用户名: 密码: 验证码:
基于零价铁的复合污染土壤化学修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国城市化的快速发展,化工厂关闭和搬迁产生大量污染场地,这些场地大多具有有机氯(Organochlorine Pesticides,OCPs)和重金属复合污染特征,对人体健康和生态环境构成严重威胁,亟需进行有效地修复。零价铁(Zero-valent iron,ZVI)已成功用于OCPs还原和重金属稳定化,但单纯ZVI技术的还原处理效率较低,污染物降解不彻底。基于ZVI的类Fenton氧化技术因能显著提高OCPs的降解速率和去除率而受到广泛关注,其中ZVI/EDTA/Air组成的ZEA类Fenton体系能快速有效地去除水溶液中的有机物和重金属,但国内外未见有ZEA体系对土壤中OCPs和复合污染土壤修复的研究报道。
     本文以常见的滴滴涕(Dichlorodiphenyltrichloroethanes,DDT)和多氯联苯(Polychlorinated Biphenyl,PCB)作为OCPs的代表,Cu和Pb作为重金属的代表,系统研究了基于ZVI的复合污染土壤化学修复效率及作用机制,具体内容包括:(1)评估ZEA类Fenton氧化体系修复OCPs污染土壤的效果及作用机理。(2)研究ZEA类Fenton氧化体系同步修复PCB和重金属(Cu和Pb)复合污染土壤的效果及作用机理。(3)探索表面活性剂强化ZEA类Fenton氧化修复PCB和重金属(Cu和Pb)复合污染土壤的效果及作用机理。(4)考察亚临界水条件下ZVI对于PCB和重金属(Cu和Pb)复合污染土壤的修复效果及作用机理。本文得到如下结论:
     (1)针对4,4’-DDE、2,4’-DDD、4,4’-DDD和4,4’-DDT的初始含量分别为4.6、82、295和987mg/kg的高浓度DDTs实际污染土壤,ZEA类Fenton氧化体系在常温常压和近中性条件下对土壤中DDTs具有很好的氧化降解效果。当ZVI和EDTA的初始浓度分别为5g/L和0.2mmol/L时,反应8h,初始土壤中4,4’-DDE、2,4’-DDD、4,4’-DDD、4,4’-DDT和总DDTs的去除率分别达到28.8%、68.8%、51.2%、50.3%和51.5%。初始EDTA和ZVI添加量对ZEA类Fenton氧化DDTs的效果有显著影响。过量的EDTA对ZEA类Fenton氧化效果具有抑制作用。EDTA在ZEA类Fenton氧化土壤中DDTs的同时自身也会被降解。同时ZEA类Fenton氧化体系对土壤pH和有机质含量的影响较小,优于传统Fenton体系。
     (2)ZEA类Fenton氧化体系能同步修复PCB、Cu和Pb初始浓度分别为22.9、106.4和412.3mg/kg的复合污染土壤。当EDTA和ZVI浓度分别为1mol/L和5g/L时,PCB的去除率为68.6%,重金属Pb和Cu的稳定化率分别为82.3%和59.4%。初始EDTA浓度、ZVI添加量和体系pH对ZEA类Fenton氧化修复复合污染土壤的效果有显著影响,过量的EDTA会增加Pb的解吸,同时抑制类Fenton反应。酸性pH(2-3)不利于ZEA类Fenton氧化修复复合污染土壤。复合污染中重金属的存在对PCB的降解有抑制作用。在ZEA体系中通过调控EDTA的添加方式和Fe2+的含量有利于强化类Fenton氧化降解复合污染土壤中PCB。
     (3)EDDS-皂素对于复合污染土壤中的Pb、Cu和PCB具有显著的协同解吸作用,当EDDS和皂素的浓度分别为10mmol/L和3000mg/L时,Pb、Cu和PCB的解吸率达到最大,分别为99.8%、85.7%和45.7%。皂素能够显著强化ZEA类Fenton氧化PCB的降解效果,PCB的实际降解率为85.6%,比不加皂素的单独ZEA类Fenton氧化体系的效率提高了24.8%。添加皂素后,ZEA类Fenton氧化体系对重金属稳定化的实验观测值提高,其效果主要来源于添加皂素对重金属的强化解吸作用将重金属转移到水相中。同时反应过程中EDDS和皂素逐渐被降解。
     (4)亚临界水能显著强化ZVI还原降解复合污染土壤中的PCB,同时对复合污染土壤中重金属Cu和Pb具有很好的稳定化作用。当反应温度为180℃,ZVI的剂量为0.2g,土壤中PCB的实际降解率达到89.5%,重金属Cu和Pb的稳定化率分别为90.7%和96.4%。ZVI的剂量、初始pH和反应气氛对土壤中PCB的降解和重金属的稳定化效果有显著影响。随着ZVI剂量的增加,土壤中PCB的降解率和重金属的稳定化率会逐渐增加。碱性条件更有利于土壤中PCB的还原降解和重金属的稳定化。有氧环境对土壤中PCB的降解有抑制作用,但对重金属的稳定化有利。
With the development of urbanization in China, a large number of contaminated sitesare generated during the shutting down and demolition of chemical enterprises. Most ofthese contaminated sites contain both organochlorine pesticides (OCPs) and heavy metals,which pose great threat to public health and ecotope. So effecient remediationtechnologies for these composite contaminated soils are extremely urgent. Zero-valentiron (ZVI) has been successfully used for reduction of OCPs and stabilization of heavymetals, but sole ZVI technology was showed inefficient. Fenton-like systems based onZVI attract wide attentions for its significant enhancement on the degradation of OCPs. Anovel Fenton-like system formed by ZVI, EDTA and Air (ZEA) has been reportedefficient decomposition of chlorophenols and high removal of heavy metals from solution.However, there is a lack of knowledge about the efficiency on remediation of OCPs andcomposite contaminated soils by ZEA system.
     In the present study, dichlorodiphenyltrichloroethanes (DDT) and polychlorinatedbiphenyl were chosen as the representative OCPs, and Cu and Pb were elected as thetypical heavy metals. We systematically investigate the chemical remediation of compositecontaminated soils based on ZVI. The main contents included:(1) evaluating theremediation efficiency for OCPs contaminated soil by ZEA system;(2) investigating themechanism for simultaneous degradation OCPs and removal of heavy metals in compositecontaminated soil was studied;(3) exploring the enhancement of ZEA system forremediation of composite contaminated soil by surfactant;(4) elucidating the remediationefficiency and mechanism for composite contaminated soil by ZVI in subcritical water.
     In general, the main conclusions can be summarized as follows:
     (1) DDTs in the actual contaminated soil containing4.6mg/kg4,4’-DDE,82mg/kg2,4’-DDD,295mg/kg4,4’-DDD and987mg/kg4,4’-DDT, could be effectively degradedby ZEA system at room temperature, ambient atmosphere pressure and near neutral pH.When initial concentration of EDTA and ZVI were0.2mmol/L and5g/L respectively, theremoval ratio of4,4’-DDE,2,4’-DDD,4,4’-DDD,4,4’-DDT and total amounts of DDTswere achieved28.8%,68.8%,51.2%,50.3%and51.5%respectively. The dosages ofEDTA and ZVI were the dominant factors influencing the removal of contaminants.Excessive amount of EDTA led to a negative effect on the degradation process.Meanwhile, EDTA was simultaneously degraded during the process. Negligible influences on soil pH and organic matter were observed after the treatment which was superior totradition Fenton system.
     (2) The tested composite contaminated soil contained22.9mg/kg PCB,106.4mg/kgCu and412.3mg/kg Pb. Simultaneous remediation of PCB and heavy metals wereobserved in ZEA system. With the addition of EDTA and ZVI were1mol/L and5g/Lrespectively, the decomposition ratio of PCB was68.8%, and the stabilization of Cu andPb were82.3%and59.4%respectively. The initial concentration of EDTA, ZVI dosageand pH obviously influence the remediation of composite contaminated soil in ZEAsystem. Excessive amount of EDTA could enhance the desorption of Pb, but inhibit thedegradation of PCB. The removal ratio of PCB decreased in acidic condition (pH=2-3).The presence of heavy metals in composite contaminated soil showed negative influenceon PCB decomposition. Stepwise addition of EDTA and regeneration of Fe2+couldenhance the oxidation of PCB by ZEA system.
     (3) Significant synergy on Pb, Cu and PCB desorption were achieved with the novelcombination of saponin and EDDS. The maximal desorption of Pb, Cu and PCB wereachieved99.8%,85.7%and45.7%, respectively, in the presence of10mmol/L EDDScombined with3000mg/L saponin. Compared with absence of saponin, the removal ratioof PCB increased24.8%with the addition of saponin, and the decomposition ratio wasachieved85.6%. The increases of desorption contributed to the enhancement of observedstabilization of heavy metals. In addition, EDTA and saponin were simultaneouslydegraded.
     (4) Efficient reduction of PCB and stabilization of heavy metals by ZVI wereobtained in subcritical water. As the temperature was180oC and the dosage of ZVI was0.2g, the decomposition ratio of PCB was achieved85.6%, the stabilization ratios of Cuand Pb were attained90.7%and96.4%, respectively. The initial ZVI dosage, pH andreaction atmosphere obviously influence the remediation of composite contaminated soilby ZVI in subcritical water. As the increase of ZVI addition, the decomposition ratio ofPCB and stabilization ratio of heavy metals increased. High removal ratio of PCB andstabilization ratio of heavy metals occurred in basic condition. The presence of dissolvedoxygen inhibited the reduction of PCB, but enhanced the stabilization of heavy metals.
引文
[1]廖晓勇,崇忠义,阎秀兰等.城市工业污染场地:中国环境修复领域的新课题.环境科学,2011,32:784-794
    [2]骆永明.中国污染场地修复的研究进展、问题与展望.环境监测管理与技术,2011,23:1-6
    [3] Maturi, K., Reddy, K. R. Simultaneous removal of organic compounds and heavymetals from soils by electrokinetic remediation with a modified cyclodextrin.Chemosphere,2006,63:1022-1031
    [4] Maturi, K., Reddy, K. R. Extractants for the Removal of Mixed Contaminantsfrom Soils. Soil Sediment Contam.,2008,17:586-608.
    [5] Cao, M. H., Hu, Y., Sun, Q., et al. Enhanced desorption of PCB and trace metalelements (Pb and Cu) from contaminated soils by saponin and EDDS mixedsolution. Environ. Pollut.,2013,174:93-99
    [6] Zhang, L. F., Dong, L., Shi, S. X., et al. Organochlorine pesticides contaminationin surface soils from two pesticide factories in Southeast China. Chemosphere,2009,77:628-633
    [7]曹心德,魏晓欣,代革联等.土壤重金属复合污染及其化学钝化修复技术研究进展.环境工程学报,2011,5:1441-1453
    [8]杨元根,刘从强,张国平等.铅锌矿山开发导致的重金属在环境介质中的累积.矿物岩石地球化学通报,2003,22:305-309
    [9] Yuan, S. H., Wu, X. F., Wan, J. Z.. Enhanced washing of HCB and Zn from agedsediments by TX-100and EDTA mixed solutions. Geoderma,2010,156:119-125
    [10]涂晨,滕应,骆永明等.电子垃圾影响区多氯联苯污染农田土壤的生物.土壤学报,2012,49:373-381
    [11]傅建捷,王亚韡,周麟佳等.我国典型电子垃圾拆解地持久性有毒化学污染物现状.化学进展,2011,23:1755-1768
    [12] Li, J. H., Duan, H. B., Shi, P. X. Heavy metal contamination of surface soil inelectronic waste dismantling area: site investigation and source-apportionmentanalysis. Waste Manage. Res.,2011,29:727-738
    [13] Liu, H. X., Zhou, Q. F., Wang, Y. W.. E-waste recycling induced polybrominateddiphenyl ethers, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxinsand dibenzo-furans pollution in the ambient environment. Environ. Int.,2008,34:67-72
    [14]姬艳梅,王小文,梁宝翠等.土壤中有机氯农药的污染状况与生态毒性研究.农业灾害研究,2011,1:41-43
    [15] Naseem, R., Tahir, S. S. Removal of Pb(II) from aqueous/acidic solutions byusing bentonite as an adsorbent. Water Res.,2001,35:3982-3986
    [16] Gunnarsson, D., Nordberg, G., Lundgren, P.. Cadmium-induced decrement of theLH receptor expression and cAMP levels in the testis of rats. Toxicology,2003,183:57-63
    [17] Uzgiris, E. E., Edelstein, W. A., Philipp, H. R.. Complex thermal desorption ofPCBs from soil. Chemosphere,1995,30:377-387
    [18] Cong, X., Xue, N. D., Wang, S. J.. Reductive dechlorination of organochlorinepesticides in soils from an abandoned manufacturing facility by zero-valent iron.Sci. Total. Environ.,2010,408:3418-3423
    [19] Yang, S. C., Lei, M., Chen, T. B.. Application of zerovalent iron (Fe0) to enhancedegradation of HCHs and DDX in soil from a former organochlorine pesticidesmanufacturing plant. Chemosphere,2010,79:727-732
    [20] Peng, S., Wu, W., Chen, J. J. Removal of PAHs with surfactant-enhanced soilwashing: Influencing factors and removal effectiveness. Chemosphere,2011,82:1173-1177
    [21]骆永明.污染土壤修复技术研究现状与趋势.化学进展,2009,21:558-565
    [22]谷庆宝,郭观林,周友亚等.污染场地修复技术的分类应用与筛选方法探讨.环境科学研究,2008,21:197-202
    [23] Foght, J., April, T., Biggar, K.. Bioremediation of DDT-Contaminated Soils: AReview. Biorem. J.,2001,5:225-246
    [24] Burken, J. G., Schnoor, J. L. Uptake and metabolism of atrazine by poplar trees.Environ. Sci. Technol.,1997,31:1399-1406
    [25]安凤春,莫汉宏,郑明辉等. DDT污染土壤的植物修复技术.环境污染治理技术与设备,2002,3:39-44
    [26] Knight, B., Zhao, F. J., McGrath, S. P.. Zinc and cadmium uptake by thehyperaccumulator Thlaspi caerulescens in contaminated soils and its effects onthe concentration and chemical speciation of metals in soil solution. Plant Soil,1997,197:71-78
    [27]廖晓勇,陈同斌,谢华等.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究.环境科学学报,2004,24:455-462
    [28] Macaskie, L. E., Dean, A. C. R., Cheetham, A. K.. Cadmium Accumulation by aCitrobacter sp.: the Chemical Nature of the Accumulated Metal Precipitate and itsLocation on the Bacterial Cells. J. Gen. Microbiol.,1987,133:539-544
    [29] Bargagli, R., Baldi, F. Mercury and methyl mercury in higher fungi and theirrelation with the substrata in a cinnabar mining area. Chemosphere,1984,13:1059-1071
    [30]潘淑颖,马光辉,常勇等.土壤中DDT的微生物修复研究.安徽农业科学,2013,41:1058-1060
    [31] Katayama, A., Matsumura, F. Degradation of organochlorine pesticides,particularly endosulfan, by Trichoderma harzianum. Environ. Toxicol. Chem.,1993,12:1059-1065
    [32] Paria, S., Yuet, P. K. Solidification-stabilization of organic and inorganiccontaminants using portland cement: a literature review. Environ. Rev.,2006,14:217-255
    [33]张俊丽,刘建国,李橙等.水泥窑协同处置与水泥固化/稳定化对重金属的固定效果比较.环境科学,2008,29:1138-1142
    [34]王瑶,杜显元,李鸿业等.脱硫石膏对重金属污染沉积物中Cd的稳定固定化作用.生态环境学报,2010,19:1398-1402
    [35] Yilmaz, O., Unlu, K., Cokca, E. Solidification/stabilization of hazardous wastescontaining metals and organic contaminants. J. Environ. Eng.,2003,129:366-376
    [36]席永慧,梁穑嫁,周光华等.重金属污染土壤的电动力学修复试验研究.同济大学学报(自然科学版),2010,38:1626-1630
    [37] Shapiro, A. P., Probstein, R. F. Removal of contaminants from saturated clay byelectroosmosis. Environ. Sci. Technol.,1993,27:283-291
    [38]李泰平,袁松虎,林莉等.六氯苯和重金属复合污染沉积物的电动力学修复研究.环境工程,2009,27:105-109
    [39] Liu, N., Cui, H. Y., Yao, D. Decomposition and oxidation of sodium3,5,6-trichloropyridin-2-ol in sub-and supercritical water. Process Saf. Environ.Protect.,2009,87:387-394
    [40] Villa, R. D., Trovo, A. G., Nogueira, R. F. P. Soil remediation using a coupledprocess: soil washing with surfactant followed by photo-Fenton oxidation. J.Hazard. Mater.,2010,174:770-775
    [41] Chen, W., Hou, L., Luo, X.. Effects of chemical oxidation on sorption anddesorption of PAHs in typical Chinese soils. Environ. Pollut.,2009,157:1894-1903
    [42] de Souza e Silva, P. T., da Silva, V. L., Neto, B. d. B.. Potassium permanganateoxidation of phenanthrene and pyrene in contaminated soils. J. Hazard. Mater.,2009,168:1269-1273
    [43] Romero, A., Santos, A., Vicente, F.. In situ oxidation remediation technologies:Kinetic of hydrogen peroxide decomposition on soil organic matter. J. Hazard.Mater.,2009,170:627-632
    [44] Masten, S. J., Davies, S. H. R. Efficacy of in-situ ozonation for the remediation ofPAH contaminated soils. J. Contam. Hydrol.,1997,28:327-335
    [45] Villa, R. D., Nogueira, R. F. P. Oxidation of p, p'-DDT and p, p'-DDE in highlyand long-term contaminated soil using Fenton reaction in a slurry system. Sci.Total Environ.,2006,371:11-18
    [46] Villa, R. D., Trovo, A. G., Nogueira, R. F. P. Environmental implications of soilremediation using the Fenton process. Chemosphere,2008,71:43-50
    [47] Killian, P. F., Bruell, C. J., Liang, C.. Iron (II) Activated Persulfate Oxidation ofMGP Contaminated Soil. Soil Sediment Contam.,2007,16:523-537
    [48] da Rocha, O. R. S., Dantas, R. F., Duarte, M.. sludge treatment by photocatalysisapplying black and white light. Chem. Eng. J.,2010,157:80-85
    [49] Quan, X., Zhao, X., Chen, S.. Enhancement of p, p'-DDT photodegradation onsoil surfaces using TiO2induced by UV-light. Chemosphere,2005,60:266-273
    [50]张文,李建兵,韩有定等.超声波净化石油污染土壤实验研究.环境工程学报,2010,4:940-945
    [51] Moon, D. H., Lee, J. R., Wazne, M.. Assessment of soil washing for Zncontaminated soils using various washing solutions. J. Ind. Eng. Chem.,2012,18:822-825
    [52] Dermont, G., Bergeron, M., Mercier, G.. Metal-Contaminated Soils: RemediationPractices and Treatment Technologies. Pract. Period. Hazard. Toxic Radioact.Waste Manage.,2008,12:188-209
    [53] Voglar, D., Lestan, D. Pilot-scale washing of Pb, Zn and Cd contaminated soilusing EDTA and process water recycling. Chemosphere,2013,91:76-82
    [54] Nowack, B. Environmental chemistry of aminopolycarboxylate chelating agents.Environ. Sci. Technol.,2002,36:4009-4016
    [55] Meers, E., Ruttens, A., Hopgood, M. J.. Comparison of EDTA and EDDS aspotential soil amendments for enhanced phytoextraction of heavy metals.Chemosphere,2005,58:1011-1022
    [56] Wang, A., Luo, C., Yang, R.. Metal leaching along soil profiles after the EDDSapplication–A field study. Environ. Pollut.,2012,164:204-210
    [57] Yang, R. X., Luo, C. L., Zhang, G.. Extraction of heavy metals from e-wastecontaminated soils using EDDS. J. Environ. Sci.,2012,24:1985-1994
    [58] Yip, T. C. M., Yan, D. Y. S., Yui, M. M. T.. Heavy metal extraction from anartificially contaminated sandy soil under EDDS deficiency: Significance ofhumic acid and chelant mixture. Chemosphere,2010,80:416-421
    [59] Wuana, R. A., Okieimen, F. E., Imborvungu, J. A. Removal of heavy metals froma contaminated soil using organic chelating acids. Int. J. Environ. Sci. Technol.,2010,7:485-496
    [60] Sanchez-Martin, M. J., Dorado, M. C., del Hoyo, C.. Influence of clay mineralstructure and surfactant nature on the adsorption capacity of surfactants by clays.J. Hazard. Mater.,2008,150:115-123
    [61] Paria, S., Manohar, C., Khilar, K. C. Kinetics of adsorption of anionic, cationic,and nonionic surfactants. Ind. Eng. Chem. Res.,2005,44:3091-3098
    [62] Mata-Sandoval, J. C., Karns, J., Torrents, A. Influence of Rhamnolipids andTriton X-100on the Desorption of Pesticides from Soils. Environ. Sci. Technol.,2002,36:4669-4675
    [63] Yang, K., Zhu, L. Z., Xing, B. S. Enhanced soil washing of phenanthrene bymixed solutions of TX100and SDBS. Environ. Sci. Technol.,2006,40:4274-4280
    [64] Yuan, S., Shu, Z., Wan, J.. Enhanced desorption of hexachlorobenzene fromkaolin by single and mixed surfactants. J. Colloid Interface Sci.,2007,314:167-175
    [65] Wan, J., Yuan, S., Mak, K.. Enhanced washing of HCB contaminated soils bymethyl-β-cyclodextrin combined with ethanol. Chemosphere,2009,75:759-764
    [66] Zhu, L. Z., Yang, K., Lou, B. F.. A multi-component statistic analysis for theinfluence of sediment/soil composition on the sorption of a nonionic surfactant(Triton X-100) onto natural sediments/soils. Water Res.,2003,37:4792-4800
    [67] Mao, Y., Sun, M. M., Yang, X. L.. Remediation of organochlorine pesticides(OCPs) contaminated soil by successive hydroxypropyl-beta-cyclodextrin andpeanut oil enhanced soil washing-nutrient addition: a laboratory evaluation. J.Soils Sediments,2013,13:403-412
    [68] Wan, J., Chai, L., Lu, X.. Remediation of hexachlorobenzene contaminated soilsby rhamnolipid enhanced soil washing coupled with activated carbon selectiveadsorption. J. Hazard. Mater.,2011,189:458-464
    [69] Xia, H., Chi, X., Yan, Z.. Enhancing plant uptake of polychlorinated biphenylsand cadmium using tea saponin. Bioresour. Technol.,2009,100:4649-4653
    [70] Wang, X., Brusseau, M. L. Simultaneous Complexation of Organic Compoundsand Heavy Metals by a Modified Cyclodextrin. Environ. Sci. Technol.,1995,29:2632-2635
    [71] Song, S., Zhu, L., Zhou, W. Simultaneous removal of phenanthrene and cadmiumfrom contaminated soils by saponin, a plant-derived biosurfactant. Environ.Pollut.,2008,156:1368-1370
    [72] Sheets, R. G., Bergquist, B. A. Laboratory treatability testing of soilscontaminated with lead and PCBs using particle-size separation and soil washing.J. Hazard. Mater.,1999,66:137-150
    [73] Elgh-Dalgren, K., Arwidsson, Z., Camdzija, A.. Laboratory and pilot scale soilwashing of PAH and arsenic from a wood preservation site: Changes inconcentration and toxicity. J. Hazard. Mater.,2009,172:1033-1040
    [74] Komarek, M., Vanek, A., Ettler, V. Chemical stabilization of metals and arsenic incontaminated soils using oxides-A review. Environ. Pollut.,2013,172:9-22
    [75]郝汉舟,陈同斌,靳孟贵等.重金属污染土壤稳定/固定化修复技术研究进展.应用生态学报,2011,22:816-824
    [76] Naidu, R., Kookana, R. S., Sumner, M. E.. Cadmium sorption and transport invariable charge soils: A review. J. Environ. Qual.,1997,26:602-617
    [77] Cao, X. D., Ma, L. Q., Chen, M.. Impacts of phosphate amendments on leadbiogeochemistry at a contaminated site. Environ. Sci. Technol.,2002,36:5296-5304
    [78] Dermont, G., Bergeron, M., Mercier, G.. Soil washing for metal removal: A reviewof physical/chemical technologies and field applications. J. Hazard. Mater.,2008,152:1-31
    [79]于红艳,奚立民,王仙菊等.腐殖酸对固废拆解地重金属污染土壤修复效果的研究.安徽农业科学,2008,36:10154-10155,10158
    [80] Liu, L., Chen, H. S., Cai, P.. Immobilization and phytotoxicity of Cd incontaminated soil amended with chicken manure compost. J. Hazard. Mater.,2009,163:563-567
    [81] Matheson, L. J., Tratnyek, P. G. Reductive Dehalogenation of ChlorinatedMethanes by Iron Metal. Environ. Sci. Technol.,1994,28:2045-2053
    [82] Sayles, G. D., You, G. R., Wang, M. X.. DDT, DDD, and DDE Dechlorination byZero-Valent Iron. Environ. Sci. Technol.,1997,31:3448-3454
    [83] Dombek, T., Dolan, E., Schultz, J.. Rapid reductive dechlorination of atrazine byzero-valent iron under acidic conditions. Environ. Pollut.,2001,111:21-27
    [84] Yao, F. X., Jiang, X., Yu, G. F.. Evaluation of accelerated dechlorination of p,p’-DDT in acidic paddy soil. Chemosphere,2006,64:628-633
    [85] Satapanajaru, T., Anurakpongsatorn, P., Pengthamkeerati, P. Remediation ofDDT-contaminated water and soil by using pretreated iron byproducts from theautomotive industry. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes,2006,41:1291-1303
    [86] Megharaj, M., Boul, H. L., Thiele, J. H. Effects of DDT and its metabolites onsoil algae and enzymatic activity. Biol. Fert. Soils,1999,29:130-134
    [87] Mackenzie, P. D., Horney, D. P., Sivavec, T. M. Mineral precipitation and porositylosses in granular iron columns. J. Hazard. Mater.,1999,68:1-17
    [88] Noradoun, C. E., Cheng, I. F. EDTA degradation induced by oxygen activation ina zerovalent iron/air/water system. Environ. Sci. Technol.,2005,39:7158-7163
    [89] Wang, K. S., Lin, C. L., Wei, M. C.. Effects of dissolved oxygen on dye removalby zero-valent iron. J. Hazard. Mater.,2010,182:886-895
    [90] Joo, S. H., Feitz, A. J., Waite, T. D. Oxidative degradation of the carbothioateherbicide, molinate, using nanoscale zero-valent iron. Environ. Sci. Technol.,2004,38:2242-2247
    [91] Joo, S. H., Feitz, A. J., Sedlak, D. L.. Quantification of the Oxidizing Capacity ofNanoparticulate Zero-Valent Iron. Environ. Sci. Technol.,2004,39:1263-1268
    [92] Leupin, O. X., Hug, S. J. Oxidation and removal of arsenic (III) from aeratedgroundwater by filtration through sand and zero-valent iron. Water Res.,2005,39:1729-1740
    [93] Noradoun, C., Engelmann, M. D., McLaughlin, M.. Destruction of chlorinatedphenols by dioxygen activation under aqueous room temperature and pressureconditions. Ind. Eng. Chem. Res.,2003,42:5024-5030
    [94] Englehardt, J. D., Meeroff, D. E., Echegoyen, L.. Oxidation of aqueous EDTA andassociated organics and coprecipitation of inorganics by ambient iron-mediatedaeration. Environ. Sci. Technol.,2007,41:270-276
    [95] Keenan, C. R., Sedlak, D. L. Factors affecting the yield of oxidants from thereaction of manoparticulate zero-valent iron and oxygen. Environ. Sci. Technol.,2008,42:1262-1267
    [96] Keenan, C. R., Sedlak, D. L. Ligand-enhanced reactive oxidant generation bynanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol.,2008,42:6936-6941
    [97] Seibig, S., van Eldik, R. Kinetics of [FeII(edta)] oxidation by molecular oxygenrevisited. New evidence for a multistep mechanism. Inorg. Chem.,1997,36:4115-4120
    [98] Zhou, T. Lim, T. T. Lu, X. H. Li, Y. Z. Wong, F. S. Simultaneous degradation of4CP and EDTA in a heterogeneous Ultrasound/Fenton like system at ambientcircumstance. Sep. Purif. Technol.,2009,68:367-374
    [99] Sanchez, I., Stüber, F., Font, J.. Elimination of phenol and aromatic compounds byzero valent iron and EDTA at low temperature and atmospheric pressure.Chemosphere,2007,68:338-344
    [100] Qiu, X. Q., Fang, Z. Q., Yan, X. M.. Emergency remediation of simulatedchromium (VI)-polluted river by nanoscale zero-valent iron: Laboratory study andnumerical simulation. Chem. Eng. J.,2012,193:358-365
    [101] Yoon, I. H., Kim, K. W., Bang, S.. Reduction and adsorption mechanisms ofselenate by zero-valent iron and related iron corrosion. Appl. Catal. B-Environ.,2011,104:185-192
    [102] Kumpiene, J., Ore, S., Renella, G.. Assessment of zerovalent iron for stabilizationof chromium, copper, and arsenic in soil. Environ. Pollut.,2006,144:62-69
    [103] Hanauer, T., Felix-Henningsen, P., Steffens, D.. In situ stabilization of metals (Cu,Cd, and Zn) in contaminated soils in the region of Bolnisi, Georgia. Plant Soil,2011,341:193-208
    [104] Cao, M. H., Wang, L., Wang, L. L.. Remediation of DDTs contaminated soil in anovel Fenton-like system with zero-valent iron. Chemosphere,2013,90:2303-2308
    [105] Romero, A., Santos, A., Cordero, T.. Soil remediation by Fenton-like process:Phenol removal and soil organic matter modification. Chem. Eng. J.,2011,170:36-43
    [106] Yap, C. L., Gan, S. Y., Ng, H. K. Fenton based remediation of polycyclic aromatichydrocarbons-contaminated soils. Chemosphere,2011,83:1414-1430
    [107] Zheng, Z. H., Yuan, S. H., Liu, Y.. Reductive dechlorination ofhexachlorobenzene by Cu/Fe bimetal in the presence of nonionic surfactant. J.Hazard. Mater.,2009,170:895-901
    [108] Yuan, S. H., Zheng, Z. H., Meng, X. Z.. Surfactant mediated HCB dechlorinationin contaminated soils and sediments by micro and nanoscale Cu/Fe Particles.Geoderma,2010,159:165-173
    [109] Islam, M. N., Jo, Y. T., Jung, S. K.. Thermodynamic and kinetic study forsubcritical water extraction of PAHs. J. Ind. Eng. Chem.,2013,19:129-136
    [110] Islam, M. N., Jo, Y. T., Park, J. H. Remediation of PAHs contaminated soil byextraction using subcritical water. J. Ind. Eng. Chem.,2012,18:1689-1693
    [111] Chang, M. S., Shen, J. Y., Yang, S. H.. Subcritical water extraction for theremediation of phthalate ester-contaminated soil. J. Hazard. Mater.,2011,192:1203-1209
    [112] Oh, S. Y., Yoon, M. K., Kim, I. H.. Chemical extraction of arsenic fromcontaminated soil under subcritical conditions. Sci. Total Environ.,2011,409:3066-3072
    [113] Hori, H., Nagaoka, Y., Sano, T.. Iron-induced decomposition of perfluorohexanesulfonatein sub-and supercritical water. Chemosphere,2008,70:800-806
    [114] Hori, H., Sakamoto, T., Kimura, Y.. Iron-induced efficient mineralization of acyclic perfluoroalkyl surfactant in subcritical and supercritical water. Catal. Today,2012,196:132-136
    [115] Yak, H. K., Wenclawiak, B. W., Cheng, I. F.. Reductive dechlorination ofpolychlorinated biphenyls by zerovalent iron in subcritical water. Environ. Sci.Technol.,1999,33:1307-1310
    [116] Harner, T., Wideman, J. L., Jantunen, L. M. M.. Residues of organochlorinepesticides in Alabama soils. Environ. Pollut.,1999,106:323-332
    [117] Mu oz-Arnanz, J., Jiménez, B. New DDT inputs after30years of prohibition inSpain. A case study in agricultural soils from south-western Spain. Environ.Pollut.,2011,159:3640-3646
    [118] Ehsan, S., Prasher, S. O., Marshall, W. D. A Washing Procedure to MobilizeMixed Contaminants from Soil. J. Environ. Qual.,2006,35:2146-2153
    [119] Rose, A. L., Waite, T. D. Kinetic model for Fe(II) oxidation in seawater in theabsence and presence of natural organic matter. Environ. Sci. Technol.,2002,36:433-444
    [120] Seibig, S., van Eldik, R. Kinetics of [FeII(edta)] oxidation by molecular oxygenrevisited. New evidence for a multistep mechanism. Inorg. Chem.,1997,36:4115-4120
    [121] Zhou, T., Li, Y. Z., Wong, F. S.. Enhanced degradation of2,4-dichlorophenol byultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance.Ultrason. Sonochem.,2008,15:782-790
    [122] Laine, D. F., Blumenfeld, A., Cheng, I. F. Mechanistic study of the ZEA organicpollutant degradation system: Evidence for H2O2, HO, and the homogeneousactivation of O2by FeIIEDTA. Ind. Eng. Chem. Res.,2008,47:6502-6508
    [123] Lu, M., Wei, X. F. Treatment of oilfield wastewater containing polymer by thebatch activated sludge reactor combined with a zerovalent iron/EDTA/air system.Bioresour. Technol.,2011,102:2555-2562
    [124] Fang, H., Dong, B., Yan, H.. Characterization of a bacterial strain capable ofdegrading DDT congeners and its use in bioremediation of contaminated soil. J.Hazard. Mater.,2010,184:281-289
    [125] Noren, K., Loring, J. S., Bargar, J. R.. Adsorption Mechanisms of EDTA at theWater-Iron Oxide Interface: Implications for Dissolution. J. Phys. Chem. C,2009,113:7762-7771
    [126] Estrela, M. A. A., SouzaDe, J. R., Dias, S. C. L.. Indirect Determination ofDichlorodiphenyltrichloroethane (DDT) After Dechlorination with MagnesiumPalladium Bimetallic Particles and Potentiometric Measurements. Bull. Environ.Contam. Toxicol.,2010,84:574-576
    [127] De Dios Lopez-Gonzalez, J., Valenzuela-Calahorro, C. Associated decompositionof DDT to DDE in the diffusion of DDT on homoionic clays. J. Agric. FoodChem.,1970,18:520-523
    [128] Boussahel, R., Harik, D., Mammar, M.. Degradation of obsolete DDT by Fentonoxidation with zero-valent iron. Desalination,2007,206:369-372
    [129] Anand, M., Singh, J., Mehrotra, P. K.. Concentration of organochlorine pesticidesin blood, tumor and adipose tissue and breast cancer risk: An Indian study.Toxicol. Lett.,2008,180S: S164-S165
    [130] Alegría-Torres, J. A., Díaz-Barriga, F., Gandolfi, A. J.. Mechanisms of p,p’-DDE-induced apoptosis in human peripheral blood mononuclear cells. Toxicol.In Vitro,2009,23:1000-1006
    [131] Gautam, S. K., Suresh, S. Studies on dechlorination of DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) using magnesium/palladium bimetallic system. J.Hazard. Mater.,2007,139:146-153
    [132] Yu, H. Y., Bao, L. J., Liang, Y.. Field Validation of Anaerobic DegradationPathways for Dichlorodiphenyltrichloroethane (DDT) and13Metabolites inMarine Sediment Cores from China. Environ. Sci. Technol.,2011,45:5245-5252
    [133] Mecozzi, R., Di Palma, L., Merli, C. Experimental in situ chemical peroxidationof atrazine in contaminated soil. Chemosphere,2006,62:1481-1489
    [134] Kang, N., Hua, I., Rao, P. S. C. Enhanced Fenton’s destruction of non-aqueousphase perchloroethylene in soil systems. Chemosphere,2006,63:1685-1698
    [135] Sun, H. W., Yan, Q. S. Influence of Fenton oxidation on soil organic matter and itssorption and desorption of pyrene. J. Hazard. Mater.,2007,144:164-170
    [136] Yeh, C. K. J., Kao, Y. A., Cheng, C. P. Oxidation of chlorophenols in soil atnatural pH by catalyzed hydrogen peroxide: the effect of soil organic matter.Chemosphere,2002,46:67-73
    [137] Wang, X., Brusseau, M. L. Solubilization of some low-polarity organiccompounds by hydroxypropyl-. beta.-cyclodextrin. Environ. Sci. Technol.,1993,27:2821-2825
    [138] Voglar, G. E., Lestan, D. Equilibrium leaching of toxic elements from cementstabilized soil. J. Hazard. Mater.,2013,246:18-25
    [139] Rout, K., Mohapatra, M., Anand, S.2-Line ferrihydrite: synthesis,characterization and its adsorption behaviour for removal of Pb(II), Cd(II), Cu(II)and Zn(II) from aqueous solutions. Dalton Trans.,2012,41:3302-3312
    [140] Nowack, B., Lützenkirchen, J., Behra, P.. Modeling the Adsorption ofMetal EDTA Complexes onto Oxides. J. Colloid Interface Sci.,1996,30:2397-2405
    [141] Zhou, T., Lu, X. H., Wang, J.. Rapid decolorization and mineralization ofsimulated textile wastewater in a heterogeneous Fenton like system with/withoutexternal energy. J. Hazard. Mater.,2009,165:193-199
    [142] Pera-Titus, M., Garcia-Molina, V., Banos, M. A.. Degradation of chlorophenols bymeans of advanced oxidation processes: a general review. Appl. Catal. B-Environ.,2004,47:219-256
    [143] Shipley, H. J., Engates, K. E., Grover, V. A. Removal of Pb(II), Cd(II), Cu(II), andZn(II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature,and exhaustion. Environ. Sci. Pollut. Res.,2013,20:1727-1736
    [144] Ahmad, M., Moon, D. H., Lim, K. J.. An assessment of the utilization of wasteresources for the immobilization of Pb and Cu in the soil from a Korean militaryshooting range. Environ. Earth Sci.,2012,67:1023-1031
    [145]孙倩,周海燕,曹梦华等. ZVI/EDDS/Air体系降解水中2,4-二氯酚的研究.环境科学,2012,33:3833-3839
    [146] Tandy, S., Bossart, K., Mueller, R.. Extraction of heavy metals from soils usingbiodegradable chelating agents. Environ. Sci. Technol.,2004,38:937-944
    [147] Tsang, D. C. W., Yip, T. C. M., Lo, I. M. C. Kinetic Interactions of EDDS withSoils.2. Metal-EDDS Complexes in Uncontaminated and Metal-ContaminatedSoils. Environ. Sci. Technol.,2009,43:837-842
    [148] Zhou, W., Yang, J., Lou, L.. Solubilization properties of polycyclic aromatichydrocarbons by saponin, a plant-derived biosurfactant. Environ. Pollut.,2011,159:1198-1204
    [149] Yip, T. C. M., Tsang, D. C. W., Ng, K. T. W.. Kinetic Interactions of EDDS withSoils.1. Metal Resorption and Competition under EDDS Deficiency. Environ. Sci.Technol.,2009,43:831-836
    [150] Zhang, W. H., Tsang, D. C. W., Lo, I. M. C. Removal of Pb and MDF fromcontaminated soils by EDTA-and SDS-enhanced washing. Chemosphere,2007,66:2025-2034
    [151] Wen, Y., Ehsan, S., Marshall, W. D. Simultaneous mobilization of macro-andtrace elements (MTEs) and polycyclic aromatic hydrocarbon (PAH) compoundsfrom soil with a nonionic surfactant and [S, S]-ethylenediaminedisuccinic acid(EDDS) in admixture: PAH compounds. J. Hazard. Mater.,2012,199-200:240-246
    [152] Edwards, D. A., Luthy, R. G., Liu, Z. Solubilization of polycyclic aromatichydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol.,1991,25:127-133
    [153] Rivas, F. J. Polycyclic aromatic hydrocarbons sorbed on soils: A short review ofchemical oxidation based treatments. J. Hazard. Mater.,2006,138:234-251
    [154]黄卫红,赵柳青,赵天珍等.土壤中不同极性污染物的亚临界水选择性萃取.分析化学,2006,34:1187-1189
    [155] Wang, S. B., Soudi, M., Li, L.. Coal ash conversion into effective adsorbents forremoval of heavy metals and dyes from wastewater. J. Hazard. Mater.,2006,133:243-251
    [156] Hong, J. K., Jo, H. Y., Yun, S. T. Coal fly ash and synthetic coal fly ash aggregatesas reactive media to remove zinc from aqueous solutions. J. Hazard. Mater.,2009,164:235-246
    [157] Hori, H., Nagaoka, Y., Yamamoto, A.. Efficient decomposition of environmentallypersistent perfluorooctanesulfonate and related fluorochemicals using zerovalentiron in subcritical water. Environ. Sci. Technol.,2006,40:1049-1054
    [158] Zhang, X. F., Jiao, C. S., Wang, J.. Removal of uranium(VI) from aqueoussolutions by magnetic Schiff base: Kinetic and thermodynamic investigation.Chem. Eng. J.,2012,198:412-419
    [159] Liu, X. T., Zhao, W., Sun, K.. Dechlorination of PCBs in the simulativetransformer oil by microwave-hydrothermal reaction with zero-valent ironinvolved. Chemosphere,2011,82:773-777
    [160] Sun, Y. B., Sun, G. H., Xu, Y. M.. Assessment of sepiolite for immobilization ofcadmium-contaminated soils. Geoderma,2013,193:149-155
    [161] Aislabie, J. M., Richards, N. K., Boul, H. L. Microbial degradation of DDT andits residues-A review. New Zeal. J. Agr. Res.,1997,40:269-282
    [162] Van Eekert, M. H. A., Van Ras, N. J. P., Mentink, G. H.. Anaerobic transformationof beta-hexachlorocyclohexane by methanogenic granular sludge and soilmicroflora. Environ. Sci. Technol.,1998,32:3299-3304
    [163] Kawahara, F. K., Michalakos, P. M. Base-catalyzed destruction of PCBs-Newdonors, new transfer agents/catalysts. Ind. Eng. Chem. Res.,1997,36:1580-1585
    [164] Zhang, Z., Hu, S., Baig, S. A.. Catalytic dechlorination of Aroclor1242by Ni/Febimetallic nanoparticles. J. Colloid Interface Sci.,2012,385:160-165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700