowledge-based decision support systemfor groundwater pollution risk evaluation. Journal of Environmental Management,2004,73:189~197.
    USEPA(Environmental Protection Agency). A review of methods for assessing aquifersensitivity and ground water vulnerability to pesticide contamination. U.S. EPA/813/R-93/002,EPA, Washington, DC.1993.
    Valentina L, Akica B. Water Reuse for Irrigation Agriculture, Landscapes, and Turf Grass.CRC PRESS,2005.201.
    Vierhuff H. Classification of groundwater resources for regional planning with regard totheir vulnerability to pollution. Studies in Environmental Science,1981,17:1101~1104.
    Vrana M. Methodology for construction of groundwater protection maps.UNESCO/UNEP Project PLCE-3/29, Moscow.1984.
    Wang H, Gao S F, Chen Y H, et al. Changes of soil enzyme activities in heavy metalspolluted region: A case study in a wastewater-irrigated agricultural area near a smelter inXinluo District of Longyan City, Fujian Province. Chinese. Journal of Applied Ecology.2004,25(4):87~89.
    Wang J J, He J T, Chen H H,2012. Assessment of groundwater contamination risk usinghazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain,China. Science of the Total Environment,432:216~226.
    Wang S Q, Zhu S L, Zhou C H. Characteristics of spatial variability of soil thickness inChinaChanges of soil enzyme activities in heavy metals polluted region.GEOGRAPHICALRESEARCH,2001.20(2):161~167.
    Wang Z W, Xu L M, Zhang W J. Corresponding Relationship between Trace Elements inSoi l and Human Activity Intensity. Chinese Journal of Soil Science.2002,33(4):303~305.
    Welch A H, Lico M S, Hughes J L. Arsenic in groundwater of western United States.Ground Water26,1988. No.3:333~347.
    Weng H X, Chen X H. Impact of polluted canal water on adjacent soil and groundwatersystems. Environmental Geology,2000,39(8):945~950.
    World Health Organisation(WHO). Guidelines for the Safe Use of Wastewater, Excretaand Greywater, Volume2: Wastewater Use in Agriculture.2006, World Health Organization.Geneva.
    Xin S Z, Li H F, Su D C. Concentration characteristics and historical changes of heavymetals in irrigation sewage in China, Journal of Agro-Environment Science.2011,30(11):2271~2278.
    Xu J, Wu L S, Chang A C, et al. Impact of long-term reclaimed wastewater irrigation onagricultural soils: A preliminary assessment. Journal of Hazardous Materials,2010,183:780~786,
    Yadav R K, Goyal B, Sharma R K, et al. Post-irrigation impact of domestic sewageeffluent on compositionof soils, crops and ground water—A case study. EnvironmentInternational,2002,28:481~486.
    Yang J, Huang Z C, Chen T B, et al. Predicting the probability distribution ofPb-increased lands in sewage-irrigated region: A case study in Beijing, China. Geoderma.2008,147:192~196.
    Zaporozec A. Groundwater Contamination Inventory-A Methodological Guide. IHP-VI,UNESCO.2002.
    Zhang C X, Liao X P, Li J L, et al. Influence of long-term sewage irrigation on thedistribution of organochlorine pesticides in soil–groundwater systems. Chemosphere,2013,92:337~343.
    Zhang Y, Zhang H W, Su Z C, et al. Soil Microbial Characteristics Under Long-TermHeavy Metal Stress: A Case Study in Zhangshi Wastewater Irrigation district, Shenyang.Pedosphere,2008,18(1):1~10.
    Zheng Z, Zhang F R, Ma F Y. Spatiotemporal changes in soil salinity in a drip-irrigatedfield, Geoderma,2009,149:243~248.
    宝哲,杨培岭,任树梅,等.模拟再生水灌溉下污灌土壤中盐分离子交换运移的试验研究.农业环境科学学报,2009,28(1):101~106.
    北京东南郊环境污染调查及其防治途径研究协作组.北京东南郊环境污染调查及防治途径研究(报告集),1980:617~667.
    陈同斌,郑袁明,陈煌,等.北京市土壤重金属含量背景值的系统研究.环境科学,2004,25(1):117~122.
    曾昭华.长江中下游地区地下水中铁锰元素的形成及其分布规律.长江流域资源与环境,1994,3(4):326~329.
    董克虞,杨春惠,林春野.北京市污水农业利用区划的研究.北京:中国环境科学出版社,1994,51~125.
    段飞舟,高吉喜,何江,等.灌溉水质对污灌区土壤重金属含量的影响分析.农业环境科学学报,24(3):450~455.
    段飞舟,何江,高吉喜,等.城市污水灌溉对农田土壤环境影响的调查分析.华中科技大学学报(城市科学版),2005,22(增刊):181~192.
    付素蓉,王焰新,蔡鹤生,等.城市地下水污染敏感性分析.地球科学.中国地质大学学报,2000,25(5):4862~4866
    郭平,谢忠雷,李军,等.长春市土壤重金属污染特征及其潜在生态风险评价[J].地理科学,2005,25(1):108~112.
    国家环境保护局. GB3838-2002.地表水环境质量标准.2002.
    国家环境保护局.GB15618-1995.土壤环境质量标准.1995
    国家技术监督局. GB/T14848-93.地下水环境质量标准.1993
    国家质量监督检验检疫总局. GB20922-2007.城市污水再生利用农田灌溉用水水质2007.
    韩晋仙,马建华,魏林衡.污灌对潮土重金属含量及分布的影响—以开封市化肥河污灌区为例.土壤,2006,38(3):292~297.
    何晓文,许光泉,王伟宁,等.浅层地下水重金属元素的富集特征研究[J].环境工程学报,2011,5(2):322~326.
    胡文,王海燕,查同刚,等.北京市凉水河污灌区土壤重金属累积和形态分析.生态环境,2008,17(4):1491~1497.
    贾琳,杨林生,欧阳竹,等.典型农业区农田土壤重金属潜在生态风险评价.农业环境科学学报,2009,28(11):2270~2276.
    姜翠玲,夏自强,刘凌,等.污水灌溉土壤及地下水三氮的变化动态分析.水科学进展,1997,8(2):183~188.
    姜桂华.地下水防污性能研究进展.世界地质,2002,21(1):33~38.
    利锋,张学先,戴睿志.重金属有效态与土壤环境质量标准制订.广东微量元素科学,2008,15(1):7~10.
    梁镇海,陈翠翠,韩玉兰,等.基于模糊数学的太原市敦化灌区污灌土壤重金属污染评价.环境化学,2010,29(6):1152~1157.
    刘凌,陆桂华.含氮污水灌溉实验研究及污染风险分析.水科学进展,2002,13(3):50~57.
    孟凡乔,巩晓颖,葛建国,等.污灌对土壤重金属含量的影响及其定量估算—以河北省姣河和府河灌区为例.2004,23(2):277~280.
    孟涛,周非,聂庆华,等.污灌条件下农田土壤重金属的空间变异与模拟.农业环境科学学报,2008,27(3):867~872.
    孙才志,林山杉.地下水防污性能概念的发展过程与评价现状及研究前景.吉林地质,2000,19(1):30~36
    滕彦国,苏洁,翟远征,等.地下水污染风险评价的迭置指数法研究综述.地球科学进展,2012,27(10):1140~1147.
    王俊杰,何江涛,陆燕,等.地下水污染风险评价中特征污染物量化方法探讨.环境科学,2011,33(3):771~776.
    王学军,邓宝山,张泽浦.北京东郊污灌区表层土壤微量元素的小尺度空间结构特征.环境科学学报,1997,17(4):412~416.
    王祖伟,王中良,等.天津污灌区重金属污染及土壤修复.科学出版社,北京.2014,p78~80.
    吴文勇,刘洪禄,陈鸿汉,等.再生水灌区调蓄工程对地下水盐分影响的试验.农业工程学报,2009,12(25):22~25.
    吴文勇,刘洪禄,陈鸿汉,等.再生水灌区调蓄工程对地下水盐分影响的试验.农业工程学报,2009,12(25):22~25.
    吴文勇,刘洪禄.再生水灌溉技术研究现状与展望.农业工程学报,2008,24(5):302~306.
    吴文勇,刘洪禄.再生水灌溉利用区划研究.灌溉排水学报,2009,28(2):97~89.
    吴文勇,尹世洋,刘洪禄,等.污灌区土壤重金属空间结构与分布特征.农业工程学报,2013,29(4):165~173.
    吴文勇.再生水灌区地下水防污性能试验及灌溉区划研究:[博士学位论文].北京:中国地质大学(北京),2009.
    吴新民,潘根兴.影响城市土壤重金属污染因子的关联度分析.土壤学报,2003,40(6):921~928.
    谢华,刘晓海,陈同斌,等.大型古老锡矿影响区土壤和蔬菜重金属含量及其健康风险.环境科学,29(12):3503~3507.
    徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算.环境科学与技术,2008,31(2):112~115.
    杨军,郑袁明,陈同斌.等.北京市凉凤灌区土壤重金属的积累及其变化趋势.环境科学学报,2005,25(9):1175~1181
    杨庆,栾茂田,杨庆.地下水易污性评价方法—DRASTIC指标体系.水文地质工程地质,1999(2):4~10.
    于卉,郭勇.武清县污水灌溉情况及影响分析.水资源保护,2000,4:3~6.
    张乃明,陈建军,常晓冰.污灌区土壤重金属累积影响因素研究.土壤.2002(2):90~93.
    郑西来,李涛,贾丽华.基于MapInfo的大沽河地下水库防污性能评价.中国海洋大学学报,2004,34(6):1023~1028
    中国环境监测总站.1990.中国土壤元素背景值.北京:中国环境科学出版社,p355
    中华人民共和国卫生部. GB5749-2006.生活饮用水卫生标准.2006.
    钟佐燊.地下水防污性能评价方法探讨.地学前缘,2005,12:3~11.
    周振民.污水灌溉土壤重金属污染机理与修复技术.中国水利水电出版社,2011年,152.
    周仰效,李文鹏.地下水质监测与评价.水文地质工程地质,2008,35(1):1~11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700