用户名: 密码: 验证码:
非晶磷酸钙/磷灰石烧结体的组织结构及其力学和溶解行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷酸钙系生物材料广泛用于硬组织修复与重建,其力学性能、溶解行为等是决定其临床应用效果的关键因素。本文采用化学沉淀法制备羟基磷灰石(HA)和非晶磷灰石(ACP)粉末,并研究了传统机械混合法和悬浮液混合法制备ACP/HA复合粉末的物理性质及其在无压烧结、微波烧结和热压烧结过程中的烧结行为。以ACP晶化现象为切入点,将ACP与HA不同的烧结行为和溶解速率相结合,探索该复合烧结体的物理、力学性质与溶解行为。
     采用化学沉淀法在0℃下合成ACP粉末,Ca/P比、pH值、反应时间是合成ACP的主要影响因素。当Ca/P比为1.50,1.67和2.0时,均能制备出ACP粉末。反应前分别调节Ca,P溶液pH值为11,反应过程中不再进行混合溶液pH值的调节或调节其pH值并保证为11对合成ACP没有明显影响。另外,反应时间控制在30min以内,有利于获得理想的ACP粉末,制备的ACP粉末900℃煅烧后转变为p-TCP。
     通过机械混合法和悬浮液混合法获得的ACP/HA复合粉末中的ACP形态均为空心球形,直径为20~50nm;前者的HA为直径为100nm的粒状晶粒,后者的HA则为长度为20~40nm的棒状晶粒。由于粉末中HA形态和晶粒尺寸的不同,悬浮液混合法复合粉末的比表面积、总孔体积均比相同成分的机械混合法复合粉末大;复合粉末的比表面积和总孔体积均随ACP含量的升高而增大。另外,悬浮液混合法比机械混合法制备的复合粉末ACP与HA两相达到更小尺度上的分散均匀,这有利于改善材料的烧结性能。
     ACP/HA复合粉末经无压烧结、微波烧结和热压烧结后,均获得p-TCP/HA双相磷灰石(BCP)陶瓷,所得BCP陶瓷中p-TCP相的质量分数与ACP/HA粉末中ACP的质量分数大致相等,可以通过调节粉末中ACP的含量控制BCP陶瓷的相组成和相含量。
     无压烧结采用烧结温度为1150℃,保温时间为2h时可获得晶粒尺寸较小、较致密的BCP陶瓷。当ACP/HA粉末中ωACP为0wt.%时,获得晶粒尺寸约1-2μm的纯HA陶瓷;当ωACP为100wt.%时,获得晶粒尺寸约5-10μm的纯p-TCP陶瓷;当ωACP为25,50和75wt.%时,陶瓷中存在大、小两种尺寸的晶粒,且随ωACP的增大,大尺寸的晶粒所占的比例逐渐升高。机械混合体系烧结体中大小两种尺寸的晶粒分别成片分布。这主要是因为机械混合法是将HA与ACP粉末进行混合,混合时基本单元为几微米的颗粒,其尺寸相对较大,难以达到较小尺度上的均匀。随着复合粉末中ωACP的升高,气孔的数量逐渐增多、尺寸逐渐增大。采用悬浮液混合体系烧结体中2~3μm和1μm左右两种尺寸的晶粒均匀分布。这主要是因为此种混合方法是将HA与ACP在制备过程中的悬浮液状态下进行混合,混合过程伴随着机械搅拌,此时的基本单元为几百纳米的团聚体,尺寸相对较小,有利于两相混合均匀。另外,悬浮液混合法制备的复合粉末中随着ωACP的升高((ωACP为100wt.%除外),其烧结体气孔的数量逐渐减少,尺寸逐渐减小。
     采用微波烧结时,坯体的预烧对材料的相含量或微观结构有一定的影响。预烧不改变烧结体相组成,但提高了悬浮液混合体系烧结体中p-TCP相的含量,并使机械混合体系和悬浮液混合体系烧结体中均出现大量气孔。不同方法获得的相同成分的ACP/HA粉末,采用微波烧结时所得BCP陶瓷的晶粒尺寸不超过1μm。这主要是因为微波烧结的升温速度快,结晶形核驱动力大,形核率高。同时,保温时间较短,晶粒来不及长大。
     ACP/HA粉末(ωACP=25~75wt.%)经热压烧结后,机械混合体系烧结体中存在大小两种尺寸的晶粒,尺寸分别约为0.5~1μm和2~5μm,晶界平直。悬浮液混合体系烧结体中也存在大小两种尺寸的晶粒,但晶粒尺寸相对较小,分别为小于0.5μm和1~2μm,晶界弯曲。
     ACP含量为0~75wt.%的范围内,经三种烧结方式获得的机械混合体系烧结体,硬度、断裂韧性、抗压和抗弯强度随着粉末中ACP含量的增大而降低,悬浮液混合体系烧结体则随着粉末中ACP含量的升高而增大。这是由于机械混合体系烧结体致密度随着粉末中ACP含量的升高而减小,而悬浮液混合体系烧结体致密度随着粉末中ACP含量的升高而增大。在一定范围内,材料的力学性能随着致密度的增大而升高。悬浮液混合体系相同成分烧结体的硬度热压烧结最高、微波烧结最低,断裂韧性则是无压烧结最高、微波烧结最低,硬度和断裂韧性的最高值分别为5GPa和1.27MPa.m1/2。烧结体的抗压和抗弯强度为热压烧结最高,微波烧结最低。
     粉末试样(破碎后粒径315~400μm)经过Tris-HC1缓冲溶液浸泡14天后,粉末试样的失重量随原始粉末中ACP含量的增大而增大。悬浮液混合体系粉末试样的失重量低于相同烧结条件下的机械混合体系粉末试样,且溶解均匀、连续。块体试样经过28天浸泡后,机械混合体系块体试样的失重量也随原始粉末中ACP含量的增大而增大,且表面形成尺寸较大(约2~7μm)、分布不均匀的溶解孔。悬浮液混合体系块体试样的失重量不符合上述变化规律,试样表面形成的溶解孔分散均匀、尺寸较小。这主要是受两相在烧结体中的分散效果、晶粒尺寸和孔体积的共同影响。
Calcium phosphate ceramics have become of prime importance for biological applications in the field of hard tissue repair and reconstruction, and their mechanical properties, solution and degradation behaviors, etc. are still immediate areas of research focus. In this work, hydroxyapatite (HA) and amorphous calcium phosphate (ACP) ceramic powder are synthesized by chemical coprecipitation process, and the ACP/HA powder mixture are prepared via mechanically mixing and suspension mixing method, respectively. Moreover, the sintering behaviors of the powder mixture are studied during the ordinary pressureless sintering, microwave sintering and hot-pressing sintering processes. In addition, physical, mechanical and dissolution properties of the sintered bodies are investigated from the view of the crystallization of ACP.
     The Ca/P ratio, pH value, reaction time are the major factors influencing the nature of the product for the chemical precipitation of ACP. The results show that ACP is formed when the Ca/P ratio of the reacting solution is1.50,1.67and2.0and the ACP would transformed into beta tricalcium phosphate (β-TCP) after the heat treatment at900℃.The adjusting of pH value during the reaction process has not affected the formation of ACP if the pH values of corresponding reacting solution were adjusted to11before the reaction. Additionally, the reaction time kept within30min is advantageous in obtaining of ACP powder.
     ACP/HA powder mixture with ACP content of25,50and75wt.%are prepared by mechanically mixing and suspension mixing methods. The ACP powder have morphologies of hollow sphere with diameters of20~50μm in both of mechanically and suspension mixing ACP/HA powder mixture, and the HA powder are composed of granular grains with diameters of100nm in the former mixture while rod-like grains with length of20~40nm in the latter. The specific surface area and total pore volume of suspension mixing ACP/HA powder mixture is larger than that of mechanically mixing one with the same composition due to the difference of HA morphology. Moreover, the specific surface areas and total pore volume are increased as the fraction of ACP increased in the powder mixture prepared via the same method.
     Biphasic calcium phosphate (BCP) ceramics consisting of β-TCP and HA are obtained after the mechanically and suspension mixing ACP/HA powder mixture are sintered via ordinary pressureless sintering, microwave sintering and hot pressing sintering. In addition, the weight ratios of (3-TCP in the BCP ceramics are roughly equal to the weight ratios of ACP in the ACP/HA powder mixture, indicating that the phase content of BCP ceramics can be tailored via the control of ACP content in the powder mixture.
     Dense BCP ceramics with limited grain size can be generated when the pressureless sintering is carried out at1150℃for2h. The grain size of β-TCP ceramics made from ACP powder and HA ceramics made from HA powder are5μm and1μm, respectively, while BCP ceramics made from the ACP/HA powder mixture with the ACP mass fraction ranging from25to75%consist of two kinds of grain sizes. The larger grains are about5~10μm, the smaller are1~2μm and they distribute inhomogeneously in the pressureless sintered BCP ceramics when the ACP/HA powder mixture are synthesized through mechanically mixing method. Moreover, the amount and size of pore are increased as the ACP content increases. On the contrary, the larger grains are only2~3μm, the smaller are still about1μm and they distribute homogeneously in the BCP ceramics made by suspension mixing ACP/HA powder mixture. The amount and size of pore are decreased as the ACP content increases.
     Presintering affects the phase content and microstructure of BCP ceramics when microwave sintering is carried out on the ACP/HA bodies. It increase the content of β-TCP phase in the BCP ceramics made by suspension mixing ACP/HA powder and leads to plenty of pores in all of BCP ceramics. The grain sizes are smaller than1μm.
     Grains with size of5μm and with straight boundaries are found in the hot pressing sintered BCP ceramics made by mechanically mixing ACP/HA powder (ωACP=25~75wt.%). Conversely, grain sizes are not larger than2.5μm if the ACP/HA powder mixture are prepared via suspension mixing method. In addition, there is nearly on pore in all of hot pressing sintered BCP ceramics.
     In general, the mechanical properties including hardness, fracture toughness and compressive strength of sintered bodies made of suspension mixing powder are all enhanced from those of mechanically mixing powder under the same sintering conditions. Moreover, the mechanical properties of sintered bodies increase as the mass fraction of ACP increased from0to75%in the original suspension mixing powder while the mechanically mixing powder follow the inverse regularity. The hardness and fracture toughness of pressureless sintered bodies made from suspension mixing powder with75wt.%ACP are5GPa and1.27MPa-m1/2.
     In vitro dissolution experiments of sintered ACP/HA bodies is carried out in Tris-HCl buffer solution, the results show that the weight loss of soaked powder samples (315~400nm) increases as the content of ACP in ACP/HA powder mixture increases. Additionally, the weight loss of powder sample made of suspension mixing method is less than that of mechanically mixing under the same condition after soaked for14days, and the dissolution is homogeneously and continuously. For the bulk samples made of mechanically mixing composite powder, weight loss also increases with the ACP content in the original powder increases after28days immersing. Meanwhile, large sizes of dissolved pores are formed on the surface and distribute inhomogeneously. However, weight loss, for the bulk samples made of suspension mixing composite powder, doesn't follow the above rule. The dissolved pores on their surface are small and distribute homogeneously, which is mainly influenced by the phase content, grain size and pore volume.
引文
1 李玉宝.生物医学材料[M].北京:化学工业出版社,2003,9:1-5.
    2 Williams D F. On the nature of biomaterials[J]. Biomaterials,2009,30: 5897-5909.
    3 Logeart-Avramoglou D, Anagnostou F, Bizios R, et al. Engineering bone: challenges and obstacles[J]. Journal of Celluler and Molecular Medicine,2005,9: 72-84.
    4 Vastel L, Meunier A, Siney H, et al. Effect of different sterilization processing methods on the mechanical properties of human cancellous bone allografts[J]. Biomaterials,2004,25:2105-2110.
    5 Palmer S, Gibbons C, Athanasou N. The pathology of bone allograft[J]. Journal of Bone and Joint Surgery,1999,81 B:333-335.
    6 王小红.骨修复材料的研究进展[J].生物医学工程学杂志,2001,18(4):647-652.
    7 孙磊.人工骨及其应用[J].中国矫形外科杂志,2004,12(23、24):1905-1908.
    8 Hench L L. Biomaterials:a forecast for the future[J]. Biomaterials,1998,19: 1419-1423.
    9 Schilling K M, Carson R G, Bosko C A, Golikeri G D, Bruinooge A, Hoyberg K, Waller A M, Hughes N P. A microassay for bacterial adherence to hydroxyapatit [J]. Colloids and Surfaces B:Biointerfaces,1994,3:31-38.
    10 Ginebra M P, Traykova T, Planell J A. Calcium phosphate cements:Competitive drug carriers for the musculoskeletal system[J]. Biomaterials,2006,27: 2171-2177.
    11 Rauschmann M A, Wichelhaus T A, Stirnal V, Dingeldein E, Zichner L, Schnettler R, Alt V. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections[J]. Biomaterials,2005,26:2677-2684.
    12 Vallet-Regi M, Gonzalez-Calbet J M. Calcium phosphates as substitution of bone tissues[J]. Progress in Solid States Chemistry,2004,32:1-31.
    13 Niwa M, Sato T, Li W, Aoki H, Aoki H, Daisaku T. Polishing and whitening properties of toothpaste containing hydroxyapatite[J]. Journal of Materials Science:Materials in Medicine,2001,12:277-281.
    14 Bres E F, Moebus G, Kleebe J J, Pourry G, Wekmann J, Ehret G. High resolution electron microscopy study of amorphous calcium phosphate[J]. Journal of Crystal Growth,1993,129:149-162.
    15 Horlington M. Biomaterials:present and future [J]. Materials World,1995,3: 332-333.
    16 Wang J, Leon L S. Nanocrystalline hydroxyapatite with simultaneous enhancement hardness and toughness [J]. Biomaterials,2009,30(34): 6565-6572.
    17 Dorozhkin S V. Amorphous calcium (ortho)phosphates[J]. Acta Biomaterialia, 2010,6:4457-4475.
    18 Dorozhkin S V, Epple M. Biological and Medical Significance of Calcium Phosphates[J]. Angew. Chem. Int. Ed.,2002,41(17):3130-3146.
    19 王德平,王璐,黄文显.pH值对化学沉淀法制备纳米羟基磷灰石的影响[J].2005,33(1):93-98.
    20宋云京,李木森,温树林,等.温度和pH值对羟基磷灰石粉体合成的影响[J].2003,2:7-10.
    21 Bienenstock A, Posner A S. Calculation of the X-ray intensities from arrays of small crystallites of hydroxyapatite. Arch Biochem Biophys 1968,124:604-607.
    22 Tropp J, Blumenthal N C, Waugh J S. Study of solid amorphous calcium phosphate[J]. Am Chem. Soc.1983,105:22-26.
    23 Eanes E D. Octacalcium phosphate[J]. Monographs in Oral Science,2001,18: 130-147.
    24 Posner A S, Betts F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure[J]. Accounts of Chemical Research,1975,8:273-281.
    25 Betts F, Posner A S. An X-ray radial distribution study of amorphous calcium phosphate[J]. Materials Research Bulletin,1974,9:353-360.
    26 Betts F, Posner A S. A structural model for amorphous calcium phosphate[J]. Transactions of the American Crystallographic Association,1974,10:73-84.
    27 李延报,李东旭,翁文剑.无定形磷酸钙及其在生物医学中的应用[J].无机材料学报,2007,22(5):775-782.
    28 Boskey A L. Amorphous calcium phosphate:the contention of bone[J]. Journal of Dental Research,1997,76:1433-1436.
    29 Onuma K, Ito A. Cluster growth model for hydroxyapatite[J]. Chemistry of materials,1998,10(11):3346-3351.
    30 Sarda S, Heughebaert M, Lebugle A. Influence of the type of surfactant on the formation of calcium phosphate in organized molecular systems[J]. Chemistry of materials,1999,11(10):2722-2727.
    31 Zhao J, Liu Y, Sun W B, et al. Amorphous calcium phosphate and its application in dentistry[J]. Chemistry Central Journal,2011,5(1),40:1-7.
    32 Nagano M, Nakamura T, Kokubo T, et al. Differences of bone bonding ability and degradation behaviour in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating[J]. Biomaterials,1996,17(18): 1771-1777.
    33 Verheyen C, De Wijn J R, Van Blitterswijk C A, et al. Hydroxylapatite/poly (L lactide) composites:An animal study on push-out strengths and interface histology[J]. Journal of biomedical materials research,1993,27(4):433-444.
    34 Balasundaram G, Sato M, Webster T J. Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD[J]. Biomaterials,2006,27(14):2798-2805.
    35 Tadic D, Peters F, Epple M. Continuous synthesis of amorphous carbonated apatites[J]. Biomaterials,2002,23(12):2553-2559.
    36 Webster T J. Nanophase ceramics:the future orthopedic and dental implant material [J]. Advances in chemical engineering,2001,27:125-166.
    37 Webster T J, Ergun C, Doremus R H, et al. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials,2001,22:1327-1333.
    38 Webster T J, Ejiofor J U. Increased osteoblast adhesion on nanophase metals:Ti, Ti6A14V, and CoCrMo. Biomaterials,2004,25:4731-4739.
    39 Kay S, Thapa A, Haberstroh K M, et al. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion[J]. Tissue Engineering,2002,8(5):753-761.
    40 Webster T J, Smith T A. Increased osteoblast function on PLGA composites containing nanophase titania[J]. Journal of Biomedical Materials Research Part A, 2005,74(4):677-686.
    41 俞耀庭,生物医用材料[M].天津:天津大学出版社,2000.
    42 王洪友.仿生法制备磷灰石及其应用性研究[D].山东大学硕士学位论文,2011.
    43 Kay M I, Young R A, Posner A S. Crystal structure of hydroxy apatite [J]. Nature, 1964,204:1050-1052.
    44 Lopes M A, Knowles J C, Santos J D. Structural insights of glass-reinforced hydroxyapatite composites by rietveld refinement[J]. Biomaterials,2000,21: 1905-1910.
    45 Leventouri T H. Synthetic and biological hydroxy apatites:Crystal structure questions[J]. Biomaterials,2006,27:3339-3342.
    46 Yasushi S, Junzo T. Crystal growth and structure analysis of twin-free monoclinic hydroxyapatite [J]. Journal of Materials Science:Materials in Medicine,2002,13:767-772.
    47 Ito A, Nakamura S, Aoki H, et al, Tateishi T. Hydrothermal growth of carbonate-containing hydroxyapatite single crystals [J]. Journal of Crystal Growth,1996,163:311-317.
    48 李新化,郑治祥,汤文明,等.羟基磷灰石生物陶瓷材料的现状及展望[J].合肥工业大学学报,2002,25:1148-1153.
    49 Kawasaki T, Niikura M, Kobayashi Y. Fundamental study of hydroxyapatite high performance liquid chromatography:Ⅲ. Direct experimental confirmation of the existence of two types of adsorbing surface on the hydroxyapatite crystal [J]. Journal of Chromatography A,1990,515:125-148.
    50 Yuan H P, Yang Z J, Li Y B, et al. Osteoinduction by calcium phosphate biomaterials[J]. Journal of Materials Science:Materials in Medicine,1998,9: 723-726.
    51 李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000,84-95.
    52 Yuan H P, Kurashina K, de Bruijn J D, et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics[J]. Biomaterials, 1999,20:1799-1806
    53 Okada S, Ito H, Nagai A, et al. Adhesion of osteoblast-like cells on nanostructured hydroxyapatite[J]. Acta Biomaterialia,2010,6(2):591-597.
    54 鲁雄,冯波,翁杰,等.生物材料表面微纳结构对成骨相关细胞的影响[J].中国材料进展,2013(10):611-622.
    55 Herde K, Hartmann S, Brehm R, et al. Connexin 43 expression of foreign body giant cells after implantation of nanoparticulate hydroxyapatite[J]. Biomaterials, 2007,28(33):4912-4921.
    56 Walboomers X F, Monaghan W, Curtis A S G, et al. Attachment of fibroblasts on smooth and microgrooved polystyrene[J]. Journal of biomedical materials research,1999,46(2):212-220.
    57 Maniotis A J, Chen C S, Ingber D E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure[J]. Proceedings of the National Academy of Sciences,1997,94(3): 849-854.
    58 谈国强,苗鸿雁,宁青菊,等,生物陶瓷材料[M].北京:化学工业出版社,2006.
    59 Gonda Y, Ioku K, Shibata Y, et al. Stimulatory effect of hydrothermally synthesized biodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts. Biomaterials,2009,30(26):4390-4400.
    60 Fujii S, Okada M, Furuzono T. Hydroxyapatite nanoparticles as stimulus- responsive particulate emulsifiers and building block for porous materials[J]. Journal of colloid and interface science,2007,315(1):287-296.
    61 Silva H, Mateescu M, Ponche A, et al. Surface transformation of silicon-doped hydroxyapatite immersed in culture medium under dynamic and static conditions[J]. Colloids and Surfaces B:Biointerfaces,2010,75(1):349-355.
    62 Swain S K, Bhattacharyya S, Sarkar D. Preparation of porous scaffold from hydroxyapatite powders[J]. Materials Science and Engineering:C,2011,31(6): 1240-1244.
    63 Kumar R, Prakash K H, Cheang P, et al. Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders [J]. Acta Mater,2005,53(8):2327-2335.
    64 冯祖德,金浦,宓锦,等.锌掺杂对β-磷酸三钙晶体结构和分子结构的影响[J].2003.
    65 孙文晓,张海港,韦卓,等.骨修复材料的研究应用现状与展望[J].生物骨科材料与临床研究,2009,6(3):35-40.
    66 Ito M, Yamagishi T, Yagasaki H, et al. In vitro properties of a chitosan-bonded bone-filling paste:Studies on solubility of calcium phosphate compounds[J]. Journal of biomedical materials research,1996,32(1):95-98.
    67 Friedman C D, Costantino P D, Takagi S, et al. BoneSourceTM hydroxyapatite cement:a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction[J]. Journal of biomedical materials research,1998,43(4): 428-432.
    68 Stares S L, Fredel M C, Greil P, et al. Paper-derived β-TCP[J]. Materials Letters, 2013,98:161-163.
    69 Xu L, Lv K, Zhang W, et al. The healing of critical-size calvarial bone defects in rat with rhPDGF-BB, BMSCs, and (3-TCP scaffolds[J]. Journal of Materials Science:Materials in Medicine,2012,23(4):1073-1084.
    70 Santos C F L, Silva A P, Lopes L, et al. Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration[J]. Materials Science and Engineering:C,2012,32(5):1293-1298.
    71 Seebach C, Henrich D, Wilhelm K, et al. Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats[J]. Cell Transplantation,2012, 21(8):1667-1677.
    72 Rieu J, Goeuriot P. Ceramic composites for biomedical applications[J]. Clinical materials,1993,12(4):211-217.
    73 Farina N M, Guzon F M, Pena M L, et al. In vivo behaviour of two different biphasic ceramic implanted in mandibular bone of dogs [J]. Journal of Materials Science:Materials in Medicine,2008,19(4):1565-1573.
    74 Buache E, Velard F, Bauden E, et al. Effect of strontium-substituted biphasic calcium-phosphate on inflammatory mediators production by human monocytes [J]. Acta Biomaterialia,2012,8(8):3113-3119.
    75 LeGeros R Z, Lin S, Rohanizadeh R, et al. Biphasic calcium phosphate bioceramics:preparation, properties and applications[J]. Journal of materials science:Materials in Medicine,2003,14(3):201-209.
    76 傅小妮,季金苟,冉均国.双相钙磷生物陶瓷研究进展[J].化工进展,2004,23(2):158-161.
    77 王辛龙.纳米磷酸钙生物陶瓷的制备及其生物学效应研究[D].四川大学,博士学位论文,2006.
    78 王涛.纳米双相磷酸钙瓷用于组织工程支架材料的实验研究[D].四川大学,博士学位论文,2005.
    79 姜伟.两种双相磷酸钙基复合材料兔竖脊肌包埋的初步实验研究[D].昆明医学院,硕士学位论文,2010.
    80 Yang Z, Yuan H, Tong W, et al. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics:variability among different kinds of animals[J]. Biomaterials,1996,17(22):2131-2137.
    81 Yuan H, Zou P, Yang Z, et al. Bone morphogenetic protein and ceramic-induced osteogenesis[J]. Journal of Materials Science:Materials in Medicine,1998,9(12): 717-721.
    82 Ripamonti U. The morphogenesis of bone in replicas of porous hydroxyapatite obtained from conversion of calcium carbonate exoskeletons of coral [J]. Journal of bone and joint surgery. American volume,1991,73(5):692-703.
    83 程顺巧.双相钙磷多孔陶瓷多孔结构与骨诱导性关系研究[D].四川大学,硕士学位论文,2004.
    84 陈雪宁.羟基磷灰石陶瓷结构对细胞成骨诱导作用的研究[D].成都:四川大学,博士学位论文,2008.
    85 Habibovic P, de Groot K. Osteoinductive biomaterials-properties and relevance in bone repair[J]. Journal of tissue engineering and regenerative medicine,2007, 1(1):25-32.
    86 Dvorak M M, Riccardi D. Ca2+as an extracellular signal in bone[J]. Cell calcium, 2004,35(3):249-255.
    87 Honda Y, Anada T, Kamakura S, et al. Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line[J]. Biochemical and biophysical research communications,2006,345(3): 1155-1160.
    88 赵琰.石墨烯/碳纳米管/双相磷酸钙生物陶瓷复合材料研究[D].山东大学,博士学位论文,2013.
    89 秦湘阁,马臣.磷酸钙生物陶瓷[J].佳木斯大学学报:自然科学版,2001,19(2):175-179.
    90 Zahidi E, Lebugle A, Bonel G. Sur une nouvelle classe de materiaux pour protheses osseuses ou dentaires[J]. Bull Soc Chim Fr,1985,4:523-527.
    91 Eanes E D. Thermochemical studies on amorphous calcium phosphate[J]. Calcified tissue research,1970,5(1):133-145.
    92 Combes C, Rey C. Amorphous calcium phosphates:synthesis, properties and uses in biomaterials[J]. Acta biomaterialia,2010,6(9):3362-3378.
    93 Taylor M G, Simkiss K, Simmons J, et al. Structural studies of a phosphatidyl serine-amorphous calcium phosphate complex[J]. Cellular and Molecular Life Sciences CMLS,1998,54(2):196-202.
    94 Eanes E D. Amorphous calcium phosphate:thermodynamic and kinetic considerations[J]. Calcium phosphates in biological and industrial systems,1998: 21-39.
    95 Blumenthal N C, Posner A S, Holmes J M. Effect of preparation conditions on the properties and transformation of amorphous calcium phosphate[J]. Materials Research Bulletin,1972,7(11):1181-1189.
    96 Boskey A L, Posner A S. Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. A pH-dependent, solution-mediated, solid-solid conversion[J]. The Journal of Physical Chemistry,1973,77(19):2313-2317.
    97 Li Y, Weng W. In vitro synthesis and characterization of amorphous calcium phosphates with various Ca/P atomic ratios[J]. Journal of Materials Science: Materials in Medicine,2007,18(12):2303-2308.
    98 Liu S, Weng W, Li Z, et al. Effect of PEG amount in amorphous calciumphosphate on its crystallized products[J]. Journal of Materials Science: Materials in Medicine,2009,20(1):359-363.
    99 Zyman Z Z, Rokhmistrov D V, Glushko V I. Structural and compositional features of amorphous calcium phosphate at the early stage of precipitation[J]. Journal of Materials Science:Materials in Medicine,2010,21(1):123-130.
    100 Yu T, Ye J, Wang Y. Synthesis and property of a novel calcium phosphate cement[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2009,90(2):745-751.
    101 Tofighi A, Palazzolo R. Calcium phosphate bone cement preparation using mechano-chemical process[J]. Key Engineering Materials,2005,284:101-104.
    102 Gbureck U, Grolms O, Barralet J E, et al. Mechanical activation and cement formation of β-tricalcium phosphate[J]. Biomaterials,2003,24(23):4123-4131.
    103 吕宇鹏,朱瑞富.等离子喷涂磷灰石陶瓷涂层研究进展[J].生物医学工程学杂志,2001,18(3):451-455.
    104 吕宇鹏,陈艳梅,陈鹭滨,等.热处理对羟基磷灰石涂层相组成,表面形貌 与结合强度的影响[J].功能材料,2009(10):1713-1715.
    105 Lowenstam H A, Weiner S. On biomineralization[M]. Oxford University Press, 1989.
    106 Maxian S H, Zawadsky J P, Dunn M G. Mechanical and histological evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants[J]. Journal of biomedical materials research, 1993,27(6):717-728.
    107 Van Blitterswijk CA, Bovell YP, Flach JS, Leenders H, van den Brink I, de Bruijn J. Variations in hydroxylapatite crystallinity:effect on interface reactions. In:Geesink RGT, Manley MT, editors. Hydroxylapatite coatings in orthopaedicsurgery. New York:Raven Press; 1993,33^47.
    108 Gross K A, Berndt C C, Goldschlag D D, et al. In vitro changes of hydroxyapatite coatings [J]. International journal of oral & maxillofacial implants,1997,12(5):589-597.
    109 胡晓霞,吕宇鹏,李阳,等.预应力对羟基磷灰石涂层热处理行为的影响[J].中国表面工程,2010,23(3):46-50.
    110 胡晓霞,吕宇鹏,李阳,等.预应力热处理对羟基磷灰石涂层相组成和结合强度的影响[J].材料热处理学报,2011,S2(32):148-150.
    111 Liu C, Huang Y, Shen W, et al. Kinetics of hydroxyapatite precipitation at pH 10 to 11 [J]. Biomaterials,2001,22(4):301-306.
    112 Bouyer E, Gitzhofer F, Boulos M I. Morphological study of hydroxyapatite nanocrystal suspension[J]. Journal of Materials Science:Materials in Medicine, 2000,11(8):523-531.
    113 Lagno F, Rocha S D F, Katsarou L, et al. Supersaturation-Controlled Synthesis of Dicalcium Phosphate Dihydrate and Nanocrystalline Calcium-Deficient Hydroxyapatite[J]. Industrial & Engineering Chemistry Research,2012,51(19): 6605-6612.
    114 Kim W, Saito F. Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2[J]. Ultrasonics Sonochemistry,2001,8(2):85-88.
    115 Lazic S, Zec S, Miljevic N, et al. The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid[J]. Thermochimica Acta,2001,374(1):13-22.
    116 Arends J, Christoffersen J, Christoffersen M R, et al. A calcium hydroxyapatite precipitated from an aqueous solution:An international multimethod analysis [J]. Journal of Crystal Growth,1987,84(3):515-532.
    117 Feenstra T P, De Bruyn P L. Formation of calcium phosphates in moderately supersaturated solutions[J]. Journal of Physical Chemistry,1979,83(4): 475-479.
    118 Fujishiro Y, Yabuki H, Kawamura K, et al. Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions [J]. Journal of Chemical Technology and Biotechnology,1993,57(4):349-353.
    119 Masuda Y, Matubara K, Sakka S. Synthesis of Hydroxyapatite From Metal Alkoxides Through Sol-Gel Technique[J]. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi(Journal of the Ceramic Society of Japan)(Previously: Yogyo-Kyokai-Shi(Journal of the Ceramic Society of Japan)),1990,98(11): 1255-1266.
    120 Rao R R, Roopa H N, Kannan T S. Solid state synthesis and thermal stability of HAP and HAP-β-TCP composite ceramic powders [J]. Journal of Materials Science:Materials in Medicine,1997,8(8):511-518.
    121 Swain S K, Sarkar D. A comparative study:Hydroxyapatite spherical nanopowders and elongated nanorods[J]. Ceramics International,2011,37(7): 2927-2930.
    122 Afshar A, Ghorbani M, Ehsani N, et al. Some important factors in the wet precipitation process of hydroxyapatite[J]. Materials & Design,2003,24(3): 197-202.
    123 Kong L B, Ma J, Boey F. Nanosized hydroxyapatite powders derived from coprecipitation process[J]. Journal of materials science,2002,37(6): 1131-1134.
    124 Sadat-Shojai M, Khorasani M T, Jamshidi A, et al. Nano-hydroxyapatite reinforced polyhydroxybutyrate composites:A comprehensive study on the structural and in vitro biological properties [J]. Materials Science and Engineering:C,2013.
    125 Gomez-Morales J, Torrent-Burgues J, Boix T, et al. Precipitation of stoichiometric hydroxyapatite by a continuous method[J]. Crystal Research and Technology,2001,36(1):15-26.
    126 Fomin A S, Barinov S M, Ievlev V M, et al. Nanocrystalline hydroxyapatite ceramics[J]. Inorganic Materials,2009,45(10):1193-1196.
    127 Zhang H, Zhang M. Characterization and thermal behavior of calcium deficient hydroxyapatite whiskers with various Ca/P ratios[J]. Materials Chemistry and Physics,2011,126(3):642-648.
    128 Guo X, Xiao P, Liu J, et al. Fabrication of nanostructured hydroxyapatite via hydrothermal synthesis and spark plasma sintering[J]. Journal of the American Ceramic Society,2005,88(4):1026-1029.
    129 Neira I S, Guitian F, Taniguchi T, et al. Hydrothermal synthesis of hydroxyapatite whiskers with sharp faceted hexagonal morphology [J]. Journal of Materials Science,2008,43(7):2171-2178.
    130 Zhang H, Darvell B W. Morphology and structural characteristics of hydroxyapatite whiskers:Effect of the initial Ca concentration, Ca/P ratio and pH[J]. Acta biomaterialia,2011,7(7):2960-2968.
    131 Lee D K, Park J Y, Kim M R, et al. Facile hydrothermal fabrication of hollow hexagonal hydroxyapatite prisms[J]. CrystEngComm,2011,13(17):5455-5459.
    132 Lin K, Liu X, Chang J, et al. Facile synthesis of hydroxyapatite nanoparticles, nanowires and hollow nano-structured microspheres using similar structured hard-precursors[J]. Nanoscale,2011,3(8):3052-3055.
    133 Tsiourvas D, Tsetsekou A, Kammenou M I, et al. Controlling the formation of Hydroxyapatite nanorods with dendrimers[J]. Journal of the American Ceramic Society,2011,94(7):2023-2029.
    134 Xu H, Chen Y, Zhang S F. Synthesis and characterization of microporous hydroxyapatite via hydrothermal method [J]. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry,2011,41(1):31-35.
    135 Zhang H, Zhang M. Phase and thermal stability of hydroxyapatite whiskers precipitated using amine additives [J]. Ceramics International,2011,37(1): 279-286.
    136 Du X, Chu Y, Xing S, et al. Hydrothermal synthesis of calcium hydroxyapatite nanorods in the presence of PVP[J]. Journal of materials science,2009,44(23): 6273-6279.
    137 Kandori K, Takeguchi K, Fukusumi M, et al. Preparation and characterization of calcium hydroxyapatite and balloon-like calcium phosphate particles from forced hydrolysis of Ca(OH)2-triphosphate solution[J]. Polyhedron,2009, 28(14):3036-3042.
    138 Padmanabhan S K, Balakrishnan A, Chu M C, et al. Sol-gel synthesis and characterization of hydroxyapatite nanorods [J]. Particuology,2009,7(6): 466-470.
    139 Sanosh K P, Chu M C, Balakrishnan A, et al. Synthesis of nano hydroxyapatite powder that simulate teeth particle morphology and composition[J]. Current Applied Physics,2009,9(6):1459-1462.
    140 Ramanan S R, Venkatesh R. A study of hydroxyapatite fibers prepared via sol-gel route[J]. Materials Letters,2004,58(26):3320-3323.
    141 Anee T K, Ashok M, Palanichamy M, et al. A novel technique to synthesize hydroxyapatite at low temperature [J]. Materials chemistry and physics,2003, 80(3):725-730.
    142 Bose S, Saha S K. Synthesis of Hydroxyapatite Nanopowders via Sucrose templated Sol-Gel Method[J]. Journal of the American Ceramic Society,2003, 86(6):1055-1057.
    143 Montero M L, Saenz A, Castano V M. Synthesis of nano-hydroxyapatite from silica suspensions through chemical compensation[J]. Journal of Experimental Nanoscience,2009,4(2):193-202.
    144 Zhang H G, Zhu Q. Preparation of fluoride-substituted hydroxyapatite by a molten salt synthesis route[J]. Journal of Materials Science:Materials in Medicine,2006,17(8):691-695.
    145 Teshima K, Lee S H, Sakurai M, et al. Well-formed one-dimensional hydroxyapatite crystals grown by an environmentally friendly flux method [J]. Crystal Growth and Design,2009,9(6):2937-2940.
    146 Tseng Y H, Kuo C S, Li Y Y, et al. Polymer-assisted synthesis of hydroxyapatite nanoparticle[J]. Materials Science and Engineering:C,2009,29(3):819-822.
    147 Pasand E G, Nemati A, Solati-Hashjin M, et al. Microwave assisted synthesis & properties of nano HA-TCP biphasic calcium phosphate [J]. International Journal of Minerals, Metallurgy, and Materials,2012,19(5):441-445.
    148 胡晓霞,肖桂勇,李阳,吕宇鹏.非晶相对烧结羟基磷灰石块体材料组织性能的影响[J].材料热处理学报,2013,33:37-40.
    149 Fujiwara K, Okada M, Takeda S, et al. A novel strategy for preparing nanoporous biphasic calcium phosphate of controlled composition via a modified nanoparticle-assembly method[J]. Materials Science and Engineering: C,2014,35:259-266.
    150杨为中,尹光福,周大利,等.双相磷酸钙生物陶瓷粉的制备及表面改性[J].稀有金属材料与工程,2008,37(A01):630-632.
    151 黄勇,汪长安,高性能多相复合陶瓷[M].北京:清华大学出版社,2008.
    152邓湘云,刘茜,李德军,等.纳米羟基磷灰石的陶瓷的制备及其力学性能的研究[J].天津师范大学学报,2007,27(03):9-12.
    153 Edward S A, Nathaniel J G, Atsushi N, et al. Nanostructure processing of hydroxyapatite-based bioceramics[J]. Nano Letters,2001,1(3):149-153.
    154 Fang Z, Feng O, Tan R. In-situ grown hydroxyapatite whiskers reinforced porous HA bioceramic[J]. Ceramics International,2013,39(8):8847-8852.
    155 Kobayashi S, Kawai W. Development of carbon nanofiber reinforced hydroxyapatite with enhanced mechanical properties [J]. Composites Part A: Applied Science and Manufacturing,2007,38(1):114-123.
    156 Bose S, Banerjee A, Dasgupta S, et al. Synthesis, processing, mechanical, and biological property characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites[J]. Journal of the American Ceramic Society,2009, 92(2):323-330.
    157 Mittal M, Nath SK, Prakash S. Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by A12O3 reinforcement[J]. Materials Science and Engineering C,2013,33(5):2838-2845.
    158 Chaki T K, Wang P E, Densification and strengthening of silver-reinforced hydroxyapatite-matrix composite prepared by sintering[J]. Journal of Materials Science:Materials in Medicine,1994,5(8):533-542.
    159 Kim S W, Khalil K A, Cockcroft S L, et al. Sintering behavior and mechanical properties of HA-X% mol 3YSZ composites sintered by high frequency induction heated sintering[J].Composites Part B:Engineering,2013,45(1): 1689-1693.
    160 黄康明,李伟信,饶平根,等.陶瓷增韧技术的研究进展[J].中国陶瓷,2007,43(11):6-9.
    161 张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报,1994,22(3):259-269.
    162 张光磊,邢朋飞,高辉,等.脆性陶瓷材料的增韧方法及其应用现状[J].材料开发与应用,2008,23(2):77-82.
    163 Ahn E S, Gleason N J, Nakahira A, et al. Nanostructure processing of hydroxyapatite-based bioceramics[J]. Nano Letters,2001,1(3):149-153.
    164 Quan R, Yang D, Miao X, et al. Preparation of Graded Zirconia-Hydroxyapatite Composite Bioceramic and Its Immunocompatibility in vitro [J]. Journal of biomaterials applications,2007,22(2):123-144.
    165 刘玲,殷宁.晶须增韧复合材料机理的研究[J].材料科学与工程,2000,18(2):116-119.
    166 陈尔凡,郝春功,李素莲,等.晶须增韧陶瓷复合材料[J].化工新型材料, 2006,34(5):1-4.
    167 Dorner-Reisel A, Miiller E, Tomandl G. Short Fiber Reinforced Hydroxyapatite-based Bioceramics[J]. Advanced Engineering Materials,2004,6(7):572-577.
    168 Suchanek W, Yashima M, Kakihana M, et al. Processing and mechanical properties of hydroxyapatite reinforced with hydroxyapatite whiskers [J]. Biomaterials,1996,17(17):1715-1723.
    169 Suchanek W, Yashima M, Kakihana M, et al. Hydroxyapatite/Hydroxyapatite-Whisker Composites without Sintering Additives:Mechanical Properties and Microstructural Evolution[J]. Journal of the American Ceramic Society,1997, 80(11):2805-2813.
    170 Liu J, Ye X, Wang H, et al. The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method[J]. Ceramics international,2003,29(6):629-633.
    171 胡红涛,许国华,刘继春,等.原位生长纳米羟基磷灰石晶须增强β-磷酸三钙多孔支架的生物安全性[J].中国组织工程与临床康复,2011,15(51):9575-9579.
    172 Buache E, Velard F, Bauden E, et al. Effect of strontium-substituted biphasic calcium-phosphate on inflammatory mediators production by human monocytes [J].Acta Biomaterialia,2012,8(8):3113-3119.
    173 Bleach N C, Nazhat S N, Tanner K E, et al. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites[J]. Biomaterials,2002,23(7):1579-1585.
    174 Raynaud S, Champion E, Lafon J P, et al. Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics[J]. Biomaterials,2002,23(4):1081-1089.
    175 http://www.sic.ac.cn/xwzx/kydt/200812/t20081215_2112518.html
    176 Dorozhkin S V. Nanosized and nanocrystalline calcium orthophosphates[J]. Acta Biomaterialia,2010,6(3):715-734.
    177 Kumta P N, Sfeir C, Lee D H, et al. Nanostructured calcium phosphates for biomedical applications:novel synthesis and characterization[J]. Acta Biomaterialia,2005,1(1):65-83.
    178 Sun J P, Song Y, Wen G W, et al. Softening of hydroxyapatite by vacancies:A first principles investigation [J]. Materials Science and Engineering C,2013, 33(3):1109-1115.
    179 Yoshida H, Kim B N, Son HW, et al. Superplastic deformation of transparent hydroxyapatite [J]. Scripta Materialia,2013,69(2):155-158.
    180 Niihara K. New design concept of structural ceramics-ceramic nanocomposites [J]. Nippon seramikkusu kyokai gakujutsu ronbunshi,1991,99(10):974-982.
    181 Xiao H, Cheng Y, Yu L, et al. A study on the preparation of CMAS glass-ceramics by in situ crystallization[J]. Materials Science and Engineering: A,2006,431(1):191-195.
    182 李亚利,梁勇,佟百运,等.纳米非晶Si3N4粉的超高压低温烧结[J].材料研究学报,2009,11(5):473-478.
    183 Xiao H, Cheng Y, Yang Q, et al. Mechanical and tribological properties of calcia-magnesia-alumina-silica-based glass-ceramics prepared by in situ crystallization[J]. Materials Science and Engineering:A,2006,423(1): 170-174.
    184 Champion E. Sintering of calcium phosphate bioceramics[J]. Acta biomaterialia, 2013,9:5855-5875.
    185 Yu L, Xiao H, Hu P. Effect of nucleating agents on microstructure and mechanical properties of SiO2-A12O3-ZrO2 glass-ceramics[J]. Journal of Central South University of Technology,2005,12(5):507-510.
    186 Kim H, Choi W. Surface and bulk crystallization in Nd2O3-Al2O3-SiO2-TiO2 glasses[J]. Journal of the European Ceramic Society,2004,24(7):2103-2111.
    187 El-Shennawi A W A, Hamzawy E M A, Khater G A, et al. Crystallization of some aluminosilicate glasses[J]. Ceramics international,2001,27(7):725-730.
    188 Weinberg M C. Glass-formation and crystallization kinetics[J]. Thermochimica acta,1996,280:63-71.
    189 肖汉宁,成茵,余丽萍.非晶原位晶化法制备纳米微晶陶瓷[J].稀有金属材料与工程,2008,37(A01):28-31.
    190 Ramesh S, Tan C Y, Bhaduri S B, et al. Densification behaviour of nanocrystalline hydroxyapatite bioceramics[J]. journal of materials processing technology,2008,206(1):221-230.
    191 Khairoun I, LeGeros R Z, LeGeros J P, et al. Amorphous calcium phosphates (ACP):formation and stability[J]. Key Engineering Materials,2005,284:7-10.
    192 Guegan C. Contribution a l'etude cinetique de l'evolution de l'etat amorphe a l'etat apatitique des orthophosphates trimetalliques (Ca, Mg) precipites[D]. 1978.
    193 Knaack D, Goad M E P, Aiolova M, et al. Resorbable calcium phosphate bone substitute [J]. Journal of biomedical materials research,1998,43(4):399-409.
    194李明欧,肖秀峰,刘榕芳.含锌羟基磷灰石的水热合成与结构表征[J].硅酸盐学报,2008,36(3):378-382.
    195 温喜梅,张军,宋邦才,等.水热条件下羟基磷灰石晶须的制备[J].中国陶瓷,2008,44(8):31-33.
    196 Senamaud N, Bernache-Assollant D, Champion E, et al. Calcination and sintering of hydroxyfluorapatite powders[J]. Solid State Ionics,1997,101: 1357-1362.
    197 Tsui Y C, Doyle C, Clyne T W. Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1:Mechanical properties and residual stress levels[J]. Biomaterials,1998,19(22):2015-2029.
    198 Kanazawa T, Umegaki T, Uchiyama N. Thermal crystallisation of amorphous calcium phosphate to a-tricalcium phosphate[J]. Journal of Chemical Technology and Biotechnology,1982,32(2):399-406.
    199 Layrolle P, Lebugle A. Characterization and reactivity of nanosized calcium phosphates prepared in anhydrous ethanol[J]. Chemistry of materials,1994, 6(11):1996-2004.
    200 Somrani S, Rey C, Jemal M. Thermal evolution of amorphous tricalcium phosphate[J]. Journal of Materials Chemistry,2003,13(4):888-892.
    201 Yu H B, Jia W Z, Pu Z Y, et al. Preparation and Application of a Cr2O3-a-AlF3 Catalyst with a High Specific Surface Area[J]. Acta Phys. Chim. Sin.2011,27 (11),2677-2681.
    202 李蔚,高濂.纳米羟基磷灰石粉体的制备和低温烧结[J].过程工程学报,2002,2(4):305-308.
    203 Wang J, Shaw L L. Morphology-Enhanced Low-temperature Sintering of Nanocrystalline Hydroxyapatite[J]. Advanced Materials,2007,19(17): 2364-2369.
    204秦明礼,曲选辉,何新波,等.粉末特性对AlN陶瓷致密化的影响[J].粉末冶金技术,2005,23(3):176-180.
    205 Cerroni L, Filocamo R, Fabbri M, et al. Growth of osteoblast-like cells on porous hydroxyapatite ceramics:an in vitro study [J]. Biomolecular engineering, 2002,19(2):119-124.
    206 Gonzalez-Diaz P F, Santos M. On the hydroxyl ions in apatites[J]. Journal of Solid State Chemistry,1977,22(2):193-199.
    207 王昕,张景德.均分散纳米复合陶瓷的制备工艺[J].复合材料学报,1999,16(3):83-86.
    208 Estili M, Kawasaki A, Sakamoto H, et al. The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in a-alumina ceramics for structural reinforcement[J]. Acta Materialia,2008, 56(15):4070-4079.
    209 周玉,武高辉.材料分析测试技术:材料X射线衍射与电子显微分析[M].哈尔滨工业大学出版社,1998.
    210 王玉春,丘泰,沈春英.添加Y2O3的ZrO2-Al2O3复相陶瓷力学性能的研究[J].中国稀土学报,2003,21(2):174-178.
    211 Shor L, Guceri S, Wen X, et al. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro [J]. Biomaterials,2007,28(35):5291-5297.
    212 Xu H H K, Burguera E F, Carey L E. Strong, macroporous, and in situ-setting calcium phosphate cement-layered structures[J]. Biomaterials,2007,28(26): 3786-3796.
    213 韩艳君,姜庆辉,李木森.多孔羟基磷灰石的研究现状与发展[J].材料科学与工程学报,2005,22(6):929-933.
    214 Kleebe H J, Brs E F, Bernache-Assolant D, et al. High-Resolution Electron Microscopy and Convergent-Beam Electron Diffraction of Sintered Undoped Hydroxyapatite[J]. Journal of the American Ceramic Society,1997,80(1): 37-44.
    215 Landi E, Tampieri A, Celotti G, et al. Densification behaviour and mechanisms of synthetic hydroxyapatite [J]. Journal of the European Ceramic Society,2000, 20(14-15):2377-2387.
    216 Yin X, Stott M J, Rubio A. α-and β-tricalcium phosphate:a density functional study[J]. Physical Review B,2003,68(20):205205.
    217 Merten H A, Wiltfang J, Grohmann U, et al. Intraindividual comparative animal study of α-and β-tricalcium phosphate degradation in conjunction with simultaneous insertion of dental implants[J]. Journal of Craniofacial Surgery, 2001,12(1):59-68.
    218 毕见强,赵萍,邵明梁,等.特种陶瓷工艺与性能[M].哈尔滨工业大学出版社,2008.
    219 Raynaud S, Champion E, Bernache-Assollant D. Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering[J]. Biomaterials, 2002,23(4):1073-1080.
    220 Palard M. Synthese, frittage et evaluation biologique d'hydroxyapatites silicatees (Synthesis, sintering and biological evaluation of silicate hydroxyapatites). PhD thesis. France:University of Limoges; 2007.
    221 Rootare H M, Craig R G. Characterization of the compaction and sintering of hydroxyapatite powders by mercury porosimetry[J]. Powder Technology,1974, 9(4):199-211.
    222 Bernache-Assollant D, Ababou A, Champion E, et al. Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2l. Calcination and particle growth[J]. Journal of the European Ceramic Society,2003,23(2):229-241.
    223 Asada M, Oukami K, Nakamura S, et al. Microstructure and mechanical properties of non-stoichiometric apatite ceramics and sinterability of raw powder[J]. Journal of the Ceramic Society of Japan,1988,96(5):595-598.
    224 Putlayev V, Veresov A, Pulkin M, et al. Silicon-substituted hydroxyapatite ceramics (Si-HAp):densification and grain growth through the prism of sintering theories[J]. Materialwissenschaft und Werkstofftechnik,2006,37(6): 416-421.
    225 Rootare H M, Craig R G. Charecterization of hydroxyapatite powders and compacts at room temprature and after sintering at 1200°C[J]. Journal of oral rehabilitation,1978,5(3):293-307.
    226 Brook R J. Controlled grain growth[J]. Treatise on materials science and technology,1976,9:331-364.
    227 Scherera G W. Sintering with rigid inclusions [J]. Journal of the American Ceramic Society,1987,70(10):719-725.
    228 Toriyama M, Ravaglioli A, Krajewski A, et al. Synthesis of hydroxyapatite-based powders by mechano-chemical method and their sintering[J]. Journal of the European Ceramic Society,1996,16(4):429-436.
    229 Slosarczyk A, Bialoskorski J. Hardness and fracture toughness of dense calcium-phosphate-based materials [J]. Journal of Materials Science:materials in medicine,1998,9(2):103-108.
    230 Slosarczyk A, Piekarczyk J. Ceramic materials on the basis of hydroxyapatite and tricalcium phosphate[J]. Ceramics international,1999,25(6):561-565.
    231 Wang X, Fan H, Xiao Y, et al. Fabrication and characterization of porous hydroxyapatite/β-tricalcium phosphate ceramics by microwave sintering[J]. Materials Letters,2006,60(4):455-458.
    232 Kannan S, Vieira S I, Olhero S M, et al. Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures[J]. Acta biomaterialia,2011,7(4):1835-1843.
    233 Brown O, McAfee M, Clarke S, et al. Sintering of biphasic calcium phosphates [J]. Journal of Materials Science:Materials in Medicine,2010,21(8): 2271-2279.
    234 Ryu H S, Hong K S, Lee J K, et al. Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility[J]. Biomaterials,2004,25(3):393-401.
    235孙璐薇.微波烧结含CO32-的多孔β-TCP/HA双相生物陶瓷材料及其性能的研究[D].四川大学,博士学位论文,2004.
    236吴苏,鹿安理,白向钮,等.陶瓷材料的微波烧结机理探讨[J].航空材料学报,1996,16(4):24-29.
    237常爱民.氧化物电子陶瓷材料的微波处理研究[D].电子科技大学,博士学位论文,2002.
    238 Janney M A, Kimrey H D, Schmidt M A, et al. Grain Growth in Microwave-Annealed Alumina[J]. Journal of the American Ceramic Society,1991,74(7): 1675-1681.
    239 Freeman S A, Booske J H, Cooper R F. Microwave field enhancement of charge transport in sodium chloride[J]. Physical review letters,1995,74(11): 2042-2045.
    240 Rybakov K I, Semenov V E. Possibility of plastic deformation of an ionic crystal due to the nonthermal influence of a high-frequency electric field[J]. Physical Review B,1994,49(1):64-67.
    241 Hornez J C, Chai F, Monchau F, Blanchemain N, Descamps M, Hildebrand H F. Biological and physicochemical assessment of hydroxyapatite (HA) with different porosity[J]. Biomolecular Engineering,2007,24(5):505-509.
    242 Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials,2005,26(27):5474-5491.
    243 Jones A C, Arns C H, Hutmacher D W, Milthorpe B K, Sheppard A P, Knackstedt M A. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth[J]. Biomaterials,2009,30(7):1440-1451.
    244 Woo K M, Seo J, Zhang R, et al. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds[J]. Biomaterials, 2007,28(16):2622-2630.
    245 Characterization of porous solids and powders:surface area, pore size and density[M]. Springer,2004.
    246 何贤昶.陶瓷材料概论[M].上海科学普及出版社,2005:130-171.
    247 Falamaki C, Afarani M S, Aghaie A. Initial sintering stage pore growth mechanism applied to the manufacture of ceramic membrane supports [J]. Journal of the European Ceramic Society,2004,24(8):2285-2292.
    248 景晓宁,赵建华.固相烧结后期晶粒和气孔拓扑生长演化的二维相场模拟[J].材料科学与工程学报,2003,21(2):170-173.
    249 殷庆瑞,祝炳和.功能陶瓷和微观结构性能与制备技术[M].北京:冶金工业出版社,2005:130-192.
    250 Lu G Q. Evolution of the pore structure of a ceramic powder compact during sintering[J]. Journal of materials processing technology,1996,59(4):297-302.
    251 Bose S, Dasgupta S, Tarafder S, et al. Microwave-processed nanocrystalline hydroxyapatite:Simultaneous enhancement of mechanical and biological properties[J]. Acta biomaterialia,2010,6(9):3782-3790.
    252 骆俊廷,张凯锋,王国峰,等.液相烧结非晶纳米氮化硅陶瓷粉体结晶与相变行为研究[J].粉末冶金技术,2004,22(4):214-217.
    253 Muralithran G, Ramesh S. The effects of sintering temperature on the properties of hydroxyapatite[J]. Ceramics International,2000,26(2):221-230.
    254 Tampieri A, Celotti G, Sszontagh F, Landi E. Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity[J]. Journal of Materials Science:Materials in Medicine,1997,8:29-37.
    255 Ramesh S, Tan C Y, Bhaduri S B, et al. Rapid densification of nanocrystalline hydroxyapatite for biomedical applications[J]. Ceramics international,2007, 33(7):1363-1367.
    256 储成林,王世栋.致密羟基磷灰石(HA)生物陶瓷烧结行为和力学性能[J].功能材料,1 999,30(6):606-609.
    257 Destainville A, Champion E, Bernache-Assollant D, et al. Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate[J]. Materials Chemistry and Physics,2003,80(1):269-277.
    258 Descamps M, Hornez JC, Leriche A. Effects of powder stoichiometry on the sintering of β-tricalcium phosphate [J]. Journal of the European Ceramic Society,2007; 27:2401-2406.
    259 黄煜镔,钱觉时,周小平.基于强度尺寸效应的准脆性材料脆性指标研究[J].工程力学,2006,23(1):38-42.
    260包亦望,金宗哲,黎晓瑞.脆性材料弯曲强度尺寸效应及抗拉强度[J].武汉工业大学学报,1990,12(003):25-29.
    261 Akao M, Aoki H, Kato K. Mechanical properties of sintered hydroxyapatite for prosthetic applications[J]. Journal of Materials Science,1981,16(3):809-812.
    262 Daculsi G, Laboux O, Malard O, et al. Current state of the art of biphasic calcium phosphate bioceramics[J]. Journal of Materials Science:Materials in Medicine,2003,14(3):195-200.
    263 Buser D, Broggini N, Wieland M, et al. Enhanced bone apposition to a chemically modified SLA titanium surface[J]. Journal of dental research,2004, 83(7):529-533.
    264 Ellingsen J E, Johansson C B, Wennerberg A, et al. Improved retention and bone-to-implant contact with fluoride-modified titanium implants [J]. International Journal of Oral & Maxillofacial Implants,2004,19(5):659-666.
    265 齐晓谨,孟洁,孔桦,等.表面微纳米沟槽结构对成纤维细胞黏附和骨架重排的促进作用[J].中国生物医学工程学报,2009,28(6):899-903.
    266 Davies J E, Ajami E, Moineddin R, et al. The roles of different scale ranges of surface implant topography on the stability of the bone/implant interface[J]. Biomaterials,2013,34(14):3535-3546.
    267 Hansson S, Norton M. The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model[J]. Journal of biomechanics,1999,32(8):829-836.
    268 Zhang W, Wang G, Liu Y, et al. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration[J]. Biomaterials,2013,34(13):3184-3195.
    269 Yang H Y, Thompson I, Yang S F, et al. Dissolution characteristics of extrusion freeformed hydroxyapatite-tricalcium phosphate scaffolds[J]. Journal of Materials Science:Materials in Medicine,2008,19(11):3345-3353.
    270 Yuan H, Yang Z, de Bruijn J D, et al. Material-dependent bone induction by calcium phosphate ceramics:a 2.5-year study in dog[J]. Biomaterials,2001, 22(19):2617-2623.
    271 Bohner M, Lematre J, Ring T A. Kinetics of dissolution of β-tricalcium phosphate[J]. Journal of colloid and interface science,1997,190(1):37-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700