用户名: 密码: 验证码:
复杂结构SERS基底的设计与构筑及其用于环境检测和催化监测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
得益于纳米技术的快速发展,近些年来,基于纳米敏感材料的敏感元器件与传感技术相结合所构筑的纳米传感器,成为纳米材料科学技术和传统传感技术交叉渗透而开辟的新领域,为新型传感器的制作提供了许多新理念和新方法。其中,基于表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)技术的光纳米传感器是新型传感器领域比较活跃的一个分支。对于SERS技术的发展而言,针对不同的需求设计和制备各种各样的SERS基底一直是SERS领域最重要的研究内容。总的来说,SERS基底材料的稳定性、可控性、可重复性等普适性问题是SERS用于定性分析向定量分析发展的基础条件,研究方法学是必要条件,而应用需求是目标导向。基于此,随着各种纳米结构构筑方法的出现,以及对可靠、可控的SERS活性基底的迫切需要,借助于协同组合化学的研究思想,设计和制备具有极大电磁增强的复杂或组合结构基底成为SERS领域一个重要的研究方向。这里所说的复杂或组合结构SERS基底是指一种或多种纳米单元,通过物理或化学的方法,形成SERS效应及其他性能较独立纳米单元显著改善的复合体系,从而能够更好地满足各种不同的应用需求。另外,在应用领域,随着SERS技术的发展,人们期望SERS的实际应用能在多方面崭露头角,如用于环境检测、与表面科学交叉和结合的催化反应的原位实时监测等。因此,本论文围绕复杂结构SERS基底的设计与构筑及其用于环境检测和催化监测开展了以下几个部分的工作:
     1)设计并构筑了一种基于金纳米颗粒嫁接二维a-Fe2O3枝晶的复杂结构SERS基底,详细表征了该SERS基底的结构和性能特征,并研究了将其用于农药残留的原位检测。首先,通过水热法合成了二维a-Fe2O3枝晶,并用电感耦合等离子体(inductively coupled plasma, ICP)进行表面改性处理,然后通过3-氨丙基三甲氧基硅烷(3-Aminopropyltrimethoxysilane, APTMS)使大量的氨基修饰到a-Fe2O3枝晶的表面,最后通过氨基和金之间的静电吸引作用,实现金纳米颗粒(Au nanoparticles, Au NPs)的高密度修饰,从而得到金纳米颗粒嫁接二维a-Fe2O3枝晶(Au NPs grafted on dendritic alpha-ferric oxide, NPGDF)复合材料。单粒子的NPGDF具有微米尺度,其轮廓可通过拉曼光谱仪的光学显微镜(optical microscope, OM)平台进行观察,即其具有光学显微可见的特点。以单粒子的NPGDF为基底进行区域SERS成像(SERS mapping)研究,发现其SERS mapping与光学图像(OM image)、电镜(electron microscope, EM)成像以及元素的面扫描能谱图(elemental mapping of EDS area scanning)具有一致性,表明NPGDF在用作SERS基底时的高均一性,从而保证了在光学平台下进行SERS检测时激光束能作用在有效的位点。此外,NPGDF可以在水、乙醇等常规溶剂中进行分散且NPGDF微粒可以吸附到一些物质表面,因此,NPGDF可用作茶叶、水果等表面农药残留的原位检测,且具有较高的灵敏度和重复性。
     2)制备了金纳米棒包覆四氧化三铁(Fe3O4@NRs)磁性微纳颗粒SERS基底,详细表征了其结构和性能特征。首先,利用溶剂热法合成了Fe3O4磁性微纳颗粒,然后用聚丙烯酸钠和聚乙烯亚胺对其表面进行改性,使其表面氨基功能化;通过种子生长法得到了长径比为~4的金纳米棒,然后用PVP对其表面进行修饰。两者通过静电作用使金纳米棒密集地包覆在Fe3O4微纳颗粒表面。研究结果表明,以近红外为激发光源,Fe3O4@NRs表现出很好的SERS增强效应,同时这种基底具有顺磁性,可借助于外磁场对基底进行操纵组装等。将其进一步用于福美双农药的SERS检测,也表现出较好的检测效果。特别是,将该基底悬浮液喷洒在福美双农药污染过的果皮便面,使其与果皮表面的农残作用后,可在外磁场作用下实现从果皮表面到玻片表面的转移,避免了水果表皮强荧光信号的干扰,且可利用便携式拉曼光谱仪实现对果皮表面农残的快速检测。
     3)用单颗粒SERS技术来研究表面催化反应动力学仍是一项具有挑战性的难题。我们设计了一种简单的湿化学方法来合成具有微纳分级结构的单分散银颗粒,通过对相关实验条件的控制,我们可以调控颗粒的尺寸大小和表面形貌,并详细研究了微纳银单颗粒的SERS增强效应及其用于原位监测4-硝基苯硫酚(4-nitrothiophenol,4-NTP)在表面等离子体光催化条件下二聚为偶氮衍生物(4,4'-dimercaptoazobenzene, DMAB)的相关性能,同时,探讨了反应的动力学过程。另外,不同反应条件下得到的单颗粒用于催化反应的表观反应速率常数(k)也进行了比较研究。研究结果表明,纳米结构发育完全的牡丹花状微纳银(hierarchical peony-like silver microflowers)单颗粒具有最强的SERS效应和最大的表观反应速率常数。
     4)设计并构筑了毛细管内壁纳米金多次组装结构微环境催化反应器,揭示了不同组装次数对SERS效应和催化活性的影响,详细研究了在不同组装次数结构中用SERS技术原位监测4-NTP催化还原为4-ATP的反应过程,并探讨了反应的动力学。结果表明,从SERS增强效应来看,3次组装结构增强最显著,2次组装、4次组装次之,1次组装相对最弱。从均一性和稳定性来看,2次组装最佳,3次、4次组装次之,1次组装则相对较差。因此,以SERS的综合性能考虑,以2~3次组装为宜。从不同次数组装结构用于原位监测催化反应的结果来看,随着组装次数的增加,催化速率明显加快,显示出催化活性与SERS性能随组装结构变化的趋势不同,同时表明毛细管内壁纳米金多次组装结构反应器用于原位监测催化反应动力学具有一定的优势,为SERS技术监测催化反应作了进一步拓展。
In recent years, it benefited from the rapid development of nanomaterials science and nanotechnology, the combination of sensitive element based on sensitive nanomaterials and sensor technology formed nano sensor, which opens up new areas for the production of the new sensor as well as provides a number of new ideas and new methods. Among numerous new type sensors, optical nanosensor, which based on surface enhanced Raman spectroscopy (SERS) technology, is a new active frontier for researchers. As to the SERS development, design and construction of all kinds of SERS substrates for the different requirements are the most important research title. In general, the universality problems such as the stability, controllability and repeatability of the SERS substrates are the basic conditions for the qualitative and quantitative analysis, the research methodology is necessary condition, and and application requirements is goal oriented. Based on this, with the emergence of various nanostructures building methods, as well as the urgent requirements of reliable, controllable SERS active substrates, design and construction of complex structure SERS substrate with reat electromagnetic enhancement by means of synergistic combination of chemical research have become an important research direction in the field of SERS. Here, complex structures SERS substrates refers to one or more units, through physical or chemical method, used to form composites with significantly improved performance, which can better satisfy various application requirements. In addition, in the field of application, with the development of SERS technology, people expect the practical application of SERS can be extended to other aspects, such as for environmental detection, and as catalysts combined with in situ real-time monitoring of the catalytic reaction.Herein, in this thesis, many complex structure SERS substrates have been designed and constructed, and their applications in environmental detection and catalysis research work were carried out by the following several parts:
     1) Au nanoparticles (NPs) grafted on dendritic α-Fe2O3(NPGDF) is designed as highly uniform SERS substrate with a feature of optical visualization by optical microscope (OM) system and used for in situ detection of pesticide residues that are annually used in agriculture. With this strategy, the dendritic a-Fe2O3has been synthesized by hydrothermal method and significantly functionalized by an inductively coupled plasma (ICP) apparatus and then Au NPs were grafted on it densely and uniformly. In addition, the profile of NPGDF can be observed by OM platform of Raman spectrometer clearly, and the profile of SERS mapping with NPGDF as substrate almost exactly coincides with OM image, electron microscope (EM) image and elemental mapping of NPGDF, which indicates the remarked uniformity of the NPGDF as SERS substrate, thus it can ensure the laser beam focus on the efficient sites of the substrate under OM platform. Moreover, NPGDF can be dispersed in the liquor and the NPGDF microparticles can be adsorbed on target surface. Therefore, it can be used for in situ detection of pesticide residues on tea leaves, fruits and so on with high sensitivity and reproducibility.
     2) Au nanorods coated Fe3O4(Fe3O4@NRs) microspheres were designed as functional SERS substrate with a feature of magnetic property and used for detection of pesticide residues that are annually used in agriculture by near-infrared (NIR) excitation. With this strategy, the Fe3O4microspheres were synthesized by hydrothermal method and surface functionalized with polyethylenimine (PEI), and then coated with Au nanorods densely. The Raman spectra were carried out by NIR excitation and4-ATP was chosen as the probe molecule. The results showed a good SERS activity of the Fe3O4@NRs microspheres. Moreover, this substrate could be used for pesticide analysis by portable Raman spectrometer with NIR excitation. Especially, the microspheres could be transferred from pesticides contaminated fruits peel to specially cleaned glass slide with the aid of the external magnetic field, by which the strong fluorescence of the apple components can be avoided while performing the pesticide analysis of fruits peel.
     3) Investigating the kinetics of catalytic reactions with SERS on a single particle remains a significant challenge. The aim of this part of the study was to develop an efficient platform for researching the process of plasmon-driven surface catalyzed reaction of4-nitrothiophenol (4-NTP) dimerizing into4,4'-dimercaptoazobenzene (DMAB). We firstly synthesized monodisperse and hierarchical peony-like silver microflowers assembled by nanostructures with tailored surface topographies in the absence of any other surfactants. The single particle of the constructed hierarchical silver microflowers with highly roughened surface led to the coupling of high catalytic activity with a strong SERS effect, which own to an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. The kinetics of the reaction of4-NTP dimerizing into DMAB was investigated and comparative studied by using SERS technique on single particle of different morphologies. The results indicate that fully developed nanostructure of hierarchical silver micro flower has both larger SERS enhancement and apparent reaction rate constant k, which may be useful for monitoring and understanding the mechanism of plasmon-driven surface catalyzed reactions.
     4) Microenvironment catalytic reactors of Au NPs multi-assembled on the inner wall of capillary were designed and constructed. This part discussed the impacts of the number of assembly processes on the SERS effect and the catalytic activity. The assembled nanostructures on the inner wall of capillary were used for in situ monitoring of catalyzed reduction of4-NTP to4-ATP, and the reaction kinetics were also studied. The research results show that, from the perspective of the SERS enhancement effect, the triple-assembled nanostructure exhibits the most significant enhancement effect, twice-assembled comes second, followed by fourth-assembled and first-assembled nanostructures. From the point of view of homogeneity and stability, twice-assembled nanostructure perform best, triple-assembled is next, fourth-assembled comes third, and first-assembled nanostructure is relatively poor. Therefore, to consider in comprehensive performance for SERS, twice-and triple-assembled nanostructures are advisable. From the results of different assembled nanostructure for in situ monitoring of catalytic reaction, with the increase of number of assembly, catalytic rate become significantly faster, which reveals that the catalytic activity and SERS performance show different trends of variation.And it is also suggested that microenvironment catalytic reactors of Au NPs multi-assembled on the inner wall of capillary for in situ monitoring of catalytic reaction kinetics have certain advantages.
引文
[1]国家自然科学基金委员会,中国科学院.未来10年中国学科发展战略:纳米科学[M].北京:科学出版社,2012.
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2011.
    [3]倪星元,沈军,张志华.纳米材料的理化特性与应用[M].北京:化学工业出版社,2006.
    [4]刘锦淮,黄行九.纳米敏感材料与传感技术[M].北京:科学出版社,2011.
    [5]陶红艳,余成波.传感器与现代检测技术[M].北京:清华大学出版社,2009.
    [6]格鲁德.化学传感器[M].北京:科学出版社,2008.
    [7]张先恩.生物传感器[M].北京:化学工业出版社,2006.
    [8]蒋亚东,谢光忠.敏感材料与传感器[M].成都:电子科技大学出版社,2008.
    [9]Raman C V, Krishnan K S. A new type of secondary radiation [J]. Nature,1928,121(3048): 501-502.
    [10]Fleischmann M, Hendra P, Mcquillan A. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters,1974,26(2):163-166.
    [11]Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry:Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1977,84(1):1-20.
    [12]Tong L, Zhu T, Liu Z. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering:from self-assembled arrays to individual gold nanoparticles [J]. Chemical Society Reviews,2011,40(3):1296-1304.
    [13]Sharma B, Frontiera R R, Henry A-I, et al. SERS:materials, applications, and the future [J]. Materials Today,2012,15(1-2):16-25.
    [14]Ru E C L, Etchegoin P G Principles of surface-enhanced Raman spectroscopy:and related plasmonic effects [M]. Amsterdam:Elsevier,2009.
    [15]Stockle R M, Suh Y D, Deckert V, et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy [J]. Chemical Physics Letters,2000,318(1-3):131-136.
    [16]Pettinger B, Ren B, Picardi G, et al. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy [J]. Physical Review Letters,2004,92(9):096101.
    [17]Zhang R, Zhang Y, Dong Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering [J]. Nature,2013,498(7452):82-86.
    [18]Zhang Z, Chen L, Sheng S, et al. High-vacuum tip enhanced Raman spectroscopy [J]. Frontiers of Physics,2014,9(1):17-24.
    [19]Li J, Huang Y, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature,2010,464(7287):392-395.
    [20]Li J, Tian X, Li S, et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature Protocols,2013,8(1):52-65.
    [21]Tittl A, Yin X, Giessen H, et al. Plasmonic smart dust for probing local chemical reactions [J]. Nano Letters,2013,13(4):1816-1821.
    [22]Samanta A, Maiti K K, Soh K S, et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection [J]. Angewandte Chemie-International Edition,2011, 50(27):6089-6092.
    [23]Alvarez-Puebla R A, Liz-Marzan L M. Traps and cages for universal SERS detection [J]. Chemical Society Reviews,2012,41(1):43-51.
    [24]Cialla D, Marz A, Bohme R, et al. Surface-enhanced Raman spectroscopy (SERS):progress and trends [J]. Analytical and Bioanalytical Chemistry,2012,403(1):27-54.
    [25]Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy [J]. The Annual Review of Analytical Chemistry,2008,1:601-626.
    [26]Wang Y, Schluecker S. Rational design and synthesis of SERS labels [J]. Analyst,2013, 138(8):2224-2238.
    [27]Wang Y, Yan B, Chen L. SERS tags:novel optical nanoprobes for bioanalysis [J]. Chemical Reviews,2013,113(3):1391-1428.
    [28]Banholzer M J, Millstone J E, Qin L, et al. Rationally designed nanostructures for surface-enhanced Raman spectroscopy [J]. Chemical Society Reviews,2008,37(5):885-897.
    [29]Qian K, Liu H, Yang L, et al. Designing and fabricating of surface-enhanced Raman scattering substrate with high density hot spots by polyaniline template-assisted self-assembly [J]. Nanoscale,2012,4(20):6449-6454.
    [30]Yan B, Thubagere A, Premasiri W R, et al. Engineered SERS substrates with multiscale signal enhancement:nanoplarticle cluster arrays [J]. Acs Nano,2009,3(5):1190-1202.
    [31]Ru E C L, Blackie E, Meyer M, et al. Surface enhanced Raman scattering enhancement factors:a comprehensive study [J]. Journal of Physical Chemistry C,2007,111(37): 13794-13803.
    [32]Luo Y, Aubry A, Pendry J B. Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces:A transformation optics approach [J]. Physical Review B,2011,83(15):155422.
    [33]Jones M R, Osberg K D, Macfarlane R J, et al. Templated techniques for the synthesis and assembly of plasmonic nanostructures [J]. Chemical Reviews,2011,111(6):3736-3827.
    [34]Li J, Huang Y, Duan S, et al. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles [J]. Physical Chemistry Chemical Physics,2010,12(10): 2493-2502.
    [35]Tian Z, Ren B, Li J, et al. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy [J]. Chemical Communications,2007, (34): 3514-3534.
    [36]Kleinman S L, Frontiera R R, Henry A-I, et al. Creating, characterizing, and controlling chemistry with SERS hot spots [J]. Physical Chemistry Chemical Physics,2013,15(1): 21-36.
    [37]Guo S, Dong S. Metal nanomaterial-based self-assembly:development, electrochemical sensing and SERS applications [J]. Journal of Materials Chemistry,2011,21(42): 16704-16716.
    [38]Shao Q, Que R, Shao M, et al. Copper nanoparticles grafted on a silicon wafer and their excellent surface-enhanced Raman scattering [J]. Advanced Functional Materials,2012, 22(10):2067-2070.
    [39]Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing [M]. Annual Review of Physical Chemistry.2007:267-297.
    [40]Yamamoto Y S, Ishikawa M, Ozaki Y, et al. Fundamental studies on enhancement and blinking mechanism of surface-enhanced Raman scattering (SERS) and basic applications of SERS biological sensing [J]. Frontiers of Physics,2014,9(1):31-46.
    [41]Xu P, Han X, Zhang B, et al. Multifunctional polymer-metal nanocomposites via direct chemical reduction by conjugated polymers [J]. Chemical Society Reviews,2014,43(5): 1349-1360.
    [42]Wei X, Jie D, Cuello J J, et al. Microalgal detection by Raman microspectroscopy [J]. Trac-Trends in Analytical Chemistry,2014,53:33-40.
    [43]Zhou L, Gu H M, Wang C, et al. Study on the synthesis and surface enhanced Raman spectroscopy of graphene-based nanocomposites decorated with noble metal nanoparticles [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2013,430:103-109.
    [44]Zhou H, Yu F, Chen M, et al. The transformation of a gold film on few-layer graphene to produce either hexagonal or triangular nanoparticles during annealing [J]. Carbon,2013,52: 379-387.
    [45]Xu W, Ling X, Xiao J, et al. Surface enhanced Raman spectroscopy on a flat graphene surface [J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(24):9281-9286.
    [46]Xu W, Xiao J, Chen Y, et al. Graphene-veiled gold substrate for surface-enhanced Raman spectroscopy [J]. Advanced Materials,2013,25(6):928-933.
    [47]Xu W, Mao N, Zhang J. Graphene:a platform for surface-enhanced Raman spectroscopy [J]. Small,2013,9(8):1206-1224.
    [48]Chen L, Seo H K, Mao Z, et al. Tunable plasmon properties of Fe2O3@Ag substrate for surface-enhanced Raman scattering [J]. Analytical Methods,2011,3(7):1622-1627.
    [49]Shen H X, Wang M, Xu M M, et al.2D-mapping Studies of the SERS Effect on the Single Ellipsoid Fe2O3@Au Particle [J]. Chemical Journal of Chinese Universities-Chinese,2010, 31(5):1009-1013.
    [50]Li Y, Huang W, Sun S. A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface [J]. Angewandte Chemie-International Edition,2006,45(16):2537-2539.
    [51]Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals [J]. Nature Nanotechnology,2007,2(7):435-440.
    [52]Xia H, Wang D. Fabrication of macroscopic freestanding films of metallic nanoparticle monolayers by interfacial self-assembly [J]. Advanced Materials,2008,20(22):4253-4256.
    [53]Wu L, Wang Z, Shen B. Large-scale gold nanoparticle superlattice and its SERS properties for the quantitative detection of toxic carbaryl [J]. Nanoscale,2013,5(12):5274-5278.
    [54]Zhou X, Zhou F, Liu H, et al. Assembly of polymer-gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection [J]. Analyst,2013,138(19):5832-5838.
    [55]Li Z, Meng G, Liang T, et al. Facile synthesis of large-scale Ag nanosheet-assembled films with sub-10 nm gaps as highly active and homogeneous SERS substrates [J]. Applied Surface Science,2013,264:383-390.
    [56]Ling X, Yan R, Lo S, et al. Alumina-coated Ag nanocrystal monolayers as surfaceenhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates [J]. Nano Research,2014,7(1):132-143.
    [57]Ye X, Qi L. Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas [J]. Science China-Chemistry,2014,57(1):58-69.
    [58]Sun L, Zhao D, Zhang Z, et al. DNA-based fabrication of density-controlled vertically aligned ZnO nanorod arrays and their SERS applications [J]. Journal of Materials Chemistry, 2011,21(26):9674-9681.
    [59]Yang L, Chen G, Wang J, et al. Sunlight-induced formation of silver-gold bimetallic nanostructures on DNA template for highly active surface enhanced Raman scattering substrates and application in TNT/tumor marker detection [J]. Journal of Materials Chemistry, 2009,19(37):6849-6856.
    [60]Ye S, Guo Y, Xiao J, et al. A sensitive SERS assay of L-histidine via a DNAzyme-activated target recycling cascade amplification strategy [J]. Chemical Communications,2013,49(35): 3643-3645.
    [61]Sun Y, Xu F, Zhang Y, et al. Metallic nanostructures assembled by DNA and related applications in surface-enhancement Raman scattering (SERS) detection [J]. Journal of Materials Chemistry,2011,21(42):16675-16685.
    [62]Zheng Y, Thai T, Reineck P, et al. DNA-directed self-assembly of core-satellite plasmonic nanostructures:a highly sensitive and reproducible near-IR SERS sensor [J]. Advanced Functional Materials,2013,23(12):1519-1526.
    [63]Lim D K, Jeon K S, Hwang J H, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap [J]. Nature Nanotechnology,2011,6(7):452-460.
    [64]Barhoumi A, Halas N J. Label-free detection of DNA hybridization using surface enhanced Raman spectroscopy [J]. Journal of the American Chemical Society,2010,132(37): 12792-12793.
    [65]Lee K, Irudayaraj J. Periodic and dynamic 3-D gold nanoparticle-DNA network structures for surface-enhanced Raman spectroscopy-based quantification [J]. Journal of Physical Chemistry C,2009,113(15):5980-5983.
    [66]Sonay A Y, Caglayan A B, Culha M. Synthesis of peptide mediated Au core-Ag shell nanoparticles as surface-enhanced Raman scattering labels [J]. Plasmonics,2012,7(1): 77-86.
    [67]Liu B, Han G, Zhang Z, et al. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels [J]. Analytical Chemistry,2012, 84(1):255-261.
    [68]Alessandri I. Enhancing Raman scattering without plasmons:unprecedented sensitivity achieved by TiO2 shell-based resonators [J]. Journal of the American Chemical Society,2013, 135(15):5541-5544.
    [69]Zhang Y, Xing C, Jiang D, et al. Facile synthesis of core-shell-satellite Ag/C/Ag nanocomposites using carbon nanodots as reductant and their SERS properties [J]. Crystengcomm,2013,15(32):6305-6310.
    [70]Contreras-Caceres R, Dawson C, Formanek P, et al. Polymers as templates for Au and Au@Ag bimetallic nanorods:UV-Vis and surface enhanced Raman spectroscopy [J]. Chemistry of Materials,2013,25(2):158-169.
    [71]Qu H, Lai Y, Niu D, et al. Surface-enhanced Raman scattering from magneto-metal nanoparticle assemblies [J]. Analytica Chimica Acta,2013,763:38-42.
    [72]Wang Y, Wang K, Zou B, et al. Magnetic-based silver composite microspheres with nanosheet-assembled shell for effective SERS substrate [J]. Journal of Materials Chemistry C, 2013,1(13):2441-2447.
    [73]Ding Q, Liu H, Yang L, et al. Speedy and surfactant-free in situ synthesis of nickel/Ag nanocomposites for reproducible SERS substrates [J]. Journal of Materials Chemistry,2012, 22(37):19932-19939.
    [74]Gan Z, Zhao A, Zhang M, et al. Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes [J]. Dalton Transactions,2013,42(24):8597-8605.
    [75]Ye Y, Chen J, Ding Q, et al. Sea-urchin-like Fe3O4@C@Ag particles:an efficient SERS substrate for detection of organic pollutants [J]. Nanoscale,2013,5(13):5887-5895.
    [76]Zhou X, Xu W, Wang Y, et al. Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method [J]. The Journal of Physical Chemistry C, 2010,114(46):19607-19613.
    [77]Mahmoud K A, Zourob M. Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT) [J]. Analyst,2013,138(9):2712-2719.
    [78]Yang L, Bao Z, Wu Y, et al. Clean and reproducible SERS substrates for high sensitive detection by solid phase synthesis and fabrication of Ag-coated Fe3O4 microspheres [J]. Journal of Raman Spectroscopy,2012,43(7):848-856.
    [79]Zou X, Silva R, Huang X, et al. A self-cleaning porous TiO2-Ag core-shell nanocomposite material for surface-enhanced Raman scattering [J]. Chemical Communications,2013,49(4): 382-384.
    [80]Ding Q, Ma Y, Ye Y, et al. A simple method to prepare the magnetic Ni@Au core-shell nanostructure for the cycle surface enhanced Raman scattering substrates [J]. Journal of Raman Spectroscopy,2013,44(7):987-993.
    [81]Zhang X, Ji R, Wang L, et al. Controllable synthesis of silver nanodendrites on copper rod and its application to hydrogen peroxide and glucose detection [J]. Crystengcomm,2013, 15(6):1173-1178.
    [82]Ye W, Chen Y, Zhou F, et al. Fluoride-assisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities [J]. Journal of Materials Chemistry,2012,22(35):18327-18334.
    [83]Qin X, Miao Z Y, Fang Y X, et al. Preparation of dendritic nanostructures of silver and their characterization for electroreduction [J]. Langmuir,2012,28(11):5218-5226.
    [84]Aldeanueva-Potel P, Carbo-Argibay E, Pazos-Perez N, et al. Spiked gold beads as substrates for single-particle SERS [J]. Chemphyschem,2012,13(10):2561-2565.
    [85]Ren W, Guo S, Dong S, et al. A simple route for the synthesis of morphology-controlled and SERS-active Ag dendrites with near-infrared absorption [J]. Journal of Physical Chemistry C, 2011,115(21):10315-10320.
    [86]Homan K A, Chen J, Schiano A, et al. Silver-polymer composite stars:synthesis and applications [J]. Advanced Functional Materials,2011,21(9):1673-1680.
    [87]Mack N H, Bailey J A, Doom S K, et al. Mechanistic study of silver nanoparticle formation on conducting polymer surfaces [J]. Langmuir,2011,27(8):4979-4985.
    [88]Scholes F H, Davis T J, Vernon K C, et al. A hybrid substrate for surface-enhanced Raman scattering spectroscopy:coupling metal nanoparticles to strong localised fields on a micro-structured surface [J]. Journal of Raman Spectroscopy,2012,43(2):196-201.
    [89]Yang S, Lapsley M I, Cao B, et al. Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition [J]. Advanced Functional Materials,2013,23(6):720-730.
    [90]Yick S, Han Z J, Ostrikov K. Atmospheric microplasma-functionalized 3D microfluidic strips within dense carbon nanotube arrays confine Au nanodots for SERS sensing [J]. Chemical Communications,2013,49(28):2861-2863.
    [91]Ko H, Tsukruk V V. Nanoparticle-decorated nanocanals for surface-enhanced Raman scattering [J]. Small,2008,4(11):1980-1984.
    [92]White I M. Optofluidic SERS on inkjet-fabricated paper-based substrates [M]//Broquin J. E., Conti G. N. Integrated Optics:Devices, Materials, and Technologies Xvi.2012.
    [93]Hoppmann E P, Yu W W, White I M. Highly sensitive and flexible inkjet printed SERS sensors on paper [J]. Methods,2013,63(3):219-224.
    [94]Yu W W, White I M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection [J]. Analyst,2013,138(4):1020-1025.
    [95]Yu W W, White I M. Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates [J]. Analyst,2013,138(13): 3679-3686.
    [96]Schuck P J, Fromm D P, Sundaramurthy A, et al. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas [J]. Physical Review Letters,2005,94(1): 17402.
    [97]Ngoc L L T, Jin M L, Wiedemair J, et al. Large area metal nanowire arrays with tunable sub-20 nm nanogaps [J]. Acs Nano,2013,7(6):5223-5234.
    [98]Laurence T A, Braun G B, Reich N O, et al. Robust SERS enhancement factor statistics using rotational correlation spectroscopy [J]. Nano Letters,2012,12(6):2912-2917.
    [99]Li D, Wang J, Zheng G, et al. A highly active SERS sensing substrate:core-satellite assembly of gold nanorods/nanoplates [J]. Nanotechnology,2013,24(23):235502.
    [100]Li S, Pedano M L, Chang S H, et al. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods [J]. Nano Letters,2010,10(5):1722-1727.
    [101]Lim D K, Jeon K S, Kim H M, et al. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection [J]. Nature Materials,2010,9(1):60-67.
    [102]Gong X, Bao Y, Qiu C, et al. Individual nanostructured materials:fabrication and surface-enhanced Raman scattering [J]. Chemical Communications,2012,48(56): 7003-7018.
    [103]Xu L, Kuang H, Xu C, et al. Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells [J]. Journal of the American Chemical Society,2012,134(3): 1699-1709.
    [104]Qian X, Zhou X, Nie S. Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling [J]. Journal of the American Chemical Society,2008,130(45):14934-14935.
    [105]Kang T, Yoo S M, Yoon I, et al. Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor [J]. Nano Letters,2010,10(4):1189-1193.
    [106]Lee J H, Nam J M, Jeon K S, et al. Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells [J]. Acs Nano,2012, 6(11):9574-9584.
    [107]Liu H, Yang L, Ma H, et al. Molecular sensitivity of DNA-Ag-PATP hybrid on optical activity for ultratrace mercury analysis [J]. Chemical Communications,2011,47(33): 9360-9362.
    [108]Menendez G O, Cortes E, Grumelli D, et al. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces [J]. Nanoscale,2012,4(2):531-540.
    [109]Cecchini M P, Turek V A, Paget J, et al. Self-assembled nanoparticle arrays for multiphase trace analyte detection [J]. Nature Materials,2013,12(2):165-171.
    [110]Liu J, Zhang S, Qi H, et al. A general strategy for self-assembly of nanosized building blocks on liquid/liquid interfaces [J]. Small,2012,8(15):2412-2420.
    [111]Shi X, Ma J, Zheng R, et al. An improved self-assembly gold colloid film as surface-enhanced Raman substrate for detection of trace-level polycyclic aromatic hydrocarbons in aqueous solution [J]. Journal of Raman Spectroscopy,2012,43(10): 1354-1359.
    [112]Zhu Z, Meng H, Liu W, et al. Superstructures and SERS properties of gold nanocrystals with different shapes [J]. Angewandte Chemie-International Edition,2011,50(7):1593-1596.
    [113]Zhang L, Wang C, Zhang Y. A facile strategy to synthesize bimetallic Au/Ag nanocomposite film by layer-by-layer assembly technique [J]. Applied Surface Science,2012,258(14): 5312-5318.
    [114]Gandra N, Portz C, Tian L, et al. Probing distance-dependent plasmon-enhanced near-infrared fluorescence using polyelectrolyte multilayers as dielectric spacers [J]. Angewandte Chemie-International Edition,2014,53(3):866-870.
    [115]Liu R, Liu B, Guan G, et al. Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays [J]. Chemical Communications,2012,48(75):9421-9423.
    [116]Chen X, Cui C, Guo Z, et al. Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties [J]. Small, 2011,7(7):858-863.
    [117]Huang D, Bai X, Zheng L. Ultrafast preparation of three-dimensional dendritic gold nanostructures in aqueous solution and their applications in catalysis and SERS [J]. Journal of Physical Chemistry C,2011,115(30):14641-14647.
    [118]Wang L, Li H, Tian J, et al. Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites:rapid, large-scale, wet-chemical synthesis and their application as SERS substrates [J]. Acs Applied Materials & Interfaces,2010,2(11):2987-2991.
    [119]Feng J, Li A, Lei Z, et al. Low-potential synthesis of "clean" Au nanodendrites and their high performance toward ethanol oxidation [J]. Acs Applied Materials & Interfaces,2012,4(5): 2570-2576.
    [120]Xu H, Shao M, Chen T, et al. Surface-enhanced Raman scattering on silver dendrite with different growth directions [J]. Journal of Raman Spectroscopy,2012,43(3):396-404.
    [121]Sivasubramanian R, Sangaranarayanan M V. Electrodeposition of silver nanostructures:from polygons to dendrites [J]. Crystengcomm,2013,15(11):2052-2056.
    [122]Ji J, Li P, Sang S, et al. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow [J]. Aip Advances,2014,4(3):031329.
    [123]Gutes A, Carraro C, Maboudian R. Silver dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate [J]. Journal of the American Chemical Society,2010,132(5):1476-1477.
    [124]Zhang M, Zhao A, Sun H, et al. Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates [J]. Journal of Materials Chemistry,2011,21(46):18817-18824.
    [125]Liang H, Li Z, Wang Z, et al. Enormous surface-enhanced Raman scattering from dimers of flower-like silver mesoparticles [J]. Small,2012,8(22):3400-3405.
    [126]Yi S, Sun L, Lenaghan S C, et al. One-step synthesis of dendritic gold nanoflowers with high surface-enhanced Raman scattering (SERS) properties [J]. Rsc Advances,2013,3(26): 10139-10144.
    [127]Zhang F, Chen P, Li X, et al. Further localization of optical field for flower-like silver particles under laser radiation [J]. Laser Physics Letters,2013,10(4):045901.
    [128]Wang J, Duan G, Li Y, et al. An invisible template method toward gold regular arrays of nanoflowers by electrodeposition [J]. Langmuir,2013,29(11):3512-3517.
    [129]Li Q, Jiang Y, Han R, et al. High surface-enhanced Raman scattering performance of individual gold nanoflowers and their application in live cell imaging [J]. Small,2013,9(6): 927-932.
    [130]Xia Y, Li T, Gao C, et al. Facile fabrication of hierarchically flowerlike Ag microstructure for SERS application [J]. Journal of Materials Science,2014,49(7):2781-2786.
    [131]Cheng L, Ma C, Yang G, et al. Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy [J]. Journal of Materials Chemistry A,2014,2(13):4534-4542.
    [132]Laurier K G M, Poets M, Vermoortele F, et al. Photocatalytic growth of dendritic silver nanostructures as SERS substrates [J]. Chemical Communications,2012,48(10):1559-1561.
    [133]Cai W, Tang X, Yang L, et al. Facile fabrication of leafy spikes-like silver dendrite crystals for SERS substrate [J]. Materials Research Bulletin,2013,48(10):4125-4133.
    [134]Hou C, Meng G, Huang Q, et al. Ag-nanoparticle-decorated Au-fractal patterns on bowl-like-dimple arrays on Al foil as an effective SERS substrate for the rapid detection of PCBs [J]. Chemical Communications,2014,50(5):569-571.
    [135]Hsu K H, Back J H, Fung K-H, et al. SERS EM field enhancement study through fast Raman mapping of Sierpinski carpet arrays [J]. Journal of Raman Spectroscopy,2010,41(10): 1124-1130.
    [136]Zou K, Zhang X, Duan X, et al. Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation [J]. Journal of Crystal Growth,2004,273(1): 285-291.
    [137]Fang J, Du S, Lebedkin S, et al. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy [J]. Nano Letters,2010, 10(12):5006-5013.
    [138]Liu Z, Cheng L, Zhang L, et al. Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins [J]. Nanoscale,2014,6(5):2567-2572.
    [139]You H, Ji Y, Wang L, et al. Interface synthesis of gold mesocrystals with highly roughened surfaces for surface-enhanced Raman spectroscopy [J]. Journal of Materials Chemistry,2012, 22(5):1998-2006.
    [140]Kang L, Xu P, Chen D, et al. Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy [J]. Journal of Physical Chemistry C,2013,117(19):10007-10012.
    [141]Sajanlal P R, Pradeep T. Bimetallic mesoflowers:region-specific overgrowth and substrate dependent surface-enhanced Raman scattering at single particle level [J]. Langmuir,2010, 26(11):8901-8907.
    [142]Sajanlal P R, Pradeep T. Mesoflowers:a new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials [J]. Nano Research,2009,2(4):306-320.
    [143]Liang H, Li Z, Wang W, et al. Highly surface-roughened "flower-like" silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering [J]. Advanced Materials, 2009,21(45):4614-4618.
    [144]Sarkar S, Sinha A K, Pradhan M, et al. Redox transmetalation of prickly nickel nanowires for morphology controlled hierarchical synthesis of nickel/gold nanostructures for enhanced catalytic activity and SERS responsive functional material [J]. Journal of Physical Chemistry C,2011,115(5):1659-1673.
    [145]Chen H, Wang Z, Ma X, et al. Magnetically controllable dual-mode nanoprobes for cell imaging with an onion-liked structure [J]. Talanta,2013,116:978-984.
    [146]Hu H, Wang Z, Pan L, et al. Ag-coated Fe3O4@SiO2 three-ply composite microspheres: synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering [J]. Journal of Physical Chemistry C,2010,114(17):7738-7742.
    [147]Lv B, Xu Y, Tian H, et al. Synthesis of Fe3O4/SiO2/Ag nanoparticles and its application in surface-enhanced Raman scattering [J]. Journal of Solid State Chemistry,2010,183(12): 2968-2973.
    [148]Shen J, Zhu Y, Yang X, et al. Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling [J]. Langmuir,2013,29(2): 690-695.
    [149]Zhang Y, Yu X, Jia Y, et al. A facile approach for the synthesis of Ag-coated Fe3O4@TiO2 core/shell microspheres as highly efficient and recyclable photocatalysts [J]. European Journal of Inorganic Chemistry,2011, (33):5096-5104.
    [150]Kochuveedu S T, Kim D P, Kim D H. Surface-plasmon-induced visible light photocatalytic activity of TiO2 nanospheres decorated by Au nanoparticles with controlled configuration [J]. Journal of Physical Chemistry C,2012,116(3):2500-2506.
    [151]Li X, Chen G, Yang L, et al. Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection [J]. Advanced Functional Materials, 2010,20(17):2815-2824.
    [152]Zhou Y, Chen J, Zhang L, et al. Multifunctional TiO2-coated Ag nanowire arrays as recyclable SERS substrates for the detection of organic pollutants [J]. European Journal of Inorganic Chemistry,2012,2012(19):3176-3182.
    [153]Chen Y, Tian G, Pan K, et al. In situ controlled growth of well-dispersed gold nanoparticles in TiO2 nanotube arrays as recyclable substrates for surface-enhanced Raman scattering [J]. Dalton Transactions,2012,41(3):1020-1026.
    [154]Sinha Q Depero L E, Alessandri I. Recyclable SERS substrates based on Au-coated ZnO nanorods [J]. Acs Applied Materials & Interfaces,2011,3(7):2557-2563.
    [155]Li X, Hu H, Li D, et al. Ordered array of gold semishells on TiO2 spheres:an ultrasensitive and recyclable SERS substrate [J]. Acs Applied Materials & Interfaces,2012,4(4): 2180-2185.
    [156]Xie W, Herrmann C, Koempe K, et al. Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions [J]. Journal of the American Chemical Society,2011,133(48):19302-19305.
    [157]Huang J, Zhu Y, Lin M, et al. Site-specific growth of Au-Pd alloy horns on Au nanorods:a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy [J]. Journal of the American Chemical Society,2013,135(23):8552-8561.
    [158]陈玲.环境监测[M].北京:化学工业出版社,2011.
    [159]孙成.化学分析[M].北京:科学出版社,2012.
    [160]Mendham J. Vogels textbook of quantitative chemical analysis [M]. Pearson Education India, 2006.
    [161]杜宝中.环境监测中的电化学分析法[M].北京:化学工业出版社,2003.
    [162]邢梅霞,夏德强.光谱分析[M].北京:中国石化出版社,2012.
    [163]李昌厚.紫外可见分光光度计及其应用[M].北京:化学工业出版社,2010.
    [164]冯计民.红外光谱在微量物证分析中的应用[M].北京:化学工业出版社,2010.
    [165]郭明才,陈金东,李蔚,等.原子吸收光谱分析应用指南[M].青岛:中国海洋大学出版社,2012.
    [166]郑国经,计子华,余兴.原子发射光谱分析技术及应用[M].北京:化学工业出版社,2010.
    [167]吉昂,卓尚军,李国会.能量色散X射线荧光光谱[M].北京:科学出版社,2011.
    [168]Peng F, Su Y, Zhong Y, et al. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy [J]. Accounts of Chemical Research,2014,47(2):612-623.
    [169]Dasary S S R, Ray P C, Singh A K, et al. A surface enhanced Raman scattering probe for highly selective and ultra sensitive detection of iodide in water and salt samples [J]. Analyst, 2013,138(4):1195-1203.
    [170]Qian K, Liu H, Yang L, et al. Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene [J]. Analyst,2012,137(20):4644-4646.
    [171]Craig A P, Franca A S, Irudayaraj J. Surface-enhanced Raman spectroscopy applied to food safety [J]. Annual review of food science and technology,2013,4:369-380.
    [172]Qu W, Lu L, Lin L, et al. A silver nanoparticle based surface enhanced resonance Raman scattering (SERRS) probe for the ultrasensitive and selective detection of formaldehyde [J]. Nanoscale,2012,4(23):7358-7361.
    [173]曾祥燕,丁佐宏.分析技术与操作(Ⅲ)电化学与光谱分析及操作[M].北京:化学工业出版社,2007.
    [174]苏立强.色谱分析法[M].北京:清华大学出版社,2009.
    [175]盛龙生,苏焕华,郭丹滨.色谱质谱联用技术[M].北京:化学工业出版社,2006.
    [176]Yang Y, Meng G. Ag dendritic nanostructures for rapid detection of polychlorinated biphenyls based on surface-enhanced Raman scattering effect [J]. Journal of Applied Physics,2010, 107(4):044315.
    [177]Tang H, Meng G, Huang Q, et al. Arrays of cone-shaped ZnO nanorods decorated with Ag nanoparticles as 3D surface-enhanced Raman scattering substrates for rapid detection of trace polychlorinated biphenyls [J]. Advanced Functional Materials,2012,22(1):218-224.
    [178]Zhu C, Meng G, Huang Q, et al. Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77 [J]. Journal of Hazardous Materials,2012,211:389-395.
    [179]Zhou Q, Meng G, Huang Q, et al. Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates [J]. Physical Chemistry Chemical Physics,2014,16(8):3686-3692.
    [180]Zhu C, Meng G, Huang Q, et al. Ag nanosheet-assembled micro-hemispheres as effective SERS substrates [J]. Chemical Communications,2011,47(9):2709-2711.
    [181]Zhao Y, Newton J N, Liu J, et al. Dithiocarbamate-coated SERS substrates:sensitivity gain by partial surface passivation [J]. Langmuir,2009,25(24):13833-13839.
    [182]Du Y, Liu R, Liu B, et al. Surface-enhanced Raman scattering chip for femtomolar detection of mercuric ion (II) by ligand exchange [J]. Analytical Chemistry,2013,85(6):3160-3165.
    [183]Chung E, Gao R, Ko J, et al. Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel [J]. Lab on a Chip,2013,13(2):260-266.
    [184]Kang T, Yoo S M, Yoon I, et al. Au nanowire-on-film SERRS sensor for ultrasensitive Hg2+ detection [J]. Chemistry-A European Journal,2011,17(7):2211-2214.
    [185]Dasary S S R, Singh A K, Senapati D, et al. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene [J]. Journal of the American Chemical Society,2009,131(38):13806-13812.
    [186]Yang L, Ma L, Chen G, et al. Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate [J]. Chemistry-a European Journal,2010, 16(42):12683-12693.
    [187]Zhou H, Zhang Z, Jiang C, et al. Trinitrotoluene explosive lights up ultrahigh Raman scattering of nonresonant molecule on a top-closed silver nanotube array [J]. Analytical Chemistry,2011,83(18):6913-6917.
    [188]Demeritte T, Kanchanapally R, Fan Z, et al. Highly efficient SERS substrate for direct detection of explosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid [J]. Analyst,2012,137(21):5041-5045.
    [189]Zhou X, Liu H, Yang L, et al. SERS and OWGS detection of dynamic trapping molecular TNT based on a functional self-assembly Au monolayer film [J]. Analyst,2013,138(6): 1858-1864.
    [190]Zhang C, Wang K, Han D, et al. Surface enhanced Raman scattering (SERS) spectra of trinitrotoluene in silver colloids prepared by microwave heating method [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2014,122:387-391.
    [191]Chi H, Liu B, Guan G, et al. A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles [J]. Analyst,2010,135(5):1070-1075.
    [192]Li J, Ma W, Wei C, et al. Detecting trace melamine in solution by SERS using Ag nanoparticle coated poly(styrene-co-acrylic acid) nanospheres as novel active substrates [J]. Langmuir,2011,27(23):14539-14544.
    [193]Kim A, Barcelo S J, Williams R S, et al. Melamine sensing in milk products by using surface enhanced Raman scattering [J]. Analytical Chemistry,2012,84(21):9303-9309.
    [194]Peng B, Li G, Li D, et al. Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants [J]. Acs Nano,2013,7(7): 5993-6000.
    [195]Roy P K, Huang Y-F, Chattopadhyay S. Detection of melamine on fractals of unmodified gold nanoparticles by surface-enhanced Raman scattering [J]. Journal of Biomedical Optics, 2014,19(1):011002-011002.
    [196]Fathi F, Lagugne-Labarthet F, Pedersen D B, et al. Studies of the interaction of two organophosphonates with nanostructured silver surfaces [J]. Analyst,2012,137(19): 4448-4453.
    [197]Yazdi S H, White I M. Multiplexed detection of aquaculture fungicides using a pump-free optofluidic SERS microsystem [J]. Analyst,2013,138(1):100-103.
    [198]Ahn W, Qiu Y, Reinhard B M. Generation of scalable quasi-3D metallo-dielectric SERS substrates through orthogonal reactive ion etching [J]. Journal of Materials Chemistry C, 2013,1(18):3110-3118.
    [199]Wang D, Zhu W, Best M D, et al. Directional Raman scattering from single molecules in the feed gaps of optical antennas [J]. Nano Letters,2013,13(5):2194-2198.
    [200]Konishi T, Kiguchi M, Takase M, et al. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature [J]. Journal of the American Chemical Society,2013,135(3):1009-1014.
    [201]Smith J G, Yang Q, Jain P K. Identification of a critical intermediate in galvanic exchange reactions by single-nanoparticle-resolved kinetics [J]. Angewandte Chemie-International Edition,2014,53(11):2867-2872.
    [202]Kim K, Lee S H, Choi J-Y, et al. Fe3+to Fe2+conversion by plasmonically generated hot electrons from Ag nanoparticles:surface-enhanced Raman scattering evidence [J]. The Journal of Physical Chemistry C,2014,118(6):3359-3365.
    [203]Xie W, Walkenfort B, Schluecker S. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures [J]. Journal of the American Chemical Society,2013,135(5):1657-1660.
    [204]Joseph V, Engelbrekt C, Zhang J, et al. Characterizing the kinetics of nanoparticle-catalyzed reactions by surface-enhanced Raman scattering [J]. Angewandte Chemie-International Edition,2012,51(30):7592-7596.
    [205]Wu D, Liu X, Huang Y, et al. Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal SERS enhancement:a DFT study [J]. Journal of Physical Chemistry C,2009,113(42):18212-18222.
    [206]Fang Y, Li Y, Xu H, et al. Ascertaining p, p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles [J]. Langmuir,2010,26(11):7737-7746.
    [207]Huang Y, Zhu H, Liu G, et al. When the signal is not from the original molecule to be detected:chemical transformation of para-aminothiophenol on Ag during the SERS measurement [J]. Journal of the American Chemical Society,2010,132(27):9244-9246.
    [208]Canpean V, Iosin M, Astilean S. Disentangling SERS signals from two molecular species:A new evidence for the production of p,p'-dimercaptoazobenzene by catalytic coupling reaction of p-aminothiophenol on metallic nanostructures [J]. Chemical Physics Letters,2010, 500(4-6):277-282.
    [209]Wu D, Zhao L, Liu X, et al. Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps:a DFT study of SERS [J]. Chemical Communications, 2011,47(9):2520-2522.
    [210]Zong S, Wang Z, Yang J, et al. Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity [J]. Analytical Chemistry,2011,83(11): 4178-4183.
    [211]Gabudean A M, Biro D, Astilean S. Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods [J]. Journal of Molecular Structure,2011,993(1-3):420-424.
    [212]Sun M, Hou Y, Li Z, et al. Remote excitation polarization-dependent surface photochemical reaction by plasmonic waveguide [J]. Plasmonics,2011,6(4):681-687.
    [213]Huang Y, Zhang M, Zhao L, et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances [J]. Angewandte Chemie International Edition,2014, 53(9):2353-2357.
    [214]Lantman E M V S, Deckert-Gaudig T, Mank A J G, et al. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy [J]. Nature Nanotechnology,2012,7(9): 583-586.
    [215]Dong B, Fang Y, Chen X, et al. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p'-dimercaptoazobenzene on Au, Ag, and Cu films [J]. Langmuir,2011,27(17):10677-10682.
    [216]Kang L, Xu P, Zhang B, et al. Laser wavelength-and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy [J]. Chemical Communications,2013,49(33):3389-3391.
    [217]Xu P, Kang L, Mack N H, et al. Mechanistic understanding of surface plasmon assisted catalysis on a single particle:cyclic redox of 4-aminothiophenol [J]. Scientific Reports,2013, 3:2997.
    [218]Zhao L, Zhang M, Huang Y, et al. Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds [J]. The Journal of Physical Chemistry Letters,2014:1259-1266.
    [219]Sun M, Xu H. A novel application of plasmonics:plasmon-driven surface-catalyzed reactions [J]. Small,2012,8(18):2777-2786.
    [1]Samanta A, Maiti K K, Soh K S, et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection [J]. Angewandte Chemie-International Edition,2011, 50(27):6089-6092.
    [2]Alvarez-Puebla R A, Liz-Marzan L M. Traps and cages for universal SERS detection [J]. Chemical Society Reviews,2012,41(1):43-51.
    [3]Sharma B, Frontiera R R, Henry A-I, et al. SERS:materials, applications, and the future [J]. Materials Today,2012,15(1-2):16-25.
    [4]Cialla D, Marz A, Bohme R, et al. Surface-enhanced Raman spectroscopy (SERS):progress and trends [J]. Analytical and Bioanalytical Chemistry,2012,403(1):27-54.
    [5]Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy [J]. The Annual Review of Analytical Chemistry,2008,1:601-626.
    [6]Wang Y, Schluecker S. Rational design and synthesis of SERS labels [J]. Analyst,2013, 138(8):2224-2238.
    [7]Wang Y, Yan B, Chen L. SERS tags:novel optical nanoprobes for bioanalysis [J]. Chemical Reviews,2013,113(3):1391-1428.
    [8]Tong L, Zhu T, Liu Z. Approaching the electromagnetic mechanism of surface-enhanced Raman scattering:from self-assembled arrays to individual gold nanoparticles [J]. Chemical Society Reviews,2011,40(3):1296-1304.
    [9]Banholzer M J, Millstone J E, Qin L, et al. Rationally designed nanostructures for surface-enhanced Raman spectroscopy [J]. Chemical Society Reviews,2008,37(5):885-897.
    [10]Qian K, Liu H, Yang L, et al. Designing and fabricating of surface-enhanced Raman scattering substrate with high density hot spots by polyaniline template-assisted self-assembly [J]. Nanoscale,2012,4(20):6449-6454.
    [11]Yan B, Thubagere A, Premasiri W R, et al. Engineered SERS substrates with multiscale signal enhancement:nanoplarticle cluster arrays [J]. Acs Nano,2009,3(5):1190-1202.
    [12]Ru E C L, Blackie E, Meyer M, et al. Surface enhanced Raman scattering enhancement factors:a comprehensive study [J]. Journal of Physical Chemistry C,2007,111(37): 13794-13803.
    [13]Luo Y, Aubry A, Pendry J B. Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces:a transformation optics approach [J]. Physical Review B,2011,83(15):155422.
    [14]Jones M R, Osberg K D, Macfarlane R J, et al. Templated techniques for the synthesis and assembly of plasmonic nanostructures [J]. Chemical Reviews,2011,111(6):3736-3827.
    [15]Li J, Huang Y, Duan S, et al. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles [J]. Physical Chemistry Chemical Physics,2010,12(10): 2493-2502.
    [16]Tian Z, Ren B, Li J, et al. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy [J]. Chemical Communications,2007, (34): 3514-3534.
    [17]Kleinman S L, Frontiera R R, Henry A-I, et al. Creating, characterizing, and controlling chemistry with SERS hot spots [J]. Physical Chemistry Chemical Physics,2013,15(1): 21-36.
    [18]Guo S, Dong S. Metal nanomaterial-based self-assembly:development, electrochemical sensing and SERS applications [J]. Journal of Materials Chemistry,2011,21(42): 16704-16716.
    [19]Shao Q, Que R, Shao M, et al. Copper nanoparticles grafted on a silicon wafer and their excellent surface-enhanced Raman scattering [J]. Advanced Functional Materials,2012, 22(10):2067-2070.
    [20]Lim D K, Jeon K S, Hwang J H, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap [J]. Nature Nanotechnology,2011,6(7):452-460.
    [21]Scholes F H, Davis T J, Vernon K C, et al. A hybrid substrate for surface-enhanced Raman scattering spectroscopy:coupling metal nanoparticles to strong localised fields on a micro-structured surface [J]. Journal of Raman Spectroscopy,2012,43(2):196-201.
    [22]Wu L, Wang Z, Shen B. Large-scale gold nanoparticle superlattice and its SERS properties for the quantitative detection of toxic carbaryl [J]. Nanoscale,2013,5(12):5274-5278.
    [23]Yang S, Lapsley M I, Cao B, et al. Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition [J]. Advanced Functional Materials,2013,23(6):720-730.
    [24]Zheng Y, Thai T, Reineck P, et al. DNA-directed self-assembly of core-satellite plasmonic nanostructures:a highly sensitive and reproducible near-IR SERS sensor [J]. Advanced Functional Materials,2013,23(12):1519-1526.
    [25]Zhang P, He J, Ma X, et al. Ultrasound assisted interfacial synthesis of gold nanocones [J]. Chemical Communications,2013,49(10):987-989.
    [26]Ngoc L L T, Jin M L, Wiedemair J, et al. Large area metal nanowire arrays with tunable sub-20nm nanogaps [J]. Acs Nano,2013,7(6):5223-5234.
    [27]Mu Z, Zhao X, Xie Z, et al. In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS) [J]. Journal of Materials Chemistry B, 2013,1(11):1607-1613.
    [28]Kim S, Jin J H, Kim Y J, et al. High-harmonic generation by resonant plasmon field enhancement [J]. Nature,2008,453(7196):757-760.
    [29]Siegfried T, Ekinci Y, Solak H H, et al. Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors [J]. Applied Physics Letters,2011,99(26):263302.
    [30]Li W, Camargo P H C, Lu X, et al. Dimers of silver nanospheres:facile synthesis and their use as hot spots for surface-enhanced Raman scattering [J]. Nano Letters,2009,9(1): 485-490.
    [31]Yang L, Liu H, Wang J, et al. Metastable state nanoparticle-enhanced Raman spectroscopy for highly sensitive detection [J]. Chemical Communications,2011,47(12):3583-3585.
    [32]Camden J P, Dieringer J A, Wang Y, et al. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots [J]. Journal of the American Chemical Society, 2008,130(38):12616-12617.
    [33]Dou X, Chung P Y, Sha H Y, et al. Large-scale fabrication of nanodimple arrays for surface-enhanced Raman scattering [J]. Physical Chemistry Chemical Physics,2013,15(30): 12680-12687.
    [34]Wang L, Xu L, Kuang H, et al. Dynamic nanoparticle assemblies [J]. Accounts of Chemical Research,2012,45(11):1916-1926.
    [35]Fabris L. Bottom-up optimization of SERS hot-spots [J]. Chemical Communications,2012, 48(75):9346-9348.
    [36]Liu Z, Lv B L, Wu D, et al. Precisely tailoring dendritic alpha-Fe2O3 structures along [1010] directions [J]. Crystengcomm,2012,14(11):4074-4080.
    [37]Wan Y, Liu J, Li W, et al. Dense doping of indium to coral-like SnO2 nanostructures through a plasma-assisted strategy for sensitive and selective detection of chlorobenzene [J]. Nanotechnology,2011,22(31):315501.
    [38]Frens G Controlled nucleation for regulation of particle-size in monodisperse gold suspensions [J]. Nature-Physical Science,1973,241(105):20-22.
    [39]Dasary S S R, Singh A K, Senapati D, et al. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene [J]. Journal of the American Chemical Society,2009,131(38):13806-13812.
    [40]Li X, Chen G, Yang L, et al. Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection [J]. Advanced Functional Materials,2010,20(17):2815-2824.
    [41]Bianco G V, Losurdo M, Giangregorio M M, et al. Direct fabrication route to plastic-supported gold nanoparticles for flexible NIR-SERS [J]. Plasmonics,2013,8(1): 159-165.
    [42]Wan Y, Liu J, Fu X, et al. Modification of coral-like SnO2 nanostructures with dense TiO2 nanoparticles for a self-cleaning gas sensor [J]. Talanta,2012,99:394-403.
    [43]Haiss W, Thanh N T K, Aveyard J, et al. Determination of size and concentration of gold nanoparticles from UV-Vis spectra [J]. Analytical Chemistry,2007,79(11):4215-4221.
    [44]Schuck P J, Fromm D P, Sundaramurthy A, et al. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas [J]. Physical Review Letters,2005,94(1): 17402.
    [45]Liberman V, Yilmaz C, Bloomstein T M, et al. A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates [J]. Advanced Materials,2010,22(38):4298-4302.
    [46]Guo S, Dong S, Wang E. Constructing carbon-nanotube/metal hybrid nanostructures using homogeneous TiO2 as a spacer [J]. Small,2008,4(8):1133-1138.
    [47]Hong G, Li C, Qi L. Facile fabrication of two-dimensionally ordered macroporous silver thin films and their application in molecular sensing [J]. Advanced Functional Materials,2010, 20(21):3774-3783.
    [48]Tian S, Zhou Q, Gu Z, et al. Fabrication of a bowl-shaped silver cavity substrate for SERS-based immunoassay [J]. Analyst,2013,138(9):2604-2612.
    [49]Kleinman S L, Ringe E, Valley N, et al. Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues:theory and experiment [J]. Journal of the American Chemical Society,2011,133(11):4115-4122.
    [50]Hu J, Zheng P C, Jiang J H, et al. Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy [J]. Analytical Chemistry,2009,81(1): 87-93.
    [51]Que R, Shao M, Zhuo S, et al. Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly [J]. Advanced Functional Materials,2011, 21(17):3337-3343.
    [52]Waseem A, Yaqoob M, Nabi A. Determination of thiram in natural waters using flow-injection with cerium(Ⅳ)-quinine chemiluminescence system [J]. Luminescence,2010, 25(1):71-75.
    [53]Waseem A, Yaqoob M, Nabi A. Photodegradation and flow-injection determination of dithiocarbamate fungicides in natural water with chemiluminescence detection [J]. Analytical sciences:the international journal of the Japan Society for Analytical Chemistry,2009,25(3): 395-400.
    [54]Yang T, Guo X, Wang H, et al. Au dotted magnetic network nanostructure and its application for on-site monitoring femtomolar level pesticide [J]. Small,2014,10(7):1325-1331.
    [55]Zheng X, Chen Y, Chen Y, et al. High performance Au/Ag core/shell bipyramids for determination of thiram based on surface-enhanced Raman scattering [J]. Journal of Raman Spectroscopy,2012,43(10):1374-1380.
    [56]Yazdi S H, White I M. Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants [J]. Analytical Chemistry, 2012,84(18):7992-7998.
    [57]Liu B, Han G, Zhang Z, et al. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels [J]. Analytical Chemistry,2012, 84(1):255-261.
    [58]Kang J S, Hwang S Y, Lee C J, et al. SERS of dithiocarbamate pesticides adsorbed on silver surface; thiram [J]. Bulletin of the Korean Chemical Society,2002,23(11):1604-1610.
    [59]Zeiri L. SERS of plant material [J]. Journal of Raman Spectroscopy,2007,38(7):950-955.
    [1]Wang Y, Schluecker S. Rational design and synthesis of SERS labels [J]. Analyst,2013, 138(8):2224-2238.
    [2]Stewart M E, Anderton C R, Thompson L B, et al. Nanostructured plasmonic sensors [J]. Chemical Reviews,2008,108(2):494-521.
    [3]Camden J P, Dieringer J A, Zhao J, et al. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing [J]. Accounts of Chemical Research,2008, 41(12):1653-1661.
    [4]Ko H, Singamaneni S, Tsukruk V V. Nanostructured surfaces and assemblies as SERS media [J]. Small,2008,4(10):1576-1599.
    [5]Guerrini L, Graham D. Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications [J]. Chemical Society Reviews,2012, 41(21):7085-7107.
    [6]李剑锋.核壳结构纳米粒子增强拉曼光谱[D].厦门:厦门大学博士论文,2010.
    [7]Ru E C L, Blackie E, Meyer M, et al. Surface enhanced Raman scattering enhancement factors:a comprehensive study [J]. Journal of Physical Chemistry C,2007,111(37): 13794-13803.
    [8]Zhang Y, Hong H, Myklejord D V, et al. Molecular imaging with SERS-active nanoparticles [J]. Small,2011,7(23):3261-3269.
    [9]Hao E, Schatz G C. Electromagnetic fields around silver nanoparticles and dimers [J]. Journal of Chemical Physics,2004,120(1):357-366.
    [10]Doherty M D, Murphy A, Pollard R J, et al. Surface-enhanced Raman scattering from metallic nanostructures:bridging the gap between the near-field and far-field responses [J]. Physical Review X,2013,3(1):011001.
    [11]Ru E C L, Etchegoin P G Principles of surface-enhanced Raman spectroscopy:and related plasmonic effects [M]. Amsterdam:Elsevier,2009.
    [12]Sivapalan S T, Devetter B M, Yang T K, et al. Off-resonance surface-enhanced Raman spectroscopy from gold nanorod suspensions as a function of aspect ratio:not what we thought [J]. Acs Nano,2013,7(3):2099-2105.
    [13]Qu H, Lai Y, Niu D, et al. Surface-enhanced Raman scattering from magneto-metal nanoparticle assemblies [J]. Analytica Chimica Acta,2013,763:38-42.
    [14]Wang Y, Wang K, Zou B, et al. Magnetic-based silver composite microspheres with nanosheet-assembled shell for effective SERS substrate [J]. Journal of Materials Chemistry C, 2013,1(13):2441-2447.
    [15]Ding Q, Liu H, Yang L, et al. Speedy and surfactant-free in situ synthesis of nickel/Ag nanocomposites for reproducible SERS substrates [J]. Journal of Materials Chemistry,2012, 22(37):19932-19939.
    [16]Gan Z, Zhao A, Zhang M, et al. Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes [J]. Dalton Transactions,2013,42(24):8597-8605.
    [17]Ye Y, Chen J, Ding Q, et al. Sea-urchin-like Fe3O4@C@Ag particles:an efficient SERS substrate for detection of organic pollutants [J]. Nanoscale,2013,5(13):5887-5895.
    [18]Zhou X, Xu W, Wang Y, et al. Fabrication of cluster/shell Fe3O4/Au nanoparticles and application in protein detection via a SERS method [J]. The Journal of Physical Chemistry C, 2010,114(46):19607-19613.
    [19]Mahmoud K A, Zourob M. Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT) [J]. Analyst,2013,138(9):2712-2719.
    [20]Yang L, Bao Z, Wu Y, et al. Clean and reproducible SERS substrates for high sensitive detection by solid phase synthesis and fabrication of Ag-coated Fe3O4 microspheres [J]. Journal of Raman Spectroscopy,2012,43(7):848-856.
    [21]Hu H, Wang Z, Pan L, et al. Ag-coated Fe3O4@SiO2 three-ply composite microspheres: synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering [J]. Journal of Physical Chemistry C,2010,114(17): 7738-7742.
    [22]Lv B, Xu Y, Tian H, et al. Synthesis of Fe3O4/SiO2/Ag nanoparticles and its application in surface-enhanced Raman scattering [J]. Journal of Solid State Chemistry,2010,183(12): 2968-2973.
    [23]Chen H, Wang Z, Ma X, et al. Magnetically controllable dual-mode nanoprobes for cell imaging with an onion-liked structure [J]. Talanta,2013,116:978-984.
    [24]Shen J, Zhu Y, Yang X, et al. Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling [J]. Langmuir,2013,29(2): 690-695.
    [25]Deng H, Li X, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angewandte Chemie-International Edition,2005,44(18):2782-2785.
    [26]Perez-Juste J, Liz-Marzan L M, Carnie S, et al. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions [J]. Advanced Functional Materials,2004,14(6): 571-579.
    [27]Xu L, Kuang H, Xu C, et al. Regiospecific plasmonic assemblies for in situ Raman spectroscopy in live cells [J]. Journal of the American Chemical Society,2012,134(3): 1699-1709.
    [28]Ye X, Jin L, Caglayan H, et al. Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives [J]. Acs Nano,2012,6(3):2804-2817.
    [29]王攀.微纳光纤—金纳米棒复合结构:微纳尺度“光子—表面等离激元”研究新平台[D].杭州:浙江大学博士论文,2013.
    [30]Wang C, Chen Y, Wang T, et al. Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing [J]. Advanced Functional Materials,2008,18(2):355-361.
    [31]Shao M, Ning F, Zhao J, et al. Preparation of Fe3O4@SiO2@Layered double hydroxide core-shell microspheres for magnetic separation of proteins [J]. Journal of the American Chemical Society,2012,134(2):1071-1077.
    [32]程杨,赵宗山,张帆,等Fe3O4-SiO2-Polypyrrole纳米核壳颗粒的制备及其吸附性能[J].科学通报,2010,55(30):2904-2909.
    [33]Gao C, Yu X, Xiong S, et al. Electrochemical detection of arsenic(III) completely free from noble metal:Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold [J]. Analytical Chemistry,2013,85(5):2673-2680.
    [34]Ngo Y H, Li D, Simon G P, et al. Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper [J]. Journal of Colloid and Interface Science,2013,392:237-246.
    [35]Tang X, Jiang P, Ge G, et al. Poly(N-vinyl-2-pyrrolidone) (PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect [J]. Langmuir, 2008,24(5):1763-1768.
    [36]Wang Y, Chen H, Dong S, et al. Surface enhanced Raman scattering of p-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass [J]. The Journal of chemical physics,2006,124(7):74709.
    [37]Guo S, Dong S, Wang E. Constructing carbon-nanotube/metal hybrid nanostructures using homogeneous TiO2 as a spacer [J]. Small,2008,4(8):1133-1138.
    [38]Hong G, Li C, Qi L. Facile fabrication of two-dimensionally ordered macroporous silver thin films and their application in molecular sensing [J]. Advanced Functional Materials,2010, 20(21):3774-3783.
    [39]Tian S, Zhou Q, Gu Z, et al. Fabrication of a bowl-shaped silver cavity substrate for SERS-based immunoassay [J]. Analyst,2013,138(9):2604-2612.
    [40]Saute B, Premasiri R, Ziegler L, et al. Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides [J]. Analyst,2012,137(21):5082-5087.
    [41]Liu B, Han G, Zhang Z, et al. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels [J]. Analytical Chemistry,2012, 84(1):255-261.
    [42]Li J, Huang Y, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature,2010,464(7287):392-395.
    [43]李永才,尹燕,陈松江,等.采前套袋对苹果梨表皮蜡质结构和化学组分的影响[J].中国农业科学,2012,(17):3661-3668.
    [1]Joseph V, Engelbrekt C, Zhang J, et al. Characterizing the kinetics of nanoparticle-catalyzed reactions by surface-enhanced Raman scattering [J]. Angewandte Chemie-International Edition,2012,51(30):7592-7596.
    [2]Zhang R, Zhang Y, Dong Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering [J]. Nature,2013,498(7452):82-86.
    [3]Wang D, Zhu W, Best M D, et al. Directional Raman scattering from single molecules in the feed gaps of optical antennas [J]. Nano Letters,2013,13(5):2194-2198.
    [4]Konishi T, Kiguchi M, Takase M, et al. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature [J]. Journal of the American Chemical Society,2013,135(3):1009-1014.
    [5]Heck K N, Janesko B G, Scuseria G E, et al. Observing metal-catalyzed chemical reactions in situ using surface-enhanced Raman spectroscopy on Pd-Au nanoshells [J]. Journal of the American Chemical Society,2008,130(49):16592-16600.
    [6]Sun M, Xu H. A novel application of plasmonics:plasmon-driven surface-catalyzed reactions [J]. Small,2012,8(18):2777-2786.
    [7]Huang J, Zhu Y, Lin M, et al. Site-specific growth of Au-Pd alloy horns on Au nanorods:a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy [J]. Journal of the American Chemical Society,2013,135(23): 8552-8561.
    [8]Xie W, Herrmann C, Koempe K, et al. Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions [J]. Journal of the American Chemical Society,2011,133(48):19302-19305.
    [9]Xie W, Walkenfort B, Schluecker S. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures [J]. Journal of the American Chemical Society,2013,135(5):1657-1660.
    [10]Osawa M, Matsuda N, Yoshii K, et al. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution [J]. The Journal of Physical Chemistry,1994,98(48): 12702-12707.
    [11]Richter A P, Lombardi J R, Zhao B. Size and wavelength dependence of the charge-transfer contributions to surface-enhanced Raman spectroscopy in Ag/PATP/ZnO junctions [J]. The Journal of Physical Chemistry C,2010,114(3):1610-1614.
    [12]Zhao N, Wei Y, Sun N, et al. Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions [J]. Langmuir,2008,24(3):991-998.
    [13]Park W H, Kim Z H. Charge transfer enhancement in the SERS of a single molecule [J]. Nano Letters,2010,10(10):4040-4048.
    [14]Wu D, Liu X, Huang Y, et al. Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal SERS enhancement:a DFT study [J]. Journal of Physical Chemistry C,2009,113(42):18212-18222.
    [15]Fang Y, Li Y, Xu H, et al. Ascertaining p, p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles [J]. Langmuir,2010,26(11):7737-7746.
    [16]Huang Y, Zhu H, Liu G, et al. When the signal is not from the original molecule to be detected:chemical transformation of para-aminothiophenol on Ag during the SERS measurement [J]. Journal of the American Chemical Society,2010,132(27):9244-9246.
    [17]Canpean V, Iosin M, Astilean S. Disentangling SERS signals from two molecular species:a new evidence for the production of p,p'-dimercaptoazobenzene by catalytic coupling reaction of p-aminothiophenol on metallic nanostructures [J]. Chemical Physics Letters,2010, 500(4-6):277-282.
    [18]Wu D, Zhao L, Liu X, et al. Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps:a DFT study of SERS [J]. Chemical Communications, 2011,47(9):2520-2522.
    [19]Zong S, Wang Z, Yang J, et al. Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity [J]. Analytical Chemistry,2011,83(11): 4178-4183.
    [20]Gabudean A M, Biro D, Astilean S. Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods [J]. Journal of Molecular Structure,2011,993(1-3):420-424.
    [21]Sun M, Hou Y, Li Z, et al. Remote excitation polarization-dependent surface photochemical reaction by plasmonic waveguide [J]. Plasmonics,2011,6(4):681-687.
    [22]Xu P, Kang L, Mack N H, et al. Mechanistic understanding of surface plasmon assisted catalysis on a single particle:cyclic redox of 4-aminothiophenol [J]. Scientific Reports,2013, 3:2997.
    [23]Lantman E M V S, Deckert-Gaudig T, Mank A J G, et al. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy [J]. Nature Nanotechnology,2012,7(9): 583-586.
    [24]Kang L, Xu P, Chen D, et al. Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy [J]. Journal of Physical Chemistry C,2013,117(19):10007-10012.
    [25]Kang L, Xu P, Zhang B, et al. Laser wavelength-and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy [J]. Chemical Communications,2013,49(33):3389-3391.
    [26]Dong B, Fang Y, Chen X, et al. Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p'-dimercaptoazobenzene on Au, Ag, and Cu films [J]. Langmuir,2011,27(17):10677-10682.
    [27]Zhang B, Zhao A, Wang D, et al. Synthesis and SERS properties of flowerlike Ag micro-nano structures [J]. Chemical Journal of Chinese Universities-Chinese,2010,31(8):1491-1495.
    [28]Yang J, Dennis R C, Sardar D K. Room-temperature synthesis of flowerlike Ag nanostructures consisting of single crystalline Ag nanoplates [J]. Materials Research Bulletin, 2011,46(7):1080-1084.
    [29]Germain V, Li J, Ingert D, et al. Stacking faults in formation of silver nanodisks [J]. The Journal of Physical Chemistry B,2003,107(34):8717-8720.
    [30]Chen C Y, Wong C P. Shape-diversified silver nanostructures uniformly covered on aluminium micro-powders as effective SERS substrates [J]. Nanoscale,2014,6(2):811-816.
    [31]Botta R, Upender G, Sathyavathi R, et al. Silver nanoclusters films for single molecule detection using surface enhanced Raman scattering (SERS) [J]. Materials Chemistry and Physics,2013,137(3):699-703.
    [32]Gao B, Arya G, Tao A R. Self-orienting nanocubes for the assembly of plasmonic nanojunctions [J]. Nature Nanotechnology,2012,7(7):433-437.
    [33]Zhang M, Zhao A, Guo H, et al. Green synthesis of rosettelike silver nanocrystals with textured surface topography and highly efficient SERS performances [J]. Crystengcomm, 2011,13(19):5709-5717.
    [34]Cai W, Tang X, Yang L, et al. Facile fabrication of leafy spikes-like silver dendrite crystals for SERS substrate [J]. Materials Research Bulletin,2013,48(10):4125-4133.
    [35]Liang H, Li Z, Wang W, et al. Highly surface-roughened "flower-like" silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering [J]. Advanced Materials, 2009,21(45):4614-4618.
    [36]Zhang F, Chen P, Li X, et al. Further localization of optical field for flower-like silver particles under laser radiation [J]. Laser Physics Letters,2013,10(4):045901.
    [37]Canamares M V, Chenal C, Birke R L, et al. DFT, SERS, and single-molecule SERS of crystal violet [J]. Journal of Physical Chemistry C,2008,112(51):20295-20300.
    [38]Kleinman S L, Ringe E, Valley N, et al. Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues:theory and experiment [J]. Journal of the American Chemical Society,2011,133(11):4115-4122.
    [39]Meng W, Hu F, Zhang L, et al. SERS and DFT study of crystal violet [J]. Journal of Molecular Structure,2013,1035:326-331.
    [40]Fang J, Du S, Lebedkin S, et al. Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy [J]. Nano Letters,2010, 10(12):5006-5013.
    [41]Zhao L, Huang Y, Liu X, et al. A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver:selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline [J]. Physical Chemistry Chemical Physics,2012, 14(37):12919-12929.
    [42]Laidler K J. Chemical kinetics,3rd edition[M]. New York Harper and Row Publishers Inc, 1987.
    [43]Joseph S T S, Ipe B I, Pramod P, et al. Gold nanorods to nanochains:mechanistic investigations on their longitudinal assembly using alpha,omega-alkanedithiols and interplasmon coupling [J]. Journal of Physical Chemistry B,2006,110(1):150-157.
    [44]Sethi M, Knecht M R. Understanding the mechanism of amino acid-based Au nanoparticle chain formation [J]. Langmuir,2010,26(12):9860-9874.
    [45]Gu G H, Suh J S. Minimum enhancement of surface-enhanced Raman scattering for single-molecule detections [J]. Journal of Physical Chemistry A,2009,113(30):8529-8532.
    [46]Lim D K, Jeon K S, Hwang J H, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap [J]. Nature Nanotechnology,2011,6(7):452-460.
    [47]Ren W, Fang Y, Wang E. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids [J]. Acs Nano,2011,5(8):6425-6433.
    [48]Zhao L, Zhang M, Huang Y, et al. Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds [J]. The Journal of Physical Chemistry Letters,2014:1259-1266.
    [1]Zhang R, Zhang Y, Dong Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering [J]. Nature,2013,498(7452):82-86.
    [2]Wang D, Zhu W, Best M D, et al. Directional Raman scattering from single molecules in the feed gaps of optical antennas [J]. Nano Letters,2013,13(5):2194-2198.
    [3]Konishi T, Kiguchi M, Takase M, et al. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature [J]. Journal of the American Chemical Society,2013,135(3):1009-1014.
    [4]Smith J G, Yang Q, Jain P K. Identification of a critical intermediate in galvanic exchange reactions by single-nanoparticle-resolved kinetics [J]. Angewandte Chemie-International Edition,2014,53(11):2867-2872.
    [5]Kim K, Lee S H, Choi J-Y, et al. Fe3+to Fe2+conversion by plasmonically generated hot electrons from Ag nanoparticles:surface-enhanced Raman scattering evidence [J]. The Journal of Physical Chemistry C,2014,118(6):3359-3365.
    [6]Xie W, Herrmann C, Koempe K, et al. Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions [J]. Journal of the American Chemical Society,2011,133(48):19302-19305.
    [7]Tittl A, Yin X, Giessen H, et al. Plasmonic smart dust for probing local chemical reactions [J]. Nano Letters,2013,13(4):1816-1821.
    [8]Joseph V, Engelbrekt C, Zhang J, et al. Characterizing the kinetics of nanoparticle-catalyzed reactions by surface-enhanced Raman scattering [J]. Angewandte Chemie-International Edition,2012,51(30):7592-7596.
    [9]Huang J, Zhu Y, Lin M, et al. Site-specific growth of Au-Pd alloy horns on Au nanorods:a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy [J]. Journal of the American Chemical Society,2013,135(23): 8552-8561.
    [10]Zheng J, Fang X, Cao Y, et al. Monitoring the chemical production of citrus-derived bioactive 5-demethylnobiletin using surface-enhanced Raman spectroscopy [J]. Journal of Agricultural and Food Chemistry,2013,61(34):8079-8083.
    [11]Taylor R W, Coulston R J, Biedermann F, et al. In situ SERS monitoring of photochemistry within a nanojunction reactor [J]. Nano Letters,2013,13(12):5985-5990.
    [12]Tan E, Yin P, You T, et al. Direct evidence for conversion of p-aminothiophenol to p,p '-dimercaptoazobenzene by in situ reduplicative surface-enhanced Raman scattering measurements [J]. Journal of Raman Spectroscopy,2013,44(8):1200-1203.
    [13]Panikkanvalappil S R, Mahmoud M A, Mackey M A, et al. Surface-enhanced Raman spectroscopy for real-time monitoring of reactive oxygen species-induced DNA damage and its prevention by platinum nanoparticles [J]. Acs Nano,2013,7(9):7524-7533.
    [14]Heck K N, Janesko B G, Scuseria G E, et al. Using catalytic and surface-enhanced Raman spectroscopy-active gold nanoshells to understand the role of basicity in glycerol oxidation [J]. Acs Catalysis,2013,3(11):2430-2435.
    [15]Ren X, Tan E, Lang X, et al. Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy [J]. Physical Chemistry Chemical Physics,2013,15(34):14196-14201.
    [16]Zhang L, Zhang C. Controlled growth of concave gold nanobars with high surface-enhanced Raman-scattering and excellent catalytic activities [J]. Nanoscale,2013,5(13):5794-5800.
    [17]Xie W, Walkenfort B, Schluecker S. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures [J]. Journal of the American Chemical Society,2013,135(5):1657-1660.
    [18]陈晋.基于毛细管的SERS活性基底制备及其在实际检测中的应用[D].合肥:安徽大学硕士论文,2013.
    [19]Haiss W, Thanh N T K, Aveyard J, et al. Determination of size and concentration of gold nanoparticles from UV-Vis spectra [J]. Analytical Chemistry,2007,79(11):4215-4221.
    [20]Siegfried T, Ekinci Y, Solak H H, et al. Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors [J]. Applied Physics Letters,2011,99(26):263302.
    [21]Nielsen P, Hassing S, Albrektsen O, et al. Fabrication of large-area self-organizing gold nanostructures with sub-10 nm gaps on a porous Al2O3 template for application as a SERS-substrate [J]. Journal of Physical Chemistry C,2009,113(32):14165-14171.
    [22]Wang Y, Yan B, Chen L. SERS tags:novel optical nanoprobes for bioanalysis [J]. Chemical Reviews,2013,113(3):1391-1428.
    [23]Xie W, Schluecker S. Medical applications of surface-enhanced Raman scattering [J]. Physical Chemistry Chemical Physics,2013,15(15):5329-5344.
    [24]Song J, Pu L, Zhou J, et al. Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods [J]. Acs Nano,2013,7(11):9947-9960.
    [25]Pierre M C S, Haes A J. Purification implications on SERS activity of silica coated gold nanospheres [J]. Analytical Chemistry,2012,84(18):7906-7911.
    [26]Alvarez-Puebla R A, Dos Santos Jr D S, Aroca R F. Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols [J]. Analyst,2004,129(12): 1251-1256.
    [27]Que R, Shao M, Zhuo S, et al. Highly reproducible surface-enhanced Raman scattering on a capillarity-assisted gold nanoparticle assembly [J]. Advanced Functional Materials,2011, 21(17):3337-3343.
    [28]Shao Q, Que R, Shao M, et al. Copper nanoparticles grafted on a silicon wafer and their excellent surface-enhanced Raman scattering [J]. Advanced Functional Materials,2012, 22(10):2067-2070.
    [29]Liu Z, Cheng L, Zhang L, et al. Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins [J]. Nanoscale,2014,6(5):2567-2572.
    [30]Zhao L, Huang Y, Liu X, et al. A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver:selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline [J]. Physical Chemistry Chemical Physics,2012, 14(37):12919-12929.
    [31]Lantman E M V S, Deckert-Gaudig T, Mank A J G, et al. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy [J]. Nature Nanotechnology,2012,7(9): 583-586.
    [32]Gu G H, Suh J S. Minimum enhancement of surface-enhanced Raman scattering for single-molecule detections [J]. Journal of Physical Chemistry A,2009,113(30):8529-8532.
    [33]Lim D K, Jeon K S, Hwang J H, et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap [J]. Nature Nanotechnology,2011,6(7):452-460.
    [34]Ren W, Fang Y, Wang E. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids [J]. Acs Nano,2011,5(8):6425-6433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700