用户名: 密码: 验证码:
不同采收期南果梨采后褐变发生机理及调控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南果梨为辽宁省特产水果,成熟时,颜色红艳,皮薄肉细,石细胞少,香气浓郁,在农业部重点区域发展规划(2009-2015年)中,南果梨被列为重点发展的特色梨品种之一。南果梨采收期多集中在9月中上旬,果实采摘后在常温下10-15d果实迅速变软,香气增加,之后迅速软化,果心变褐,严重时果肉也出现褐变,失去特有的商品品质。冷藏虽能较好地保持南果梨品质,但经冷藏后的南果梨出库后在常温货架期间果实果皮和果心褐变问题严重,严重制约了南果梨冷藏技术的推广和应用。褐变已成为影响南果梨产业发展的瓶颈,研究南果梨常温褐变和冷藏后褐变发生机理,为调控南果梨采后褐变的方法与手段提供理论依据,促进南果梨产业的发展具有重要的理论和现实意义。
     本文以南果梨为试材,分别从果实组织内能量代谢特性和膜脂代谢两个方面研究南果梨常温褐变和冷藏后货架期间褐变发生的内在机理;研究了采后1-MCP, SA和充C02处理对南果梨常温和冷藏后褐变发生的影响,为调控南果梨采后常温褐变和冷藏后褐变提供重要依据。研究结果表明:
     1)常温下南果梨褐变发生与果实生长期间平均光照时间(R2=0.9058)、有效积温(R2=0.6876)及果实贮藏过程中可溶性固形物含量(R2=0.7524)均高度相关,褐变度与果实生长期(采收期)间极显著正相关,相关系数为94.71%,高于其他因素的的相关系数;随着采收期的延迟,晚采的果实(采收期3)中可溶性固形物含量和乙烯释放量均显著(P<0.05)高于早采果实中的,其含量分别为早采果实的1.27倍和2.2倍。南果梨冷藏后货架期间褐变发生程度与果实硬度呈现高度负相关,相关度92.54%。
     2)南果梨常温条件下主要发生果心褐变。采收期越晚,果实发生果心褐变程度越严重;与早采的果实相比,晚采果实中ATP含量和能荷峰值时间提前7d出现,在贮藏第7d时,采收期3果实中的ATP含量和能荷值极显著(P<0.01)高于其他两个采收期;较晚采收果实的线粒体蛋白和呼吸控制率也显著(P<0.05)高于其他采收期的,说明细胞内线粒体结构和能量生成水平较高;晚采收的果实中磷脂酶活性也较高(采收期3中的磷脂酶为采收期1的1.53倍),加速了膜脂的降解速度,导致在贮藏第5d时,晚采收的果实膜透性和丙二醛含量较早采收的果实分别提高了1.48倍和2.14倍,膜结构和功能的损伤,再加上果心中总酚含量为比果皮和果肉中总酚分别高出12%和60%,因此最先在果心中发生较严重的褐变。
     3)南果梨冷藏后常温货架期间主要发生果皮和果心的褐变。较晚采收的果实冷藏后整个货架期间果皮、果肉和果心三个部位的褐变指数和褐变度均高于较早采收果实的;晚采的果实在冷藏后常温货架第5d,呼吸控制率和ATP含量分别为早采果实的1.5倍和1.37倍,货架第5d时,各个采收期均出现线粒体蛋白含量峰值,采收期越晚,峰值越高,采收期3的峰值比采收期1的峰值高出20%;较晚采收的果实中糖转化酶SDH和CCO酶活性峰值比早采果实的提前10d,而且峰值较高,促进了糖类物质的利用和分解;采收期3果实中丙二醛含量和细胞膜透性在整个货架期间均高于其他两个采收期的,最先启动衰老进程,在货架第5d时,越晚采收的果实线粒体和微粒体内磷脂酶活性越高,加速了细胞内不饱和脂肪酸的降解速度,进一步加重了细胞膜结构的破坏,促进了褐变的发生。延长冷藏时间极显著地(P<0.01)加重了冷藏后褐变的发生程度。
     4)1-MCP处理能明显抑制果实常温褐变的发生,1-MCP处理显著(P<0.05)抑制了果实采后呼吸强度和乙烯释放成量,延缓成熟衰老进程,延长南果梨常温贮藏期21d以上;1-MCP处理能保持南果梨贮藏期间较高水平的线粒体蛋白含量(处理较对照高46.5%)和ATP酶活性,维持ATP含量的稳定;贮藏第14d,1-MCP处理后LOX活性降低31%,延缓了膜中不饱和脂肪酸含量的下降速率;充C02处理与1-MCP处理作用相似,但效果不如1-MCP明显,1-MCP和充C02处理常温下第21d时处理果实的褐变度分别为对照果实的19.2%和51.9%,1-MCP和充C02处理可能是通过保持细胞内能量供给的稳定和抑制细胞膜结构的降解而发挥作用的。SA处理对南果梨常温褐变影响不明显。
     1-MCP和充C02处理也有利于降低冷藏后货架期间南果梨果实褐变的发生程度,但抑制效果不如常温贮藏的抑制效果好。冷藏后货架第15d时1-MCP和充C02处理果实的褐变指数分别为对照果实的69.0%和95.0%,SA处理的褐变指数为对照的80.1%;1-MCP和充C02处理主要是通过抑制南果梨后熟衰老进程,保持果实组织中能量供应水平和抑制膜脂降解而影响冷藏后褐变发生的;SA处理主要通过抑制磷脂酶和LOX酶活性(货架第5d,处理果实中磷脂酶和LOX酶活性分别为对照的70%和85%),从而保持了较高的磷脂含量(较对照高26%)和较低的脯氨酸含量(为对照果实的62%),说明SA处理有可能是通过保持膜脂结构和功能,提高低温适应性,从而抑制冷藏后货架期间褐变的发生程度。
Nanguo pear is the local specialty fruit in Liaoning Province due to its red color, thin skin, few stone cells and rich aroma. It is listed as one kind of the special pears with the key development during the major area agriculture development plan of the agriculture department. Its harvest time is almost in early-September or mid-September. It is softened quickly, aroma increased, then become soft quickly, the core browning, even the flesh browning and loss of the peculia commodity quality when it is stored at room temperature for10-15days after harvesting. Although can the cold storage keep the pear quality well, the aroma was lightened and it can not soften properly during the shelf life at room temperature after cold storage. The serious core and flesh browning has greatly hampered the promotion and application of the Nanguo pear cold storage technology, which has become the bottleneck problem of the Nanguo pear industry development. The study of the Nanguo pear browning mechanism after room temperature storage and cold storage can provide a basis for the approaches and methods how to control the Nanguo pear postharvest browning and will be great importance of promoting the development of the characteristic Nanguo pear industry in Liaoning Province.
     The inside mechanism of the flesh browning after room temperature storage and cold storage was studied in two aspects involved energy and membrane lipid metabolism. The energy and membrane lipid metabolism to clarify the browning mechanism during browning after the room temperature storage and cold storage with the1-MCP, SA and CO2treatment before harvesting, providing a basis for the further evidence of the Nanguo pear browning and the controls of the pear browning after the room temperature storage and the cold storage.
     1) At the room temperature condition, browning occurrence had a highly correlation with the preharvest average sunshine time (R2=0.9058). effective accumulated temperature (R2=0.6876) during growth period) and the conten of SSC (R2=0.7524)during the storage at room temperature. And the degree of browning occurrence had a Extremely correlation with the growth time (harvest date), the correlation was as high as94.71%. With the harvest delays, the soluble solids content and ethylene production of late harvested fruit (period of harvest3) were significantly higher than early harvest fruit, and its contents were2.2times to1.27times than the early harvested fruit. Browning occurrence at the room temperature condition after cold storage had a high negative correlation with the fruit firmness, and the correlation was as high as92.54%.
     2) The browning of Nanguo pear occurred mainly in core at the room temperature condition. The later of the fruit harvest date, the higher of fruit maturity degree. Compared with the early harvest fruit, ATP content and energy charge ahead of time7d peak appears in late picking fruit, In the Storage section7d, the ATP content and energy charge values were significantly (P<0.01) higher than the other two harvest period in the3rd harvest period. Mitochondrial proteins and respiratory control ratio was also significantly (P<0.05) higher than other harvesting period in the late harvest fruit. The results shown that mitochondrial structure and energy generating were maintained at a high level. There was also higher Phospholipase activity in late harvested fruits(the activity of late harvest fruit is1.53times than early harvested fruit, so the degradation rate of membrane lipids were accelerated. Result in the membrane permeability and MDA content in late harvest fruits were increased by48%and114%than early harvest fruits). Damage of membrane structure and function and total phenol content of in core were higher than in peel and pulp, respectively,12%and60%. Therefore, there were the first place in the core there browning occurrence.
     3) The fruits browning occurrence mainly in peel and core during shelf life at room temperature after cold storage. Browning index and browning degree in late harvest fruit were higher than in earlier harvested fruit, regardless of the peel, pulp or core. During the shelf life of5th days after cold storage, Respiratory control ratio and ATP content in late harvest fruit were1.37times to1.5times respectively than in early harvest fruits. At the same days the fruits of all harvest period had a peak of mitochondrial protein content, and the later the harvest, the peak is higher, the peak of3rd harvest period was1.2times, the peak of SDH and CCO (sugar invertase) activity appeared ahead of10d in late harvest fruits than early harvest fruits, and the peak is also higher than early harvested. This promoted carbohydrate utilization and decomposition. MDA and membrane permeability in the3rd harvest period were higher than other two harvest harvest periods during the entire sheld life. Duiring the5tn days of shelf life, the later the harvest, the higher of the phospholipase activity in mitochondria and microsomes. That can accelerated intracellular degradation rate of unsaturated fatty acids and further exacerbating the structural damage of cell membranes. All these result in browning occurrence. Extend the cold storage time very significantly (P<0.01) increased the occurrence degree of browning after cold storage.
     4)1-MCP treatment could significantly inhibit browning occurs at room temperature, because1-MCP could significantly inhibited postharvest respiration rate and ethylene production, delay ripening and senescence process, and extend the Nanguo pear storage time21d above;1-MCP treatment can contain the higher levels of mitochondrial protein content (higher46.5%than the control treatment) and ATPase activity in order to maintain the stability of ATP content. At the14th days during the storage, LOX activity treated by1-MCP decreased31%in order to delaying the content of unsaturated fatty acids in membrane decreased rate. CO2treatment has the similar effects with1-MCP, but the effect treated by CO2is not as good as1-MCP. At the21th during the storage, the fruit browning degree treated by1-MCP and C02is19.2%and51.9%respectively than control.1-MCP and CO2treatment may be sufficient to keep the cell by means of a stable energy supply and suppressing the degradation of cell structures play a role. SA treatment at room temperature on the Nanguo pear fruit browning effect is not obvious.
     1-MCP and CO2treatment were also reducing occurrence of browning degree during the Nanguo pear shelf life after cold storage, but the suppressing effect not as good as room storage effect. During the15th days of shelf life, fruit browning index treated by1-MCP and CO2were the69%and95%compared to the control. The browning index treated by SA was80.1%.1-MCP and CO2treatment mainly through inhibition of Nanguo pear ripening and senescence process maintain higher energy supply level and delayed the degradation of membrane lipid. SA treatment mainly through inhibiting phospholipase (at the5th days during the shelf life, phospholipase activity in fruit treated by SA is the70%compared to the control) and LOX enzyme activity, thus maintaining a high phospholipid content (26%higher in fruit treated by SA than the control) and lower proline content (62%of the control fruits), indicating that SA could kept the membrane lipid structure and function, improve low temperature flexibility, thereby inhibiting browning occurrence during the shelf life at room temperature after cold storage.
引文
1. 曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社,2007
    2. 陈德碧.水杨酸对枇杷采后品质和衰老的影响[D].西南大学,硕士论文,2008,重庆
    3. 陈金印,刘康.1-MCP处理对秋蕃茄果实采后生理及贮藏效果的影响[J].食品科学,2008,9:598-603
    4. 陈靖晖,郜炜,刘本玉.有效积温对中华常春藤叶片生长和衰老的影响[J].廊坊师范学院学报(自然科学版),2010,10(1):60-62
    5. 陈俊伟,张上隆,张良诚等.柑橘果实的光合特性、产物运输及分配在糖分积累中的作用[J].植物生理学报,2001,27(6):499-504
    6. 陈鑫瑶,生吉萍,胡朋等.外源乙烯和1-MCP处理对蕃茄采后贮藏抗冷性的影响[J].食品科学,2008,7:466-469
    7. 崔克辉,何之常,张甲耀等.模拟污水中磷对水稻幼苗根系呼吸作用的影响[J].武汉植物学研究,1996,14(4):323-328
    8. 邓泽元.食品营养学(第三版)[M].北京:中国农业出版社,2009
    9. 费帆.气调包装及臭氧处理对荔枝贮藏品质的影响研究[D].福州:附件农林大学,2007
    10.冯云霄,李丽梅,关军锋等.功能性MA包装对黄冠梨贮藏品质和褐变的影响[J].河北农业科学,2008,12(11):16-32
    11.郜海燕,陈杭君,陈文烜等.采收成熟度对冷藏水蜜桃果实品质和冷害的影响[J].中国农业科学,2009,42(2):612-618
    12.高继国,郭春绒.普通生物化学教程实验指导[M].北京:化学工业出版社,2009
    13.顾采琴,朱冬雪,李棋.草莓果实采后NAD激酶活性与NAD (H)、NADP (H)含量及活性氧代谢的关系[J].中国农业科学,2007,40(2):352-357
    14.韩涛,李丽萍,冯双庆.外源水杨酸处理对采后番茄和黄瓜果实抗冷性的影响[J].中国农业科学,2002,35(5):571-575.
    15.韩涛,李丽萍,葛兴.外源水杨酸对桃果实采后生理的影响[J].园艺学院,2000,27(5):367-368
    16.韩雅珊.食品化学实验指导[M].北京:中国农业大学出版社,1996
    17.郝建军,刘延吉.植物生理学实验技术[M].沈阳:辽宁科学技术出版社,2001
    18.郝再彬.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004.
    19.何飞龙,沈振国,刘友良等.铝胁迫对小麦根系液泡膜ATP酶、焦磷酸酶活性和膜脂组成效应[J].植物生理学报,1999,25(4):350-356.
    20.贺立红,宾金华.高等植物中的多酚氧化酶[J].植物生理学通讯,2001,37(4):340-345
    21.侯媛媛,朱璇,王英等.水杨酸处理对杏果实冷害及活性氧代谢的影响[J].食品科学,2013(网络预出版)
    22.胡位荣,刘顺枝,张昭其.荔枝果实采后脂氧合酶活性的变化[J].华中农业大学学报,2005,24(3):285-289
    23.胡文海,师恺,曹玉林.低温弱光对黄瓜幼苗地上部和根系生长于呼吸作用的影响[J].江西农业大学学报,2008,30(1):15-19
    24.纪淑娟,李江阔,张鹏等.不同采收期对南果梨常温货架贮藏品质的影响[J].食品科学,2009,30(2):260-263.
    25.纪淑娟,郭威,魏宝东等.1-MCP对不同采收期南果梨常温保鲜效果研究[J].中国果树,2008,1:27-30.
    26.鞠志国,朱广廉,曹宗巽.气调贮藏条件下CO2对莱阳茌梨果肉褐变的影响[J].园艺学报,1988,15(4):229-232
    27.李富军,杨洪强,翟衡等.1-甲基环丙烯延缓果实衰老作用机制研究综述[J].园艺学报,2003,30(3):361-365
    28.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    29.李江阔,纪淑娟,张鹏等.南果梨褐变因子分布及贮藏过程中的变化趋势[J].食品研究与开发,2009,30(3):148-150
    30.李江阔,张鹏,郭威等.不同产地南果梨冷藏后常温货架期保鲜效果的研究[J].保鲜与加工,2008,8(6):25-27
    31.李江阔,纪淑娟,魏宝东等.1-MCP对南果梨冷藏防褐保鲜作用的初探[J].保鲜与加工,2007,7(4):7-11
    32.李湘利.黄金梨采后生理及贮藏技术研究[D].保定:河北农业大学,2005
    33.李志强,乔玉山,徐长宝等.不同后熟期菊水梨果实对外源乙烯和1-MCP处理的生理响应[J].西北植物学报,2008,9:1862-1867
    34.林本芳,鲁晓翔,李江阔等.1-MCP处理结合冷藏对西兰花品质的影响[J].食品科技,2012,37(12):34-39
    35.刘程惠,姜爱丽,乔小飞等.采收成熟度与贮藏温度对甜樱桃果实生理生化变化的影响[J].食品工业科技,2011,32(1):371-384
    36.鲁周民,李文华,张忠良等.采收成熟度对板栗品质及贮藏性的影响[J].食品科学,2003,24(7):153-155
    37.罗云波.脂氧合酶与番茄采后成熟的关系[J].园艺学报,1994,21(4):357-360
    38.毛兴平,李江阔,张鹏等.采收成熟度对南果梨冷藏后货架期间生理效应的影响[J].保鲜与加工,2010,10(4):8-12
    39.庞学群,张昭其,段学武等.乙烯与1-甲基环丙烯对荔枝采后果皮褐变的影响[J].华南农业大学学报,2001,22(4):11-14
    40.戚佩坤.果蔬贮运病害学[M].北京:中国农业出版社,1994
    41.千春录.黄瓜果实成熟度与耐冷性的关系及其生理机制研究[D].杭州,浙江大学,2012
    42.邱栋梁.果实褐变研究进展[J].福建果树,1997,(2):35-38
    43.宋烨,翟衡,刘金豹等·苹果加工品种果实中的酚类物质与褐变研究[J].中国农业科学,007,40(11):2563-2568
    44.孙芳娟,韩明玉,赵彩平等.采收成熟度对油桃贮藏品质的影响[J].西北植物学报,2007,27(1):0183-0187
    45.孙健,蒋跃明,彭宏祥等.影响荔枝果皮褐变底物(-)-表儿茶素稳定性的因素[J].果树学报,2010,27(1):45-49
    46.孙希生,王志华,张志云等.1-MCP处理对八月红梨生理病害及贮藏质量的影响[J].保鲜与加工,2005,5(4):20-23
    47.孙希生,王文辉,王志华等.‘乔纳金’苹果采后1-MCP处理对常温贮藏效果的影响[J].园艺学报,2003a,30(1):90-92.
    48.孙希生,王文辉,王志华等.1-MCP对红富士苹果采后保鲜的影响[J].中国果树,2003b,(1):8-11
    49.陶东冰,吴荣书,蔡秀丹等.1-MCP处理对丽江雪桃低温贮藏防褐保鲜效果的影响[J].沈阳农业大学学报,2008,39(1):114-117
    50.田兰兰,郭玉蓉,牛鹏飞等.富士苹果中多酚氧化酶特性的研究[J].农产品加工(学刊),2011,(3):20-24
    51.田寿乐,周俊义.不同贮藏温度与鲜枣果实中保护酶及脂氧合酶活性变化的关系[J].河北农业大学学报,2006,29(1):46-49
    52.王瑞庆,马书尚,张继澍.淀粉-碘染色法确定苹果成熟度[J].西北农林科技大学学报,2010, 38(9):81-86
    53.王淑琴,张平.果蔬贮藏学实验实习指导[M].沈阳:沈阳农业大学出版社,1997
    54.王学密,李江阔,张鹏等.南果梨适宜采收成熟度的研究[J].保鲜与加工,2008,(4):31-34
    55.王志华,丁丹丹,王文辉等.不同温度和C02体积分数对丰水梨采后生理指标的影响[J].果树学报,2009,26(5):603-607
    56.魏建梅,朱向秋,袁军伟等.1-MCP对采后嘎拉苹果果实淀粉及细胞壁成分变化的影响[J].华北农学报,2008,23:121-124
    57.卫星,王政权,张国珍.干旱胁迫下水曲柳苗木细根线粒体的形态及活性变化[J].植物生态学报,2010,34(12):1454-1462
    58.吴彬彬,饶景萍,李百云等.采收成熟度对猕猴桃果实品质及其耐贮性的影响[J].西北植物学报,2008,28(4):788-792
    59.吴明江,于萍.植物过氧化物酶的生理作用[J].生物学杂志,1994,(6):14-16
    60.吴震,别小妹,王和福.南果梨果实后熟过程生理生化变化的研究[J].沈阳农业大学学报,1997,28(2):111-115
    61.夏爱华,马成武,李宝江等.南果梨系品种及其授粉亲合性研究[J].辽宁农业科学,2002,2:10-13
    62.辛广,侯东岩.真空浸钙对南果梨采后生理变化的影响[J].鞍山师范学院学报,2001,3(3):13-15
    63.许秀淡,郑少泉,许家辉等.熏硫对采后龙眼果皮衰老若干生理变化的影响[J].福建农业学报,1998,13(3):35-38
    64.宣景宏,孙万河,涨红等.南果梨贮藏保鲜技术[J].北方果树,2003(1):4-6
    65.闫根柱,王春生,张晓宇,等.园黄梨气调贮藏研究初报[J].保鲜与加工,2007,7(6)19-21
    66.闫师杰.鸭梨采后果实褐变的影响因素及发生机理的研究[D].北京:中国农业大学,2005
    67.杨虎清,王允祥,庞林江等.1-MCP对不同成熟度白凤桃冷害发生的影响[J].果树学报,2008,25(1):111-114
    68.袁江,张绍玲,曹玉芬等.梨果实酚类物质与酶促褐变底物的研究[J].园艺学报,2011,38(1):7-14
    69.袁扬静,胡玉林,谢江辉.温度对采后香蕉果实糖代谢及其酶活性的影响[J].热带作物学报,2011,32(1):66-70
    70.于年文,李俊才,王家珍等.不同采收成熟度对南果梨果实糖酸含量的影响[J].北方园艺,2010(23):47-48.
    71.周亚凤,马岩松,张平.南果梨酶促褐变的生化机制[J].北方果树,1999,(1):8-10
    72.曾凯芳,姜微波.芒果生长期喷施水杨酸处理对果实采后品质和病害的影响[J].园艺学报,2008,35(3):427-432
    73.张佰清,公谱,郝义.成熟度对晚香蕉李冷藏条件下果实品质的影响[J].食品工业科技,2010,3(3):334-338.
    74.张帆,任小林,王位涛等.采后1-MCP处理对富士苹果灰霉病的影响[J].西北农业学报,2008,3:210-214.
    75.张帆,王友升,刘晓艳等.采前水杨酸处理对树莓果实贮藏效果及抗氧化能力的影响[J].食品科学,2010,31(10):308-312
    76.张红宇,尹京苑,万嗣宝.水杨酸和茉莉酸甲酯处理对水蜜桃低温贮藏冷害的影响[J].食品工业,2012,33(10):88-91.
    77.张勇,池建伟,温其标等.香蕉多酚氧化酶褐变性质的研究[J].食品与发酵工业,2004,5:53-57
    78.张永丽.荔枝果皮褐变过程中POD活性变化及其基因表达分析[D].华南热带农业大学,硕士论文,2007
    79.张志良.植物生理学实验指导[M].北京:高等教育出版社,1994
    80.郑永华,苏新国,李三玉等.S02对冷藏枇杷果实品质及活性氧和多按代谢的影响[J].植物生理学报,2000,26(5):397-401
    81.朱冬雪,顾采琴,陶华等.番茄果实采后NAD激酶活性与活性氧代谢的关系[J].园艺学报,2007,34(6):1431-1436
    82.朱广廉.植物生理学实验[M].北京:北京大学出版社,1990,34-37
    83.庄晓红,刘声远,马岩松等.常温条件下南果梨主要营养成分及其变化规律的研究[J].保鲜与加工,2008,(2):34-37
    84. Ackrell B A, Kearney E B, Singer T P. Mammalian Succinate dehydrogenase[J]. Methods Enzymol, 1978,53:466-483
    85. Agar T, Streif J, Bangerth F. Effect of high CO2 and controlled atmosphere (CA) on the ascorbic and dehydroascorbic acid content of some berry fruits[J]. Postharvest Biol. Technol.,1997,11:47-55
    86. Aghdam S M, Asghari R M, Moradbeygi H, et al. Effect of postharvest salicylic acid treatment on reducing chilling injury in tomato fruit[J]. Romanian Biotechnological Letters,2012,17(4):7466-7473.
    87. Amiot M J, Tacchini M, Aubert S. Phenolic composition and browning susceptibility of various apple cultivars at maturity[J]. J. Food Sci.,1992, (4):958-962
    88. Andera C, Galvjs S, Susanac F, et al. Effects of preharvest, harvest and postharvest factors on the quality of pear (cv. Rocha) stored under controlled atmosphere conditions[J]. Journal of Food Engineering,2004,64:161-172.
    89. Argenta L C, Fan X, Mattheis J P. Responses of'Fuji'apples to short and long duration exposure to elevated CO2 concentration[J]. Postharvest Biol. Technol.,2002 (24):13-24
    90. Argenta L C, Fan X T, Mattheis J. Impact of watercore on gas permeance and incidence of internal disorders in'Fuji'apples[J]. Postharvest Biol. Technol.,2002b,24:113-122
    91. Baritelle A L, Hyde G M, Fellman J K, et al. Using 1-MCP to inhibit the influence of ripening on impact properties of pear and apple tissue[J]. Postharvest Biol Teehnol,2001,23:153-160
    92. Blankenship S M, Dole J M.1-Methyleyelopropene:a review[J]. Postharvest Biol Technol,2003,28: 1-25
    93. Blanpied D G. Core breakdown of New York'Bartlett'pears[J]. J. Am. Soc. Hort. Sci.,1975,100: 198-200
    94. Burmeister D M S, Roughan. Physiological and biochemical basis for the Braeburn browning disorder[M]. Mitcham E, Proceedings of the Controlled Atmosphere Research Conference on Apples and Pears, University of California, Davis, USA, July 1997(2):126-131
    95. Cai Chong, Li Xian, Cheng Kunsong. Acetylsalicylic acid alleviates chilling injury of postharvest loquat (Eriobotrya japonica Lindl.) fruit[J]. European Food Research and Technology,2006,223(4): 533-539.
    96. Cao Shifeng, Hu Zhichao, Zheng Yonghua, et al. Synergistic effect of heat treatment and salicylic acid on alleviating internal browning in cold-stored peach fruit[J]. Postharvest Biology and Technology, 2010,58(2):93-97
    97. Chervin C, Truett J K, Speirs J. Alcohol dehydrogenase expression and alcohol production during pear ripening[J]. J. Am. Soc. Hort. Sci.,1999 (124):71-75
    98. Cohen A, Nugegoda D, Gagnon M M. Metabolic responses of fish following exposure to two different oil spill remediation techniques[J]. Ecotoxicology and Environmental Safety,2001,48:306-310
    99. Colgan R J, Dover C J, Johnson D S, et al. Delaying CA and oxygen at 1 kPa or less control superficial scald without CO2 injury on'Bramley's Seedling'apples[J]. Postharvest Biol. Technol., 1999,116:223-231
    100. Davey M W, Montagu M Van, Inze D, et al. Plant L-ascorbic acid:chemistry, function, metabolism, bioavailability and effects of processing[J]. J. Sci. Food Agric.,2000 (80):825-860
    101. David S, Todd C. Conditioning temperature and harvest maturity influence induction of ripening capacity in'd'Anjou pear fruit[J]. Postharvest Biology and Technology,2011,60(2):121-124
    102. Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism[J]. Plant Cell.,1995, (7): 1085-1097
    103. Drake S R, Elfving D C. Indicators of maturity and storage quality of Lapins sweet cherry [J]. Hort. Technology,2002,12:687-690
    104. Drake S R, Mielke E A, Elfving D C. Maturity and storage quality of concorde pears[J]. Hort. Technology,2004,14(2):250-256
    105. Errell B A, Kamen M D, Hatefi Y. Preparation and Properties of complex Ⅳ (ferrocytochrome c: oxygen oxidoreductase EC 1.9.3.1)[J]. methods in enzymology,1978,53:40-47
    106. Ferguson I, Volz R, Woolf A. Preharvest factors affecting phylogical disorders of fruit[J]. Postharvest Biol. Technol,1999,15:255-262.
    107. Franck C, Baetens M, Lammertyn J, et al. Ascorbic acid content during fruit development and postharvest storage of Conference pears[J]. J. Agric. Food Chem.,2003,51:4757-4763
    108. Franck C, Baetens M, Lammertyn J, et al. Ascorbic acid mapping to study core breakdown[J]. Postharvest Biol. Technol.,2003b,30:133-142
    109. Franck C, Lammertyna J, Quang Ho T, et al. Browning disorders in pear fruit[J]. Postharvest Biology and Technology,2007:43 (1):1-13
    110. Franck C. Metabolic characterisation of browning disorders in Conference pears[D]. Catholic University of Leuven, Leuven, Belgium,2004
    111. Hamauzu Y, Hanakawa T. Relation of highly polymerised procyani-din to the potential browning susceptibility in pear fruits[J]. J. Jap. Soc. Hort. Sci,2003,72:415-421
    112. Harbron S, Foyer C, Walker D. The purification and properties of sucrose-phosphate synthetase from spinach leaves:the involvement of this enzyme and fructose bio-phosphatase in the regulation of sucrose biosynthesis[J]. Biochem. Biophys.,1981,212:237-246
    113. Ho Q T, Verlinden B E, Verboven P, et al. Simultaneous measurement of oxygen and carbon dioxide diffusivities in pear fruit tissue using optical sensors[J]. Journal of the Science of Food and Agriculture, 2006a,87 (10):1858-1867
    114. Ho Q T, Verlinden B E, et al. Gas diffusion at different positions in the pear[J]. Postharvest Biol. Technol,2006b,41:113-120
    115. Geigenberger P. Response of plant metabolism to too little oxygen[J]. Curr. Opin. Plant Biol.,2003 (6): 247-256
    116. Gibon Y, Larher F. Cycling assay for nicotinamide adenine dinucleotides:NaC1 recipitation and ethanol solubilization of the reduced tetrazolium[J]. Analytical Biochemistry,1997,251:153-157
    117. Giraud M, Westercamp P, Coureau C, et al. Recognizing Postharvest Diseases of Apple and Pear[M]. Paris:Centre Technique Interprofessionel des Fruits et L'egumes,2001
    118. Gyedotun K S, Yau P E, Lemire B D. Identification of the heme axialligands in the cytochrome b562 of Saccharomyces cerevisiate succcinate dehydrogenase[J]. Journal of Biological Chemistry,2004, 279(10):9432-9433
    119. Jiang Y M, Zhang Z Q, Joyce D C, et. al. Postharvest biology and handling of longan fruit (Dimocarpus longan Lour.) [J]. Postharvest Biology and Technology,2002,26(3):241-252
    120. Kader A A. Mode of action of oxygen and carbon dioxide on postharvest physiology of'Bartlett' pears[J], Acta Hort.,1989(258):161-167
    121. Kadam S S, Dhumal A, Shinde N N. Pear:Handbook of Fruit Science and Technology[M]. New York: Marcel Dekker Inc.,1995:182-202
    122. Kays S J. Postharvest Physiology of Perishable Plant products[M]. New York:Van Nostrand Reinhold, 1991.
    123. Lanzetta P A, Alvarez L J, Reinach P S, et al. An improved assay for nanomole amounts of inorganic phosphate[J]. Analytical Biochemistry,1979,100(1):95-97.
    124. Larrigaudiere C, Lentheric I, Vendrell M. Relationship between enzymatic browning and internal disorders in controlled-atmosphere stored pears[J]. J. Sci. Food Agric.,1998, (78):232-236
    125. Lammertyn J, Aerts M, Verlinden B E, et al. Logistic regression analysis of factors influencing core breakdown in Conference pears[J]. Postharvest Biol. Technol.,2000,20:25-37
    126. Lammertyn J, Scheerlinck N, Verlinden B E, et al. Simultaneous determination of oxygen diffusivity and res-piration in pear skin and tissue[J]. Postharvest Biol. Technol.,2001a,23,93-104
    127. Lammertyn J, Dresselaers T, Van Hecke P. Analysis of the time course of core breakdown in Conference pears by means on MRI and X-ray CT[J]. Postharvest Biol.Technol,2003a,29,19-28
    128. Lammertyn J, Dresselaers T, Van Hecke P. MRI and X-ray CT study of spatial distribution of core breakdown in'Conference pears'[J]. Magn. Reson. Imaging,2003b (21):805-815
    129. Lammertyn J, Scheerlinck N, Jancs'ok P, et al. A respiration-diffusion model for Conference pears I: model development and validation [J]. Postharvest Biol. Technol.,2003c,30:29-42.
    130. Lammertyn J, Scheerlinck N, Jancs'ok P, et al. A respiration-diffusion model for Conference pears II: simu-lation and relation to core breakdown[J]. Postharvest Biol. Technol.2003d,30:43-55
    131. Larrigaudiere C, Pinto E, Lentheric I, et al. Involvement of oxidative processes in the development of core browning in controlled-atmosphere stored pears[J]. J. Hort. Sci. Biotechnol,2001 (76):157-162
    132. Larrigaudiere C, Lentheric I, Puy J, et al. Biochemical char-acterization of core browning and brown heart disorders in pear by multivariate analysis[J]. Postharvest Biol. Technol.,2004,31:29-39.
    133. Lentheric I, Pinto E, Vendrell M, et al. Harvest date affects the antioxidative systems in pear fruits[J]. J. Hort. Sci. Biotechnol,1999,74:791-795
    134. Liang Wusheng, Pan Juan, Liang Houguo. Activation of cyanide-resistant respiration by pyruvate in mitochondria of aged potato tuber slices[J]. Journal of Plant Physiology and Molecular Biology,2003, 29(4):317-321
    135. Liu Hai, Jiang Yueming, Luo Yunbo, et al. A simple and rapid determination of ATP, ADP and AMP concentrations in pericarp tissue of litchi fruit by high performance liquid chromatography[J]. Food Technology and Biotechnology,2006,44(4):531-534.
    136. Mao Lin-Chun, Wang Guo-Ze, Zhu Cheng-Gang, et al. Involvement of phospholipase D and lipoxygenase in response to chilling stress in postharvest cucumber fruits[J]. Plant Science,2007 (172): 400-405
    137. Mayer A M. Polyphenoloxidase in plants-recent progress[J]. Phytochemistry,1987 (26):11-20
    138. Mathew A G, Parpia H A B. Food browning as a polyphenol reaction[J]. Adv. Food Res.,1971 (19):
    139. Meheriuk M, Lau O L, Hall J W. Effects of some postharvest and storage treatments on the incidence of flesh browning in controlled atmosphere stored'Delicious'apples[J]. J. Am. Soc. Hort. Sci.,1984 (109):290-293
    140. Mingjin Zhang, Yueming Jiang, Weibo Jiang, et al. Regulation of ethylene synthesis of harvested banana fruit by 1-methylcyclopropene [J]. Food Technology and Biotechnology,2006,44:111-115
    141. Miron D, Schaffer A A. Sucrose phosphate synthase, sucrose synthase and acid invertase activities in developing fruit of Lycopersicon esculantum Mill, and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonlp [J]. Plant Physiology,1991,95:623-627.
    142. Mohammadreza A, Morteza S. Impact of salicylic acid on post harvest physiology of horticultural crops [J]. Trends in Food Science and Technology,2010, (21):502-509.
    143. Nicolai B M, Ho Q T, Lammertyn J, et al. Multiscale modelling of gas and moisture transport[M]. In: Presented at the IX International Controlled Atmosphere Research Conference, East Lansing, MI, USA,2006, Acta Hort
    144. Nicolas J J, Richard-Forget F C, Goupy P M, et al. Enzymatic browning reactions in apple and apple products[J]. Crit. Rev. Food Sci. Nutr,1994 (34):109-157
    145. Pinto E, Lentheric I, Vendrell M, el at. Role of fermentative and antioxidant metabolisms in the induction of core browning in controlled-atmosphere stored pears[J]. J. Sci. Food Agric.,2001(81): 364-370
    146. Prange R K, DeLong J M. Methyleyclopropene:the "magic bullef"for horticultural produets? Chronica Horti.2003,43:11-14
    147. Rawyler A, Pavelic D, Gianinazzi C, et al. Membrane lipid integrity relies on a threshold of ATP production rate in potato cell cultures submitted to anoxia[J]. Plant Physiol.,1999 (120):293-300
    148. Richardson D G, Kupferman E. Controlled atmosphere storage of pears[M]. In:CA'97 Davis: Proceedings, University of California,1997,2(16):31-35
    149. Roelofs F P M M, de Jager A. Reduction of brownheart in Con-ference pears[M]. In:Mitcham, E. (Ed.), Proceedings of the Controlled Atmosphere Research Conference on Apples and Pears, University of California, Davis, USA,1997(2):138-144
    150. Saquet A A, Streif J, Bangerth F. Energy metabolism and membrane lipid alterations in relation to brown heart development in Conference pears during delayed controlled atmoshpere storage[J]. Postharvest Biol. Technol.,2003 (30):123-132
    151. Sayyari M, Babalar M, Kalantari S, et al. Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates[J]. Postharvest Biology and Technology,2009,53(3):152-154
    152. Schenk A. Storage conditions advise for pome fruit [M]. Belgische Fruit revue,2004, (56):5-6
    153. Schotsmans W, Verlinden B E, Lammertyn J. Simultaneous measurement of oxygen and carbon dioxide diffusivity in pear fruit tissue[M]. Postharvest Biol. Technol,2003,29:155-166
    154. Shiesh Ching-chang. Effects of maturity, storage temperature, ripening temperature and forced, hot-air treatment on the quality of papaya fruits (Caricapapaya L. cv. Tainung No.2) [J]. Horticu lteral Science,2001,47(4):391-4408
    155. Sisler E C, Serek M. Inhibitors of ethylene responses in plant at the receptor level:reeent developments. Physiol Plant,1997,100:577-582
    156. Streif J, Saquet A A. Internal flesh browning of'Elstar'apples as influenced by pre-and postharvest factors[M]. In:Verlinden, B. E., (Eds.), Proceedings of the International Con-ference on Postharvest Unlimited, Leuven, Belgium, Acta Hort.2003, (599):523-527
    157. Underhill, Critchley S J R. Cellular localization of polyphenol oxidase and perosidase activity in Lichi Chinensis Sonn. Pericarp[J]. Aust. J. Plant Physiology,1995,22:627-632
    158. Veltman R H, Sanders M G, Persijn S T, et al. Decreased ascorbic acid levels and brown core development in pears (Pyrus communiscv. communis) [J]. Physiol. Plant.,1999 (107):39-45
    159. Veltman R H, Kho R M, van Schaik A C R, et al. Ascorbic acid and tissue browning in pears (Pyrus communis L. cvs Rocha and Conference) under controlled atmosphere conditions[J]. Postharvest Biol. Technol.,2000 (19):129-137
    160. Verlinden B E, de Jager A, Lammertyn J, et al. Effect of harvest and delayed controlled atmosphere storage con-ditions on core breakdown incidence in Conference pears[J]. Biosyst. Eng.,2002,83: 339-347.
    161. Vermerris W, Nicholson R. Phenolic Compound Biochemistry[M], Springer,2006,1-31
    162. Walter D, Bonner. A General Method for The Preparation on Plant Mitochondria[M]. New York: Academic Press, Methods in Enzymology,967,126-133
    163. Wang C Y, Wang P C. Nondestructive detection of core breakdown in'Bartlett'pears with nuclear magnetic resonance imaging [J]. HortScience,1989 (24):106-109
    164. Xuan H, Streif J, Pfeffer H, et al. Effect of pre-harvest boron application on the incidence of CA-storage related disorders in Conference pears [J]. J. Hort. Sci. Biotechnol,2001,76:133-137
    165. Zerbini P E, Rizzolo A, Brambilla A. Loss of ascorbic acid during storage of Conference pears in relation to the appearance of brown heart [J]. J. Sci. Food Agric.,2002a (82):1-7
    166. Zerbini P E, Grassi M, Cubeddu R. Non-destructive detection of brown heart in pears by time-resolved reflectance spectroscopy[J]. Postharvest Biol. Technol.,2002b (25):87-97
    167. Zhuang H, Hildebrand D F, Barth M M. Temperature influenced lipid peroxidation and deterioration in broccoli buds during postharvest storage[J]. Postharvest Biology and Technology,1997, (10):19-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700