用户名: 密码: 验证码:
预处理对纯钛表面微弧氧化膜物相结构与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用JEOL JEM-2100型高分辨透射电子显微镜、HITACHI SU-70型热场发射扫描电镜、MicroNano多模式扫描探针显微镜. Rigaku D/max-rc型X射线衍射仪、FTIR-8400型傅立叶变换红外光谱仪. EG&G(Princeton)PAR2273电化学工作站等先进研究手段,试验研究了纯钛试样微弧氧化工艺过程和氧化膜生长规律,分析了纯钛基体微弧氧化的反应机理,建立了微弧氧化膜生长模型和工艺模型;运用“复合制备工艺+工艺条件设计”的研究方法,系统研究了喷砂、酸蚀、“喷砂+酸蚀”(喷蚀)表面处理方法对纯钛试样的预处理,并对预处理后的试样进行了微弧氧化制备加工,深入分析了喷砂、酸蚀、喷蚀纯钛试样及其微弧氧化膜的表面微观结构、物相组成、结合强度、表面力学性能、润湿性、耐蚀性等内容,探讨了不同预处理方式对纯钛牙种植体试样微弧氧化复合制备工艺的影响;用超声、低温方法辅助了复合制备工艺,对比了制备的样品对羟基磷灰石(HA)沉积的引导能力及其动物体内、体外试验结果,得出以下研究结论:
     纯钛微弧氧化膜表面的微观形貌、粗糙度、显微硬度、膜重、膜厚、物相结构、元素组成等随着氧化时间不同呈现出相应的改变,当氧化20min时纯钛基体微弧氧化膜即生长完成。纯钛微弧氧化工艺模型分析表明其氧化膜微观结构、物相组成等与工艺参数之间存在必然的联系。其中,微弧氧化工艺时间t是最主要的工艺参数,膜层结构及其他各参数都受工艺时间t的影响,工艺参数t决定了微弧氧化的加工时间。另外,纯钛微弧氧化膜还具有电容效应。
     喷砂纯钛基体表面在45s的喷砂时间呈现出一定微观粗糙度与显微硬度的较好组合.HF+HCI混合溶液与基体Ti及其氧化层能够发生酸蚀化学反应,影响了纯钛基体的微观形貌及力学性能,酸蚀纯钛基体表面在90s的酸蚀时间组合了明显的α+β复相组织结构。纯钛基体经过喷砂、酸蚀预处理后复合微弧氧化制备加工时,喷砂纯钛基体微弧氧化膜经过25min生长完成,而酸蚀纯钛基体微弧氧化膜经过15min即可生长完成。不同方式预处理的纯钛基体微弧氧化膜表现出不同的表面微观结构、力学性能、膜层厚度及重量,也表现出不同的物相结构和元素组成,尤其是微弧氧化膜的结合强度、润湿性、耐蚀性等性能不同,说明预处理方式对纯钛试样具有重要的影响。
     喷蚀对纯钛试样主要产生了喷砂和腐蚀的综合作用,纯钛基体经过45s时间喷砂及120s的酸蚀预处理,试样表面具有喷砂和酸蚀综合作用效果,并去除了喷砂作用的残留物。从不同环境条件辅助微弧氧化制备喷蚀纯钛试样表面的特征和特性试验结果研究发现,超声条件辅助制备的喷蚀纯钛微弧氧化试样具有较均匀的表面微孔结构、微孔平均尺寸较大、膜层含有较高的磷酸钙Ca3(PO4)2及Ca,P含量,其结合强度与润湿性也较高,因此制备的试样适合牙种植体与骨组织接触部分的处理;而低温辅助微弧氧化制备的喷蚀纯钛试样具有较低的表面微观粗糙度、表面微孔尺寸较小,尤其是其膜层耐蚀性得到大幅提高的同时,结合强度与润湿性无明显降低,因此适合牙种植体与软组织接触部分的处理。
     用不同预处理工艺及不同环境辅助条件下微弧氧化制备的纯钛试样,经过模拟体液(SBF)浸泡及仿生矿化后,试样表面出现了不同微观形貌和沉积重量的HA晶体,其中喷蚀纯钛基体微弧氧化膜对HA的引导能力最强。通过对复合工艺制备的纯钛试样表面L929成纤维细胞黏附、伪足形态和增殖,以及对种植体试样在大鼠皮下种植的外观表现和软组织切片研究发现,制备的牙种植体试样生物活性和生物相容性良好。
This paper studies titanium micro-arc oxidation process and growth rules of its oxide coatings, analyzes reaction mechanisms of micro-arc oxidation on titanium matrix and establish the models of coating growth and treatment process using JEOL JEM-2100High Resolution Transmission Electron Microscope (HRTEM), HITACHI SU-70Field Emission Scanning Electron Microscopy (FE-SEM), MicroNano Multi-mode Scanning Probe Microscopy (MSPM), Rigaku D/max-rc X-ray diffraction (XRD), FTIR-8400Fourier Transform Infrared Spectrometer (FTIR), EG&G Princeton PAR2273Electrochemical Workstation and etc. advanced research tools;to discuss the effects of different pretreatments on the complex preparations in micro-arc oxidation, the paper also systematically studies sandblasting, etching, sandblast-etching (blast-etching) surface pretreatments on titanium samples and their micro-arc oxidation coatings through the "Design-of-complex-preparation-optimization-of-process-condition" methods, deeply analyzes the surface microstructures, phase compositions, bonding strength, mechanical properties, wettability and corrosion resistance of the sandblasted, etched, blast-etched titanium specimen surfaces and their micro-arc oxidation coatings as well as the samples prepared by assistant conditions of ultrasound and low temperature, comparing the hydroxyapatite (HA)-inducing ability and the animal in vivo/vitro test. The achieved conclusions include:
     The titanium micro-arc oxidation coating surfaces'morphology, microroughness, hardness, weigh, thickness, phase and element composition vary with different oxidation time correspondingly, and the micro-arc oxidation coatings finish growing on pure titanium at20min. The models of titanium micro-arc oxidation process indicate certain links between the microstructures or phase compositions of oxide coatings and the process parameters, in which the treatment time t is the most necessary one, and it determines the intensity of oxidation process, affecting the coatings' microstructures and the other parameters. In addition, titanium micro-arc oxidation coating also exhibits a capacitive effect.
     The surface of sandblasted titanium substrate performs a better combination of microroughness and hardness at the blasting intensity of45s. The titanium substrate and its oxide film are etched in the mixed HF-HCI-solution, being influenced on its microstructure and mechanical properties, and the surface of etched titanium substrate shows a distinct combination of α-β-phase structure at the etching intensity of90s. Afer titanium substrates are pretreated with complex preparations, the micro-arc oxidation coating on sandblasted substrate completes in25min, while it on acid-etched substrate completes in15min. The micro-arc oxidation coatings on differently pretreated titanium substrates perform varied surface microstructures, mechanical properties, coating thicknesses and weights as well as varied phase structures and elemental compositions, and especially perform bonding strength, wettability, corrosion resistance or other properties describing that the pretreatments has a significant influence on the titanium samples.
     Blast-etching mainly produces a compound function on the titanium samples. When the substrate is sandblasted for45s and etched for120s, its so-prepared surface synthesizes a complex effect of the combined sandblasting and acid-etching, being got rid of the sandblasting residuals. The test results of characterization and properties of the coatings prepared in different assistant conditions show that the micro-arc oxidation coating on blast-etched titanium substrate in ultrasonic assistant condition has a more uniform surface microstructure, bigger micropore size, higher contents of Ca3(PO4)2and Ca, P elements together with a higher wettability and bonding strength, indicating it suitable for the contact with bone tissues; while the micro-arc oxidation coating on blast-etched titanium substrate in low-temperature assistant condition has a smaller surface microroughness and micropore size, improving corrosion resistance without reduced wettability and bonding strength, therefore indicating it suitable for the contact with soft tissues.
     When the titanium micro-arc oxidation samples which are prepared by different pretreatments and assistant conditions soak in simulated body fluid (SBF) and are mineralized biomimetically, they deposit varied morphologies and weights of HA layers, in which the blast-etched titanium substrate exhibits the best HA-inducing ability. It is found favourable bioacivities and biocompatibilities that L929fibroblast adhesion, morphology of filopodia and its proliferation on prepared titanium samples, as well as the appearance of their subcutaneous implantation and soft tissue biopsies in rats.
引文
[1]顾汉卿,生物医学材料学[M].天津:天津科技翻译出版公司,1993.
    [2]M V de Lima Saintrain, E H A de Souza, A Vieira. SP3-58 Teeth loss impact on elder people's quality of life[J]. Journal of Epidemiology and Community Health,2011,65(Suppl 1):A424-A424.
    [3]Ng Y L, Mann V, Gulabivala K. A prospective study of the factors affecting outcomes of non-surgical root canal treatment:part 2:tooth survival[J]. International endodontic journal,2011,44(7):610-625.
    [4]Roger Narayan, Susmita Bose. Advances in bioceramics and porous ceramics:ceramic engineering and science proceedings[M]. Hoboken:John Wiley & Sons Inc.,2009.
    [5]M V L Saintrain, E H A de Souza. Impact of tooth loss on the quality of life[J]. Gerodontology,2012,29(2):632-636.
    [6]G Rasperini, V I Siciliano, C Cafiero, et al. Crestal bone changes at teeth and implants in periodontally healthy and periodontally compromised patients. A 10-year comparative case-series study[J]. Journal of periodontology,2013(0):1-14.
    [7]翟婧捷,周延民,杨婷婷,等.老年人牙缺失种植义齿修复的疗效[J].中国老年学杂志[J].2011,31(6):930-931.
    [8]孙健,张富强.应用种植体联合天然牙支持可摘局部义齿修复多数牙缺失[J].中国实用口腔科杂志,2012,5(2):83-85.
    [9]贾保军,黄征难,雷鸣,等.创伤性牙缺失伴骨缺损的种植修复临床探讨[J].口腔颌面外科杂志,2011,21(4):265-268.
    [10]G Nordenram, T Davidson, G Gynther, et al. Qualitative studies of patients' perceptions of loss of teeth, the edentulous state and prosthetic rehabilitation:A systematic review with meta-synthesis[J]. Acta Odontologica Scandinavica,2013,71(3-4):937-951.
    [11]Liu Z, Zhang W, Zhang J, et al. Oral hygiene, periodontal health and chronic obstructive pulmonary disease exacerbations[J]. Journal of clinical periodontology,2012,39(1):45-52.
    [12]夏惠丽,周吉武.人工种植牙在修复前牙缺失中的临床总结[J].中国美容医学,2012,21(2):302-303.
    [13]C A Okoro, T W Strine, P I Eke, et al. The association between depression and anxiety and use of oral health services and tooth loss[J]. Community dentistry and oral epidemiology,2012,40(2):134-144.
    [14]N Ravald, C S Johansson. Tooth loss in periodontally treated patients. A long-term study of periodontal disease and root caries[J]. Journal of clinical periodontology,2012,39(1):73-79.
    [15]马盈,孟祥才,王静,等.微弧氧化/电化学沉积钙磷涂层纯钛种植体的骨内植入[J].中国组织工程研究,2013,17(25):4570-4576.
    [16]李莺,李长义.钛种植体表面改性策略及对骨整合的影响[J].中国组织工程研究,2013,17(29):5395-5402.
    [17]Liu H J, Zheng K, Xiao X Z. Research on the friction and wear test between dental prosthetic materials and natural teeth[J]. Advanced Materials Research,2013,718:1451-1455.
    [18]Yun A Y, Shim H W, An J H. Full mouth rehabilitation in a patient with loss of vertical dimension caused by severe tooth loss:a case report[J]. The Journal of Korean Academy of Prosthodontics,2014,52(1):42-47.
    [19]于振涛,韩建业,麻西群,等.生物医用钛合金材料的生物及力学相容性[J].中国组织工程研究,2013,17(25):4707-4714.
    [20]梁兴圆.牙缺失的治疗[J].世界最新医学信息文摘,2012,12(12):83-83.
    [21]Gerritsen A E, Allen P F, Witter D J, et al. Tooth loss and oral health-related quality of life:a systematic review and meta-analysis[J]. Health Qual Life Outcomes,2010,8(126):552.
    [23]刘宜勇,生物医用钛材料及其表面改性[M].北京:化学工业出版社,2008.
    [24]Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, et al. An Introduction to Materials in Medicine[M]. London:Academic Press,1996.
    [25]Xuanyong L, Paulk C, Chuanxian D, et al. Surface modification of titanium,titanium alloys and related materials for biomedical applications[J]. Material Science Engineering,2004,47(1):49-121.
    [26]Stanley A. Brown, Jack E. Lemons. Medical applications of titanium and its alloys:the material and biological issues[M]. Danvers:ASTM Pubication, 1996.
    [27]吕宇鹏,马泉生.医用钛及钛合金种植体材料的研究进展[J].中国口腔种植学杂志,2000,5(1):43-49.
    [28]H. Matsuno, A. Yokoyama, F. Watari, et al. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium[J]. Biomaterials,2001,22:1253-1262.
    [29]Y. W. Gu, B. Y. Tay, C. S. Lim, et al. Biomimetic deposition of apatite coating on surface-modified NiTi alloy[J]. Biomaterials,2005,26: 6916-6923.
    [30]I. K. Oh, N. Nomura, N. Masahashi, et al. Mechanical properties of porous titanium compacts prepared by powder sintering[J]. Scripta. Mater.2003, 49:1197-1202.
    [31]B. Coluzzi, A. Biscarini, R. Campanella, et al. Effect of thermal cycling through the martensitic transition on the internal friction and Toung's modulus of a Ni50.8Ti49.2 alloy[J]. J. Alloys. Comp.2000,310:300-305.
    [32]B. Finet, G. Weber, R.Cloots. Titanium release from dental implants:an in vivo study on sheep[J]. Mater. Lett.2000,43:159-165.
    [33]郭泽鸿,周磊.钛种植体表面微弧氧化膜的生物改性研究进展[J].口腔颌面外科杂志,2007,17(4):362-365.
    [34]B. G. Keselowsky, D. M. Collard, A. J. Garcia, Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion[J]. J. Biomed. Mater. Res.2003,66A: 247-259.
    [35]M. Long, H. J. Rack. Titanium alloys in total joint replacement-materials science perspective[J]. Biomaterials,1998,19:1621-1639.
    [36]G. Rondelli, B. Vincentini. Localized corrosion behavior in simulated human body fluids of commercial NiTi orthodontic wires[J]. Biomaterials, 1999,20:785-792.
    [37]张玉梅,郭天文,李佐臣.钛及钛合金在口腔科应用的研究方向[J].生物医学工程学杂志,2000,17(2):206-208.
    [38]Y. Okazaki, E. Nishimura. Effect of metal released from Ti alloy wear powder on cell viability[J]. Mater. Trans.2000,41:1247-1255.
    [39]H. Weinans, D. R. Sumner, R. lgloria, et al. Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models[J]. J. Biomech.2000,33:809-817.
    [40]E. Eisenbarth, D. Velten, M. Muller, et al. Biocompatibility of β-stabilizing elements of titanium alloys[J]. Biomaterials,2004,25:5705-5713.
    [41]张鹏,苏佳灿,许硕贵.镍钛形状记忆合金的表面改性对其生物相容性的影响[J].国际生物医学工程杂志,2006,29(1):39-41.
    [42]Y. M. Zhang, Y. M. Zhao. Surface energy analysis of treated titanium and effects on cell adhesion[J]. Rare. Metal. Mat. Eng.2004,33:518-521.
    [43]Ong J L, Chan D C N. Hydroxyapatite and their use as coatings in dental implants:a review[J]. Critical Reviews in Biomedical Engineering,2000, 28(5&6):667-707.
    [44]G. M. Vidigal, L. C. Aragones, A. Campos, et al. Histomorphometric analyses of hydroxyapatite-coated and uncoated titanium dental implants in rabbit cortical bone[J]. Implant. Dent.1999,8:295-302.
    [45]Knabe C, Klar F, Fitzner R, et al. In vitro investigation of titanium and hydroxyapatite dental implant surfaces using a rat bone marrow stromal cell culture system[J]. Biomaterials,2002,23(15):3235-3245.
    [46]M. Uchida, H. M. Kim, T. Kokubo, et al. Structural dependence of apatite formation on titania gels in a simulated body fluid[J]. J. Biomed. Mater. Res.2003,64A:164-170.
    [47]N. Moritz, M. Jokinen, T. Peltola, et al. Local induction of calcium phosphate formation on TiO2 coatings on titanium via surface treatment with a CO2 laser[J]. J. Biomed. Mater. Res.2003,65A:9-16.
    [48]何莉萍,吴振军,陈宗璋等.纳米晶状磷酸钙盐/A1203-Ti生物复合材料的制备与结构表征[J].无机化学学报,2004,20:273-277.
    [49]M. Hamadouche, A. Meunier, D. C. Greenspan, et al. Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses[J]. J. Biomed. Mater. Res.2001,54:560-566.
    [50]崔福斋,冯庆玲.生物材料学[J].北京:科学出版社,1996.
    [51]C. Lavos-Valereto, B. Konig, C. Rossajr, et al. A study of histological responses from Ti-6Al-7Nb alloy dental implants with and without plasma-sprayed hydroxyapatite coating in dogs[J]. J. Mater. Sci. Mater. Med.2001,12:273-276.
    [52]C. X. Wang, M. Wang, X. Zhou. Nucleation and growth of apatite on chemically treated titanium alloy:an electrochemical impedance spectroscopy study[J]. Biomaterials,2003,24:3069-3077.
    [53]包崇云,张兴栋.磷酸钙生物材料固有骨诱导性的研究现状与展望[J].生物医学工程学杂志,2006,23(2):442-445.
    [54]焦燕,吕宇鹏,王爱娟,等.特殊形态羟基磷灰石的制备及研究进展[J].生物骨科材料与临床研究,2009,6(2):47-51.
    [55]H. Zreiqat, S. M. Valenzuela, B. B. Nissan, et al. The effect of surface chemistry modification of titanium alloy on signaling pathways in human osteoblasts[J]. Biomaterials,2005,26:7579-7586.
    [56]肖桂勇,吕宇鹏,朱瑞富,等.热处理和SBF浸泡对羟基磷灰石涂层力学性能的影响[J].材料热处理学报,2007,28(B08):146-149.
    [57]朱景川,储成林,尹钟大.羟基磷灰石/钛生物功能梯度材料种植体与骨的结合强度[J].稀有金属材料与工程,2003,32(6):432-335.
    [58]D. Q. Wei, Y. Zhou, D. C. Jia, et al. Chemical treatment of TiO2-based coatings formed by plasma electrolytic oxidation in electrolyte containing nano-HA, calcium salts and phosphates for biomedical applications[J]. Appl. Surf. Sci.2008,254:1775-1782.
    [59]S. H. Oh, R. R. Finones, C. Daraio, et al. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes[J]. Biomaterials,2005,26:4938-4943.
    [60]吕宇鹏,朱瑞富.等离子喷涂磷灰石陶瓷涂层研究进展[J].生物医学工程学杂志,2001,18(3):451-455.
    [61]J. H. Ni, Y. L. Shi, F. Y. Yan, et al. Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation[J]. Mater. Res. Bul.2008,43:45-53.
    [62]L. S. Ozyegin, F. N. Oktar, G. Goller, et al. Plasma-aprayed bovine hydroxyapatite coatings[J]. Mater. Lett.2004,58(21):2065-2609.
    [63]陈传忠,王佃刚,徐萍,等.激光熔覆HA生物陶瓷梯度涂层的微观组织结构[J].中国激光,2004,31(8):1021-1024.
    [64]W. Xu, W. Y. Hu, M. H. Li, et al. Sol-gel derived hydroxyapatite/titania biocoatings on titanium substrate[J]. Mater. Lett.2006,60:1575-1578.
    [65]S. Manara, F. Paolucci, B. Palazzo, et al. Electrochemically-assisted deposition of biomimetic hydroxyapatite-collagen coatings on titanium plate[J]. Inorg. Chim. Acta.2008,361:1634-1645.
    [66]J. Wang, C. P. Huang, Q. B. Wan, et al, Characterization of fluoridated hydroxyapatite/zirconia nano-composite coating deposited by a modified electrocodeposition technique[J]. Surf. Coat. Technol.2010,204: 2576-2582.
    [67]M. H. Prado Da Silva, J. H. C. Lima, G. A. Soares, et al. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium[J]. Surf. Coat. Technol.2001,137:270-276.
    [68]王宏元,朱瑞富,吕宇鹏,等.微弧氧化工艺对钛及钛合金表面陶瓷膜性能影响的研究进展[J].材料热处理学报,2012,33(S2):1-6.
    [69]张娴,肖桂勇,焦燕,等.304不锈钢表面磷酸锌转化膜的制备及表征[J]材料热处理学报,2013,34(S2):205-208.
    [70]A. Rakngarm, Y. Miyashita,Y. Mutoh. Formation of hydroxyapatite layer on bioactive Ti and Ti-6A1-4V by simple chemical technique[J]. J. Mater. Sci: Mater. Med.2008,19:1953-1961.
    [71]C. K. Wang, J. H. Chern Lin, C. P. Ju, et al. Structural characterization of pulsed laser-deposited hydroxyapatite film on titanium substrate[J]. Biomaterials,1997,18:1331-1338.
    [72]吕宇鹏,陈艳梅,陈鹭滨,等.热处理对羟基磷灰石涂层相组成,表面形貌与结合强度的影响[J].功能材料,2009(10):1713-1715.
    [73]A. Bigi, E. Boanini, B. Bracci, et al. Nanocrystalline hydroxyapatite coatings on titanium:a new fast biomimetic method[J]. Biomaterials,2005, 26:4085-4089.
    [74]Guo C Y, Matinlinna J P, Tang A T H. A novel effect of sandblasting on titanium surface:static charge generation[J]. Journal of Adhesion Science and Technology,2012,26(23):2603-2613.
    [75]Balza J C, Zujur D, Gil L, et al. Sandblasting as a surface modification technique on titanium alloys for biomedical applications:abrasive particle behavior[C]. IOP Conference Series:Materials Science and Engineering. IOP Publishing,2013,45(1):004-012.
    [76]Wang H Y, Zhu R F, Lu Y P, et al. Structures and properties of layered bioceramic coatings on pure titanium using a hybrid technique of sandblasting and micro-arc oxidation[J]. Applied Surface Science,2013, 282:271-280.
    [77]Jabbari Y S A L, Zinelis S, Eliades G. Effect of sandblasting conditions on alumina retention in representative dental alloys[J]. Dental materials journal,2012,31(2):249-255.
    [78]Mizuno H, Yabutsuka T, Yao T. Fabrication of bioactive apatite nuclei-precipitated titanium alloys by using sandblasting[J]. Key Engineering Materials,2013,529:553-558.
    [79]Yamada M, Ueno T, Minamikawa H, et al. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation[J]. Clinical oral implants research, 2013,24(9):991-1001.
    [80]Wang H Y, Zhu R F, Lu Y P, et al. Effect of sandblasting intensity on microstructures and properties of pure titanium micro-arc oxidation coatings in an optimized composite technique[J]. Applied Surface Science, 2014,292:204-212.
    [81]Yoshida E, Yoshimura Y, Uo M, et al. Influence of nanometer smoothness and fibronectin immobilization of titanium surface on MC3T3-E1 cell behavior[J]. Journal of Biomedical Materials Research Part A,2012,100(6): 1556-1564.
    [82]Deng F, Zhang W, Zhang P, et al. Improvement in the morphology of micro-arc oxidised titanium surfaces:a new process to increase osteoblast response[J]. Materials Science and Engineering:C,2010,30(1):141-147.
    [83]Sang-Chu Jung, Kang Lee, Byung-Hoon Kim. Biocompatibility of plasma polymerized sandblasted large grit and acid titanium surface[J]. Thin Solid Films 521 (2012) 150-154.
    [84]C. Y. Liang, X. J. Yang, Q. Wei, et al. Comparison of calcium phosphate coatings formed on femtosecond laser-induced and sand-blasted titanium[J]. Applied Surface Science 255 (2008) 515-518.
    [85]L. Saldanal, V. Barranco, J. L. Gonzalez-Carrasco, et al. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6A14V alloy [J]. Journal of Biomedical Materials Research Part A 81A(2) (2007)334-346.
    [86]Buser D, Janner S F M, Wittneben J G, et al.10-Year Survival and Success Rates of 511 Titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients[J]. Clinical implant dentistry and related research,2012,14(6):839-851.
    [87]Valderrama P, Bornstein M M, Jones A A, et al. Effects of implant design on marginal bone changes around early loaded, chemically modified, sandblasted acid-etched-surfaced implants:a histologic analysis in dogs[J]. Journal of periodontology,2011,82(7):1025-1034.
    [88]Prodanov L, Lamers E, Wolke J, et al. In vivo comparison between laser-treated and grit blasted/acid etched titanium[J]. Clinical oral implants research,2014,25(2):234-239.
    [89]Gobbato L, Arguello E, Martin I S, et al. Early bone healing around 2 different experimental, HA grit-blasted, and dual acid-etched titanium implant surfaces. A pilot study in rabbits[J]. Implant dentistry,2012,21(6): 454-460.
    [90]Degidi M, Artese L, Piattelli A, et al. Histological and immunohistochemical evaluation of the peri-implant soft tissues around machined and acid-etched titanium healing abutments:a prospective randomised study[J]. Clinical oral investigations,2012,16(3):857-866.
    [91]Bornstein M M, Wittneben J G, Bragger U, et al. Early loading at 21 days of non-submerged titanium implants with a chemically modified sandblasted and acid-etched surface:3-year results of a prospective study in the posterior mandible[J]. Journal of periodontology,2010,81(6):809-818.
    [92]Morton D, Bornstein M M, Wittneben J G, et al. Early loading after 21 days of healing of nonsubmerged titanium implants with a chemically modified sandblasted and acid-etched surface:two-year results of a prospective two-center Study[J]. Clinical implant dentistry and related research,2010, 12(1):9-17.
    [93]Simka W, Sadkowski A, Warczak M, et al. Characterization of passive films formed on titanium during anodic oxidation[J]. Electrochimica Acta, 2011,56(24):8962-8968.
    [94]Park H H, Park I S, Kim K S, et al. Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation[J]. Electrochimica Acta,2010,55(20):6109-6114.
    [95]Yamada M, Ueno T, Minamikawa H, et al. Early-stage osseointegration capability of a submicro featured titanium surface created by microroughening and anodic oxidation[J]. Clinical oral implants research, 2013,24(9):991-1001.
    [96]Iwai-Yoshida M, Shibata Y, Suzuki D, et al. Antioxidant and osteogenic properties of anodically oxidized titanium[J]. Journal of the mechanical behavior of biomedical materials,2012,13:230-236.
    [97]Huang X, Liu Z. Growth of titanium oxide or titanate nanostructured thin films on Ti substrates by anodic oxidation in alkali solutions[J]. Surface and Coatings Technology,2013,232:224-233.
    [98]Szesz E M, de Souza G B, Santos E, et al. Nanomechanical properties of bioactive Ti surfaces obtained by NaOH-based anodic oxidation and alkali treatment[J]. Key Engineering Materials,2012,493:524-529.
    [99]Gomez Sanchez A, Schreiner W, Ballarre J, et al. Surface modification of titanium by anodic oxidation in phosphoric acid at low potentials Part 2 In vitro and in vivo study[J]. Surface and Interface Analysis,2013,45(9): 1395-1401.
    [100]王志刚,朱瑞富,吕宇鹏,等.钛,镁,铝合金的表面微弧氧化技术[J].陶瓷,2007(1):17-20.
    [101]东青,陈传忠,王德云,等.铝及其合金的微弧氧化技术[J].中国表面工程,2006,18(6):5-9.
    [102]王德云,东青,陈传忠,等.微弧氧化技术的研究进展[J].硅酸盐学报,2005,33(9):1133-1138.
    [103]A. L. Yerokhin, X. Nie, A. Leyland, et al. Plasma Electrolysis for Surface Engineering[J]. Surface and Coatings Technology.1999,122:73-93.
    [104]A. V. Nikolacv, G. A. Markov, B. I. Peshchevitskii. A new phenomenon electrolysis[J]. Izv Sib Otd Akad Nauk Sssr Ser Khim 1977,5:22.
    [105]P. Kurze, H. G. Krysmann. Application fields of anof layers and composites[J]. Crystal Research and Technology.1986,21(12):1603.
    [106]Ho-Jun Song, Ji-Woo Kim, Min-Suk Kook, et al. Fabrication of hydroxyapatite and TiO2 nanorods on microarc-oxidized titanium surface using hydrothermal treatment[J]. Applied Surface Science 256 (2010) 7056-7061.
    [107]G. L. Zhao, X. Li, L. Xia, et al. Structure and apatite induction of a microarc-oxidized coating on a biomedical titanium alloy[J]. Applied Surface Science 257 (2010) 1762-1768.
    [108]Z. Q. Yao, Yu. Ivanisenko, T. Diemant, et al. Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation[J]. Acta Biomaterialia 6 (2010) 2816-2825.
    [109]Dong Q, Chen C, Wang D, et al. Research status about surface modification of biomedical Ti and its alloys by micro-arc oxidation[J]. Surface Review and Letters,2006,13(01):35-43.
    [110]马楚凡,李冬梅,蒋百灵,等.钛种植体表面微弧氧化生物改性的研究[J].第四军医大学学报,2004,25(1):4-7.
    [111]Xue W, Wang C, Li Y, et al. Effect of microarc discharge surface treatment on the tensile properties of Al-Cu-Mg alloy [J]. Materials Letters, 2002(56):737-743.
    [112]Sameer R. Paital, Narendra B. Dahotre. Calcium phosphate coatings for bio-implant applications:Materials, performance, factors, and methodologies[J]. Materials Science and Engineering,2009 (66):1-70.
    [113]L. O. Snizhko, A. L. Yerokhin, A. Pilkington, et al. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions[J]. Electrochemistry Acta.2004,49:2085-2095.
    [114]T. H. Teh, A. Berkani, S. Mato, et al. Initial stages of plasma electrolytic oxidation of titanium[J]. Corrosion Science.2003,45:2757-2768.
    [115]D. K. Hagter. Structure and Properties of ANOF Layers[J]. Crystal Research and Technology.1984,19(1):93-99.
    [116]王丹宁,赵宝红.钛种植体表面微弧氧化技术研究进展[J].中国实用口腔科杂志,2010,3(9):570-573.
    [117]慕伟意,李争显,杜继红,等.钛合金表面微弧氧化耐磨和耐蚀膜层的研究进展[J].钛工业进展,2010(6):1-6.
    [118]Han Y, Sun J, Huang X. Formation mechanism of HA-based coatings by micro-arc oxidation[J]. Electrochemistry Communications,2008,10(4): 510-513.
    [119]Krysmann W, Kurze P, Dittrich K H, et al. Process characteristics and parameters of anodic oxidation by spark discharge (ANOF)[J]. Crystal Research and Technology,1984,19(7):973-979.
    [120]Yerokhin A L, Leyland A, Matthews A. Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation[J]. Applied surface science,2002,200(1):172-184.
    [121]Vijh A K. Mechanism of anodic spark deposition[J]. Corros. Sci,1971,11: 411.
    [122]王宏元,朱瑞富,王志刚,等.纯钛微弧氧化阳极工艺过程模型的建立及实验研究[J].材料工程,2012(7):34-38.
    [123]Wang H Y, Zhu R F, Lu Y P, et al. Preparation and mechanism of controllable micropores on bioceramic TiO2 coatings by plasma electrolytic oxidation[J]. Surface Review and Letters,2013,20(05).
    [124]S. Ikonopisov. Process Characteristics and parameters of anodic oxidation by spark discharge[J]. Electrochemica Acta,1977,22:1077.
    [125]P. I. Butyagin, Ye. V. Khokhryakov, A. I. Mamaev. Microplasma systems for creating coatings on aluminium alloys[J]. Materials Letters,2003, 57(11):1748-1751.
    [126]J. M. Albella, I. Montero, J. M. Martinez-Duart. Electron injection and avalanche during the anodic oxidation of tantalum[J]. Journal of the Electrochemical Society,1984,131(5):1101-1108.
    [127]Han Y, Hong S H, Xu K. Structure and in vitro bioactivity of titania-based films by micro-arc oxidation[J]. Surface and coatings technology,2003, 168(2):249-258.
    [128]Zhu X, Ong J L, Kim S, et al. Surface characteristics and structure of anodic oxide films containing Ca and P on a titanium implant material [J]. Journal of biomedical materials research,2002,60(2):333-338.
    [129]Huang P, Xu K W, Han Y. Preparation and apatite layer formation of plasma electrolytic oxidation film on titanium for biomedical application[J]. Materials Letters,2005,59(2):185-189.
    [130]Baszkiewicz J, Krupa D, Mizera J, et al. Corrosion resistance of the surface layers formed on titanium by plasma electrolytic oxidation and hydrothermal treatment[J]. Vacuum,2005,78(2):143-147.
    [131]Zhu X, Kim K H, Jeong Y. Anodic oxide films containing Ca and P of titanium biomaterial[J]. Biomaterials,2001,22(16):2199-2206.
    [132]Song W H, Jun Y K, Han Y, et al. Biomimetic apatite coatings on micro-arc oxidized titania[J]. Biomaterials,2004,25(17):3341-3349.
    [133]Han Y, Xu K. Photoexcited formation of bone apatite-like coatings on micro-arc oxidized titanium[J]. Journal of Biomedical Materials Research Part A,2004,71(4):608-614.
    [134]Ma C F, Li D M, Jiang B L, et al. Study on surface bio-modification of titanium implant using microarc oxidation technology [J]. J Fourth Mil Med Univ,2004,25(1):4-7.
    [135]王庆良,徐伶俐,葛世荣,等.钛合金微弧氧化陶瓷层的结构研究[J].中国表面工程,2007,20(5):11-16.
    [136]Akin F A, Zreiqat H, Jordan S, et al.Preparation and analysis of macroporous TiO2 films in Ti surfaces for bone-tissue implants[J]. Biomedical Materials Research,2001,57(4):588-596.
    [137]Han Y, Hong S H, Xu K W, et al. Synthesis of nanocrystalline titania films by microarc oxidation[J]. Materials Letters,2002(56):744-747.
    [138]Song W H, Jun Y K, Han Y, et al. Biomimetic apatite coatings on microarc oxidized titania[J]. Biomaterials,2004,25(17):3341-3349.
    [139]Kim H M, Miyaji F, Kokubo T, et al. Bonding strength of bonelike apatite layer to Ti matal substrate[J]. Biomedical Materials Research,1997, 38(2):121-127.
    [140]Yeung W K, Reilly G C, Matthews A, et al. In vitro biological response of plasma electrolytically oxidized and plasma-sprayed hydroxyapatite coatings on Ti-6Al-4V alloy[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2013,101(6):939-949.
    [141]Park J W, Kim Y J, Jang J H. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces [J]. Clinical oral implants research,2010,21(4):398-408.
    [142]Ma C, Nagai A, Yamazaki Y, et al. Electrically polarized micro-arc oxidized TiO2 coatings with enhanced surface hydrophilicity[J]. Acta biomaterialia,2012,8(2):860-865.
    [143]Bayati M R, Molaei R, Kajbafvala A, et al. Investigation on hydrophilicity of micro-arc oxidized TiO2 nano/micro-porous layers[J]. Electrochimica Acta,2010,55(20):5786-5792.
    [144]Li J X, Zhang Y M, Han Y, et al. Effects of micro-arc oxidation on bond strength of titanium to porcelain[J]. Surface and Coatings Technology, 2010,204(8):1252-1258.
    [145]Shokouhfar M, Dehghanian C, Montazeri M, et al. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance:Part II[J]. Applied Surface Science,2012,258(7):2416-2423.
    [146]Wang H R, Liu F, Zhang Y P, et al. Preparation and properties of titanium oxide film on NiTi alloy by micro-arc oxidation[J]. Applied Surface Science,2011,257(13):5576-5580.
    [147]Wang H, Liu F, Zhang Y, et al. Structure, corrosion resistance and apatite-forming ability of NiTi alloy treated by micro-arc oxidation in concentrated H2SO4[J]. Surface and Coatings Technology,2012,206(19): 4054-4059.
    [148]Bai Y, Kim K A, Park I S, et al. In situ/composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing[J]. Materials Science and Engineering:B,2011,176(15):1213-1221.
    [149]Bai Y, Park I S, Lee S J, et al. One-step approach for hydroxyapatite-incorporated TiO2 coating on titanium via a combined technique of micro-arc oxidation and electrophoretic deposition[J]. Applied Surface Science,2011,257(15):7010-7018.
    [150]朱瑞富,王志刚,王爱娟,等.纯钛表面微弧氧化多孔陶瓷膜的结构特性[J].材料热处理学报,2009,30(2):129-133.
    [151]文士美,赵中伟.微弧氧化法直接合成CaTi4(P04)6生物陶瓷膜[J].粉末冶金材料科学与工程,2005,10(3):191-194.
    [152]郭宝刚,梁军,田军,等.阳极电压对钛合金微弧氧化膜性能的影响[J]电镀与精饰,2005,27(3):1-4.
    [153]王健平,李星海,孟祥才,等.微量元素与钛基种植体微弧氧化陶瓷膜生物活性的关系[J].中国组织工程研究与临床康复,2010,14(3):509-512.
    [154]Daqing Wei, Yu Zhou, Dechang Jia, et al. Effect of applied voltage on the structure of microarc oxidized TiO2-based bioceramic films[J]. Materials Chemistry and Physics,2007 (104):177-182.
    [155]朱瑞富,王志刚,肖桂勇,等.电极电压对纯钛表面微弧氧化陶瓷膜结构及特性的影响[J].硅酸盐学报,2008,36(5):631-635.
    [156]程海梅,宁成云,郑华德,等.负向电压对纯钛微弧氧化膜层结构特征的影响[J].稀有金属材料与工程,2009,38(6):1116-1118.
    [157]朱瑞富,王志刚,王爱娟,等.电极频率对纯钛表面微弧氧化陶瓷膜特性的影响[J].材料热处理学报,2008,29(5):151-154.
    [158]李全军,吴汉华,汪剑波,等.脉冲频率对纯钦微弧氧化膜生长特性的影响[J].无机材料学报,2006,21(2):488-492.
    [159]Ho-Jun Song, Kyung-Ha Shin, Min-Suk Kook, et al. Effects of the electric conditions of AC-type microarc oxidation and hydrothermal treatment solution on the characteristics of hydroxyapatite formed on titanium[J]. Surface & Coatings Technology,2010(204):2273-2278.
    [160]Yingjun Wang, Lin Wang, Huade Zheng, et al. Effect of frequency on the structure and cell response of Ca-and P-containing MAO films[J]. Applied Surface Science,2010 (256) 2018-2024.
    [161]朱瑞富,王志刚,王宏元,等.氧化时间对纯钛表面微弧氧化膜结构特性的影响[J].硅酸盐学报,2011,39(11):1825-1829.
    [162]李建学,张玉梅,憨勇,等.不同时间对钛表面微弧氧化处理后与瓷结合强度的影响[J].第四军医大学学报,2006,27(23):2113-2116.
    [163]王宏元,朱瑞富,王志刚,等.TA2工业纯Ti微弧氧化陶瓷膜生长规律及电容效应[J].功能材料,2012,43(20):2763-2766.
    [164]P. Katekaew, W. Veerasai, A. Aeimbhu, et al. Effect of micro-arc oxidation time on the Ca-P coating layer properties formed on commercially pure titanium[J]. IFMBE Proceedings,2010(31):1200-1203.
    [165]李建学,张玉梅,憨勇,等.占空比和脉冲频率对钛微弧氧化表面处理后与瓷结合强度的影响[J].实用口腔医学杂志,2007,23(1):19-23.
    [166]王亚明,雷廷权,蒋百灵,等.交流窄脉冲占空比调制对钛合金微弧氧化陶瓷涂层的影响[J].稀有金属材料与工程,2005,34(23):29-333.
    [167]Suslick K S. Sonochemistry and its application[J]. Science,1990, 247(4948):1373-1375.
    [168]张爱琴.超声辅助微弧氧化镁与钛基新型生物涂层的制备与性能研究[D].佳木斯大学硕士学位论文,2010.
    [169]Deng Z N, Liu J S, He Y, et al. Synthesis and properties of hydroxyapatite-containing porous titania coating on titanium by ultrasonic shot peening and micro-arc oxidation[J]. Advanced Materials Research, 2013,690:2081-2084.
    [170]Li M, Li D, Qu L, et al. Study on Ag bio-coatings on titanium alloy by ultrasonic auxiliary micro-arc oxidation[C] Strategic Technology (IFOST), 20116th International Forum on IEEE,2011,1:197-201.
    [171]Zhao X C, Xiao G Y, Zhang X, et al. Ultrasonic induced rapid formation and crystal refinement of chemical conversed hopeite coating on titanium [J]. The Journal of Physical Chemistry C,2014,118(4),1910-1918.
    [172]He K., Xiao G. Y, Xu W. H., et al. Ultrasonic enhancing amorphization during synthesis of calcium phosphate[J]. Ultrasonics sonochemistry 2014, 21(2):499-504.
    [173]Li L H, Kong Y M, Kim H W, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation[J]. Biomaterials,2004,25(14):2867-2875.
    [174]Nie X, Leyland A, Matthews A. Low temperature deposition of Cr (N)/TiO2 coatings using a duplex process of unbalanced magnetron sputtering and micro-arc oxidation[J]. Surface and Coatings Technology, 2000,133:331-337.
    [175]满红娜,周英杰.钛合金低温脉冲微弧阳极氧化技术[J].沈阳航空工业学院学报,2005,21(4):38-41.
    [176]周英杰,王伟,张春刚.钛合金低温脉冲微弧阳极氧化技术[J].涂料涂装与电镀,2005,3(2):4-9.
    [177]O.P. Terleeva, Yu.P. Sharkeev, A.I. Slonova, et al. Effect of microplasma modes and electrolyte composition on micro-arc oxidation coatings on titanium for medical applications[J]. Surface & Coatings Technology, 2010,253(11):1723-1729.
    [178]朱瑞富,王志刚,王宏元,等.电解液成分对纯钛表面微弧氧化膜结构与生物活性的影响[J].材料热处理学报,2012,33(4):,132-135.
    [179]M. H. Hong, D. H. Lee, K. M. Kim, et al. Improved bonding strength between TiO2 film and Ti substrate by microarc oxidation [J]. Surf. Interface Anal,2010(42):492-496.
    [180]叶冬平,梁伟国,周子强,等.掺锶羟基磷灰石的材料学特性及其生物学评价[J].中国组织工程研究与临床康,2009,13(34):6737-6740.
    [181]焦燕.空心玻璃微球表面仿生沉积磷灰石涂层细胞微载体的研究[D].山东大学博士学位论文,2013.
    [182]王亚明,蒋百灵,雷廷权,等.电参数对Ti6A14V合金微弧氧化陶瓷膜结构特性的影响[J].无机材料学报,2003,18(6):1325-1330.
    [183]陈宏,郝建民,冯忠绪.微弧氧化机理及电击穿模型[J].长安大学学报自然科学版,2008,28(5):116-119.
    [184]Y. Vangolu, E. Arslan, Y. Totik, et al. Optimization of the coating parameters for micro-arc oxidation of Cp-Ti[J]. Surface & Coatings Technology,2010,205(6):1764-1773.
    [185]Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering[J]. Surface and Coatings Technology,1999,122(2):73-93.
    [186]李翰如.电介质物理导论[M].成都:成都科技大学出版,1990.
    [187]A. I. Mamaev, Yu. Yu. Chekanova, Zh. M. Ramazanova. Parameters of pulsating microplasma processes on aluminum and its alloys[J]. Protection of Metals,2000,36(6):605-608.
    [188]王志刚.纯钛表面多孔化及生物活化的研究[D].山东大学硕士学位论文,2006.
    [189]冯长杰,王琦,周雅,等.TC4钛合金微弧氧化膜结构对化学镀Ni-P镀层结合性能的影响[J].航空材料学报,2011,31(5):40-46.
    [190]魏同波,张学俊,王博,等.电流密度对铝合金微弧氧化膜的生长及结合力的影响[J].材料保护,2004,37(4):4-6.
    [191]吕维玲,马颖,陈体军,等.氧化时间对AZ91D镁合金微弧氧化膜微观组织和性能的影响[J].中国有色金属学报,2009,19(8):1385-1391.
    [192]赖晓明,康志新,李元元.AZ31镁合金微弧氧化与有机镀膜的复合表面改性及功能特性[J].中国有色金属学报,2011,21(6):1299-1307.
    [193]李杰,张会臣,高玉周.MB8镁合金疏水/超疏水表面制备与微摩擦特性研究[J].功能材料,2012,43(22):3063-3069.
    [194]康志新,赖晓明,王芬,等.Mg-Mn-Ce镁合金表面超疏水复合膜层的制备及耐腐蚀性能[J].中国有色金属学报,2011,21(2):283-289.
    [195]曹楚南.腐蚀电化学原理[M].北京:化学工业出版社,2004.
    [196]王文礼,AZ91D镁合金的微弧氧化陶瓷层电化学腐蚀行为研究[J].材料热处理技术,2011,40(16):144-146.
    [197]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社2002.
    [198]马颖,冯君艳,马跃洲,等.镁合金微弧氧化膜耐蚀性表征方法的对比研究[J].中国腐蚀与防护学报,2011,30(6):442-448.
    [199]李梁梁,姚忠平,刘新荣,等.镁合金微弧氧化陶瓷膜的制备及耐蚀性能[J].金属热处理,2009,34(8):19-22.
    [200]王亚明,韩晓东,郭立新,等.LY12铝合金表面喷射式微弧氧化工艺研究[J].材料热处理学报,2009(2):121-124.
    [201]陈宏,郝建民,王利捷.镁合金微弧氧化陶瓷层耐蚀性的电化学分析 [J].腐蚀与防护,2004,25(9):383-385.
    [202]Kusano Y, Singh S V, Norrman K, et al. Ultrasound enhanced plasma surface modification at atmospheric pressure[J]. Surface Engineering, 2012,28(6):453-457.
    [203]曲立杰,李慕勤,张二林,等.超声微弧氧化处理镁合金模拟体液中的耐蚀性[J].材料热处理学报,2013,34(3):130-135.
    [204]刘继光,包殿瑞,毕庆伟,等.超声辅助微弧氧化钛合金表面制备含镧涂层的生物相容性评价[J].中国组织工程研究与临床康复,2010,14(29):5351-5354.
    [205]苗波,吕岩,刘苗,等.纯镁超声微弧氧化生物涂层植入体内4周的降解行为[J].中国表面工程,2013,26(3):45-50.
    [206]唐光昕,张人佶,颜永年.多孔二氧化钛涂层的表面形貌[J].清华大学学报:自然科学版,2005,44(11):1445-1447.
    [207]董岩,朱以华,匡继,等.掺碳二氧化钛的制备和其电流变性质[J].无机材料学报,2001,16(5):839-845.
    [208]何明明,莫茂松.核-壳和中空多面体二氧化钛制备,表征及光催化[J].无机化学学报,2013,29(7):1419-1427.
    [209]郑遗凡,李国华,徐铸德.纳米二氧化钛粉体粒径表征研究[J].硅酸盐学报,2004,32(5):642-645.
    [210]周利民,刘峙嵘,黄群武.可控形貌金红石型纳米Ti02的低温水热制备与表征[J].半导体光电,2009,30(4):562-566.
    [211]郭智文.钛合金表面生物活性化及仿生生长羟基磷灰石研究[D].哈尔滨工业大学硕士学位论文,2011.
    [212]赵国亮.低模量钛合金表面等离子喷涂与微弧氧化涂层特性研究[D].哈尔滨工业大学博士学位论文,2010.
    [213]赵佳明,马卫东.细胞粘附性分子层对钛种植体表面的活性化修饰作用[J].口腔医学研究,2013,29(006):512-515.
    [214]马春香.镁锂合金微弧氧化膜抗腐蚀及摩擦磨损性能研究[D].哈尔滨工程大学博士学位论文,2012.
    [215]朱庆振,薛文斌,鲁亮,等.(Al2O3-SiO2)sf/AZ91D镁基复合材料微弧 氧化膜的制备及电化学阻抗谱分析[J].金属学报,2011,47(1):74-80.
    [216]常鸿.工业纯钛MAO膜的形成机制及其理化特性研究[D].吉林大学博士学位论文,2009.
    [217]孙圣淋,吕宇鹏.模拟体液浸泡法评价生物材料的研究与问题[J].材料导报,2011,25(19):96-99.
    [218]M. C. Kuo, S. K. Yen. The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature[J]. Mat. Sci. Eng.2002,20:153-160.
    [219]H. B. Wen, J. G. C. Wolke, J. R. Wijn, et al. Fast precipitation of calcium phosphate layers on titanium induced by simple chemical treatments[J]. Biomatieals,1997,18:1471-1478.
    [220]M. F. Chen, X. J. Yang, Y. Liu, et al. Study on the formation of an apatite layer on NiTi shape memory alloy using a chemical treatment method[J]. Surf. Coat. Technol.2003,173:229-234.
    [221]王晓静.微弧氧化改性纯钛种植体经皮部位生物学性能的实验研究[D]第四军医大学博士学位论文,2012.
    [222]付小明.低弹性模量仿生种植体的基础研究[D].福建医科大学博士学位论文,2013.
    [223]张丽,成炜,刘晓华.纯钛种植体表面不同化学组成的TiO2涂层细胞毒性实验研究[J].中国美容医学,2011,20(9):1403-1405.
    [224]成炜.纯钛种植体表面不同化学组成的Ti02涂层生物学特性研究[D].第四军医大学硕士学位论文,2007.
    [225]马威,刘宝林,王新木,等.微弧氧化处理后纯钛材料不同形貌特点对细胞在其表面附着和增殖的影响[J].中国临床康复,2004,8(14):2618-2620.
    [226]冯庆铃.生物材料导论[M].北京:清华大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700