用户名: 密码: 验证码:
原位生长莫来石增强磷酸铬铝高温透波材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温透波材料是高速、超高速飞行器通信系统的保障,也是高速精确制导飞行器发展的关键材料之一。随着飞行器飞行速度和使用环境的不断升级,要求高温透波材料具有更加优良的力、电综合性能以及更长的寿命,但目前尚未获得一种耐热一透波一承载综合性能十分理想的透波材料。面对当前为数不多的高温透波材料品种,开展低成本高性能磷酸铬铝基透波复合材料的研究具有重要意义。
     磷酸铬铝具有低介电、化学稳定、耐高温的特点,但力学性能低,易吸潮,普遍采用硅质纤维增强与防潮涂层相结合的方式改进。然而硅质纤维增强磷酸盐材料由于纤维本身耐温能力和加热后磷酸铬铝对纤维的侵蚀限制了该系列材料的使用温度范围。纵观磷酸盐基复合材料研究现状,开展颗粒、晶须增强磷酸铬铝陶瓷基复合材料的研究是降低磷酸铬铝吸潮率、提高其使用温度的有效方法之一。众多陶瓷材料中,莫来石是少数和磷酸铬铝有良好化学相容性、热匹配特性的材料,并具有较低的介电常数和较高的耐温性能。因此为更好利用磷酸铬铝良好的耐高温、低介电性能,论文结合莫来石与磷酸铬铝的优点,提出了一种新的磷酸铬铝复合材料体系和增强工艺,即:原位生长莫来石颗粒、晶须增强磷酸铬铝复相陶瓷体系,并对其高温介电性能进行初步理论预测,以期为高温透波材料的发展提供更多的参考。
     本文研究主要结果有:
     1.磷酸铬铝基体热性质研究表明,160~900基体为无定型聚合结构,900~1300将分别发生析晶和分解,1300~1600由含铬的正磷酸铝构成,介电常数随物相变化而变化。经1300以上热处理,介电常数趋于稳定,吸潮率<0.02wt%。
     2.获得了室温抗弯强度157.45MPa、1000抗弯强度143.78MPa、断裂韧性4.08MPa·m1/2、介电常数<3.8、损耗<0.05(8~12GHz)、显微硬度550Hv、抗热震临界温差<200的原位生长莫来石颗粒增强磷酸铬铝复相陶瓷。控制高温莫来石化时原料晶型状态是制备无开裂莫来石/磷酸铬铝复合材料的关键;莫来石/磷酸铬铝体系热力学研究表明,二者反应标准吉布斯自由能随温度升高非线性降低,且磷酸铬铝具有更低的反应标准吉布斯自由能;莫来石生长满足莫来石化动力学模型,1500达到最大反应速率,材料致密化受游离SiO2含量控制;体系属晶界增强型复相陶瓷,TEM显示二者无明显晶界相;莫来石晶粒对磷酸铬铝晶界有明显钉扎作用;热膨胀系数差异导致残余应力诱发裂纹偏转、分叉以及莫来石晶粒阻挡、拔出是主要的增强、增韧行为。
     3.获得了室温抗弯强度135.60MPa、1000抗弯强度121.71MPa、断裂韧性4.52MPa·m1/2、介电常数<3.6、损耗<0.05(8~12GHz)、显微硬度400Hv、抗热震临界温差300的原位生长莫来石晶须增强磷酸铬铝复相陶瓷。原位生长晶须有效改善了莫来石颗粒增强磷酸铬铝复相陶瓷抗热震及介电性能;采用晶须引发剂内加法更适合本体系制备工艺;TEM显示原位生长莫来石晶须表面具有台阶状特点,使复合界面增加了机械锁合几率;莫来石晶须/磷酸铬铝复合界面结合属弱结合,复合材料最终通过晶须桥联、拔出、裂纹偏转机制达到增强、增韧目的。
     4.原位生长莫来石增强磷酸铬铝复相陶瓷体系具有较好的宽频透波能力,8~12GHz范围内电磁波透过率均大于60%,设计厚度为7mm时,透过率达到最佳状态(>80%);高温介电初步建模结果显示,磷酸铝介电常数、损耗随温度升高至1000K时迅速增加,与“P-O”键相对高的离子性有关;莫来石介电常数、损耗随温度升高至800K时迅速增加,高温介电损耗主要由氧空位贡献,故控制莫来石晶体氧空位数是降低其高温介电损耗的手段之一;最终实验结果表明,复杂晶体化学键理论在多元化合物高温介电模型中的应用是可行的。
High temperature wave-transparent materials are the protections of high-speed,ultra high-speed aircraft communication systems, and one of the key materials forhigh-speed precision-guided aircraft. With the escalation of flight speed and serviceenvironment, high temperature wave-transparent materials have been required formore excellent mechanical property, dielectric property and longer life. However,researchers have not found an ideal wave-transparent material with goodcomprehensive performance of heat resistance, transmission efficiency and bearingcapacity yet. Given that there are few varieties of present products, it is significant tocarry out a low-cost, high-performance aluminum-chrome phosphates compositesresearch.
     Aluminum-chrome phosphates have low dielectric constant, good chemicalstability and high melting point, but also have low mechanical property and highmoisture-absorb. Therefore researchers usually adopt combination way of siliceousfiber-reinforced and moisture-proof coatings to improve. However, the servicetemperature of siliceous fiber reinforced aluminum-chrome phosphates compositesare limited by low temperature resistance of siliceous fiber and the erosion after beingheated. Throughout the current state of phosphate-based composites research,utilizing particles and whiskers reinforced aluminum-chrome phosphates ceramicmatrix composites is one of the best ways to decrease moisture absorption rate and toimprove high temperature service capacity. But few ceramic particles and whiskerscan match the chemical and thermal compatibility of aluminum-chrome phosphates,and mullite is one of them, which also has a low dielectric constant and hightemperature performance. Thus, new aluminum-chrome phosphates composite systemand enhance process have been proposed namely in-situ mullite particles andwhiskers reinforced aluminum-chrome phosphates multiphase ceramics system, onbasis of the good chemical and thermal compatibility between aluminum-chromephosphates and mullite, and the insufficient heat resistant ability of siliceousfiber-reinforced composites. Meanwhile preliminary theoretical prediction of its hightemperature dielectric property has been taken in order to provide more reference forthe development of high-temperature wave-transparent materials.
     The indications of the study are as follows:
     1. Thermal properties study of aluminum-chrome phosphates matrix showed that,the matrix was amorphous polymeric structure in160~900, and then crystallizedand decomposed successively in900~1300, finally, constituted by final productsAlPO4and Cr2O3in1300~1600. Thermal transformation of matrix from160to1600lead to a fluctuant dielectric constant, but finally stabled after heatingabove1300, which moisture absorption rate <0.002wt%.
     2. Obtained an in-situ mullite particles reinforced aluminum-chrome phosphatesmatrix multiphase ceramics, which normal temperature flexural strength,1000flexural strength, fracture toughness, dielectric constant, loss tangent, Vickers hardness and critical thermal shock temperature difference are157.45MPa,143.78MPa,4.08MPa·m1/2,<3.8,<0.05(8~12GHz),550Hv and <200. Controlingraw materials crystal forms at mullitization temperature is the key step to prepare acracking-free composite. Thermodynamics analysis of this system shows that: bothstandard Gibbs free energy nonlinear reduced with temperature rise, whilealuminum-chrome phosphates has a lower, mullite reaction met the mullitizationkinetics model with maximum rate at1500, matrix densification controlled by freeSiO2. System is grain boundary enhanced multiphase ceramics and TEM displayed noobvious boundary between the two phases. Mullite had obviously pinning effect formatrix grain boundaries. Both particles were incorporated to improve the strength andtoughness by residual stress induced crack deflection, crack branching and grain'spull-out.
     3. Obtained an in-situ mullite whiskers reinforced aluminum-chrome phosphatesmatrix multiphase ceramics, which normal temperature flexural strength,1000flexural strength, fracture toughness, dielectric constant, loss tangent, Vickershardness and critical thermal shock temperature difference are135.60MPa,121.71MPa,4.52MPa·m1/2,<3.6,<0.05(8~12GHz),400Hv and300. Mullitewhiskers improved thermal shock and dielectric properties of particle reinforcedaluminum-chrome phosphates system. Internal adding whiskers trigger is moresuitable for this system. In-situ mullite whisker had a stepped surface increasing theinterface mechanical locking probability. Both whisker and matrix were incorporatedto improve the strength and toughness by whisker bridging, pull out and crackdeflection to achieve enhanced toughening purpose.
     4. In-situ mullite reinforced aluminum-chrome phosphates multiphase ceramicshas a better broadband wave transmittance and transmission efficiency more than60%in the range of8~12GHz. Transmittance is optimal when thickness is7mm. Hightemperature dielectric modeling results show that, aluminum phosphate dielectricconstant increased rapidly when temperature raise to1000K because of the relativelyhigh iconicity of "P-O" bond. Mullite dielectric constant and loss tangent increasedrapidly when temperature raise to800K, which is duo to the contribution of oxygenvacancies, thus control the number of mullite oxygen vacancies is one of the means toreduce its high temperature dielectric loss.Chemical bond theory of complex crystalsis feasible for multiple compounds dielectric simulation.
引文
[1]张伟儒.高性能氮化物透波材料的设计、制备及特性研究[D].武汉:武汉理工大学,2007:1-9.
    [2]闫法强.夹层结构天线罩材料的设计、制备及其宽频透波性能[D].武汉:武汉理工大学,2007:1-5.
    [3]李仲平.热透波机理与热透波材料[M].北京:中国宇航出版社,2013:167-171.
    [4] K. P. Murali, K. J. Nijesh. Effect of particle size on the microwave dielectric properties ofalumina-filled PTFE substrates[J]. International Journal of Applied Ceramic Technology,2010,1:1-4.
    [5]黄勇,汪长安.高性能多相复合陶瓷[M].北京:清华大学出版社,2008:20-21.
    [6] Kerry K. Richardson, Doug W. Freitag, David L. Hunn. Barium aluminosilicate reinforced insitu with silicon nitride[J]. J. Am. Ceram. Soc.,1995,78(10):2662-2668.
    [7]王锋.磷酸铝系透波复合材料的制备技术[D].武汉:武汉理工大学,2006:8-20.
    [8] Hiroyuki Miyazaki, Kiyoshi Hirao, Yu-ichi Yoshizawa. Effects of MgO addition on themicrowave dielectric properties of high thermal-conductive silicon nitride ceramics sintered withytterbia as sintering additives[J]. Journal of the European Ceramic Society,2012,32:3297-3301.
    [9] Feng Yu, Nandakumar Nagarajan, Yi Fang, et al. Microstructural control of a70%siliconnitride–30%barium aluminum silicate self-reinforced composite[J]. J. Am. Ceram. Soc.,2001,84(1):13-22.
    [10] Feng Ye, Limeng Liu, Jingxian Zhang, et al. Synthesis of silicon nitride-bariumaluminosilicate self-reinforced ceramic composite by a two-step pressureless sintering[J].Composites Science and Technology,2005,65:2223-2232.
    [11] S. Boskovic, Dj. Kosanovic, S. Zec. Densification and phase transformation of Si3N4in thepresence of mechanically activated BaCO3–Al2O3–SiO2mixture[J]. Powder Technology120,2001,120:194-198.
    [12] Y. S. Zheng, K. M. Knowles., J. M. Vieira, et al. Microstructure, toughness and flexuralstrength of self-reinforced silicon nitride ceramics doped with yttrium oxide and ytterbiumoxide[J]. Journal of Microscopy,2001.201(2):238-249.
    [13] Xuejian Liu, Zhiyong Huang, Qiming Ge, et al. Microstructure and mechanical properties ofsilicon nitride ceramics prepared by pressureless sintering with MgO–Al2O3–SiO2as sinteringadditive[J]. Journal of the European Ceramic Society,2005.25:3353-3359.
    [14] Xuguang Tong, Jianbao Li, Xiaozhan Yang, et al. Mechanical Property and oxidationbehavior of self-reinforced Si3N4doped with Re2O3(Re=Yb, Lu)[J]. J. Am. Ceram. Soc.,2006.85(5):1730-1732.
    [15] Jingyi Zhang, Feng Ye. Effect of agarose content on microstructures and mechanicalproperties of porous silicon nitride ceramics produced by gelcasting[J]. Journal of ZhejiangUniversity-Science A (Applied Physics&Engineering),2010.11(10):771-775.
    [16] Ganesh, I. Development of-SiAlON based ceramics for radome applications[J]. Processingand Application of Ceramics,2011.5(3):113-138.
    [17] Biljana Mikijelj. Dense silicon nitride body having high strength, high weibull modulus andhigh fracture toughness[P]. USA: US2012/0190530A1,2012-06-06.
    [18] Martino Daniela Di, Sciti Diletta, Laura Esposito. Ceramic material for radome, radome andprocess for the production thereof[P]. USA: WO2013124871A1,2012-02-22.
    [19] Dongliang Zhao, Yujun Zhang, Hongyu Gong, et al. BN nanoparticles/Si3N4wave-transparent composites with high strength and low dielectric constant[J]. Journal ofNanomaterials,2011:1-5.
    [20] Hongjie Wang, Juanli Yu, Jian Zhang, et al. Preparation and properties ofpressureless-sintered porous Si3N4[J]. J. Mater. Sci.,2010.45:3671-3676.
    [21] Feng Ye, Jingyi Zhang, Limeng Liu, et al. Effect of solid content on pore structure andmechanical properties of porous silicon nitride ceramics produced by freeze casting[J]. MaterialsScience and Engineering A,2011.528:1421-1424.
    [22] Chunrong Zou, Changrui Zhang, Bin Li, et al. Microstructure and properties of porous siliconnitride ceramics prepared by gel-casting and gas pressure sintering[J]. Materials and Design,2013.44:114-118.
    [23] Yongfeng Xia, Yuping Zeng, Dongliang Jiang. Mechanical and dielectric properties ofporous Si3N4ceramics using PMMA as pore former[J]. Ceramics International,2011.37:3775-3779.
    [24] Xiangming Li, Litong Zhang, Xiaowei Yin. Effect of chemical vapor infiltration of Si3N4onthe mechanical and dielectric properties of porous Si3N4ceramic fabricated by a techniquecombining3-D printing and pressureless sintering[J]. Scripta Materialia,2012.67:380-383.
    [25] Xiangming Li, Litong Zhang, Xiaowei Yin. Microstructure and mechanical properties ofthree porous Si3N4ceramics fabricated by different techniques[J]. Materials Science andEngineering A,2012.549:43-49.
    [26] Xiaoming Duan, Dechang Jia, Jie Deng, et al. Mechanical and dielectric properties ofgelcasted Si3N4porous ceramic using CaHPO4as an additive[J]. Ceramics International,2012.38:4363-4367.
    [27] Ayse Kalemtas, Gulsum Topates, Hüseyin zcoban, et al. Mechanical characterization ofhighly porous-Si3N4ceramics fabricated via partial sintering&starch addition[J]. Journal of theEuropean Ceramic Society,2013.33:1507-515.
    [28] I. Ganesh, N. Thiyagarajan, D. C. Jana, et al. An Aqueous Gelcasting route to dense-Si4Al2O2N6–0.5SiO2ceramics[J]. Journal of the American Ceramic Society,2008.91(5):1566-1571.
    [29] Ibram Ganesh, N. Thiyagarajan, Dulal Chandra Jana, et al. Influence of chemicalcomposition and Y2O3on sinterability, dielectric constant, and CTE of-SiAlON[J]. Journal of theAmerican Ceramic Society,2008.91(1):115-120.
    [30] Ganesh, I. Near-net shape-Si4Al2O2N6parts by hydrolysis induced aqueous gelcastingprocess[J]. International Journal of Applied Ceramic Technology,2009.6(1):89-102.
    [31] Ibram Ganesh, Govindan Sundararajan. Hydrolysis-induced aqueous gelcasting of-SiAlON–SiO2ceramic composites: The effect of AlN additive[J]. Journal of the AmericanCeramic Society,2010.93(10):3180-3189.
    [32] Ganesh, I. Hydrolysis-induced aqueous gelcasting: The latest concept for net-shapeconsolidation of ceramics—A review[J]. Materials and Manufacturing Processes,2012.27:233-241.
    [33] Kristoffer Krnel, Tomaz Kosmac. Protection of AlN powder against hydrolysis usingaluminum dihydrogen phosphate[J]. Journal of the European Ceramic Society,2001.21:2075-2079.
    [34] M. Oliveira, S. Olhero, J. Rocha, et al. Controlling hydrolysis and dispersion of AlN powdersin aqueous media[J]. Joural of colloid and interface science,2003.261:456-463.
    [35] I. Ganesh, N. Thiyagarajan, G. Sundararajan, et al. Ferreira. A non-aqueous processing routefor phosphate-protection of AlN powder against hydrolysis[J]. Journal of the European CeramicSociety,2008.28:2281-2288.
    [36] Feng Ye, Lei Zhang, Chunfeng Liu, et al. Thermal shock resistance of in situ toughened-SiAlONs with barium aluminosilicate as an additive sintered by SPS[J]. Materials Science andEngineering A,2010.527:6368-6371.
    [37] Feng Ye, Liemeng Liu, Haijiao Zhang, et al. Mechanical properties and thermal shockresistance of refractory self-reinforced-SiAlONs using barium aluminosilicate as an additive[J].International Journal of Applied Ceramic Technology,2011.8(4):928-939.
    [38] R. W. Rice, W. J. Medonough, S. W. Freiman, et al. Ablative-resistant dielectric ceramicarticles.[P]. USA, US4304870A,1981-12-08.
    [39] Weili Wang, Jianqiang Bi, Shouren Wang, et al. Microstructure and mechanical properties ofalumina ceramics reinforced by boron nitride nanotubes[J]. Journal of the European CeramicSociety,2011.31:2277-2284.
    [40] Paulf. Becher, Georgec. Wei. Toughening behavior in Sic-whisker-reinforced alumina[J].Communications of the American Ceramic Society,1984. C:267-269.
    [41] Jurgen Rodel, Edwin R. Fuller, Jr. Brian, et al. In situ observations of toughening processesin alumina reinforced with silicon carbide whiskers[J]. J Am Cefom Soc,1991.74(12):3154-3157.
    [42] Koji Takahashi, Masahiro Yokouchi, Sang-Kee Lee, et al. Crack-healing behavior of Al2O3toughened by SiC whiskers[J]. J. Am. Ceram. Soc.,2003.86(12):2143-2147.
    [43] Sang-Kee Lee, Koji Takahashi, Masahiro Yokouchi, et al. High temperature fatigue strengthof crack-healed Al2O3toughened by SiC whiskers[J]. J. Am. Ceram. Soc.,2004,87(7):1259-6.
    [44] Juan Kong, Nikolas Provatas, David S. Wilkinson. Anelastic behavior modeling of SiCwhisker-reinforced Al2O3[J]. J. Am. Ceram. Soc.,2010.93(3):857-864.
    [45] Bingqiang Liu, Chuanzhen Huang, Meilin Gu, et al. Preparation and mechanical properties ofin situ growth TiC whiskers toughening Al2O3ceramic matrix composite[J]. Materials Science andEngineering A,2007.460-461:146-148.
    [46] Guolong Zhao, Chuanzhen Huang, Hanlian Liu, et al. Preparation of in-situ growth TaCwhiskers toughening Al2O3ceramic matrix composite[J]. Int. Journal of Refractory Metals andHard Materials,2013.36:122-125.
    [47] E. Mohammad Sharifi, F. Karimzadeh, M.H. Enayati. Preparation of Al2O3–TiB2nanocomposite powder by mechanochemical reaction between Al, B2O3and Ti[J]. AdvancedPowder Technology,2011.22:526-531.
    [48] Xuan Lin, P. Darrell Ownby. Pressureless sintering of B4C whisker reinforced Al2O3matrixcomposites[J]. Journal of materials science,2000.35:411-418.
    [49] Bin Meng, Jinhui Peng. Effects of in situ synthesized mullite whiskers on flexural strengthand fracture toughness of corundum-mullite refractory materials[J]. Ceramics International,2013.39:1525-1531.
    [50] Douglas W. Freitag, Kerry K. Richardson. BAS reinforced in-situ with silicon nitride[P].USA, US005358912A,1994-10-25.
    [51] Li Shuqin, Pei Yuchen, Yu Changqing, et al. Mechanical and dielectric properties of porousSi2N2O–Si3N4in situ composites[J]. Ceramics International,2009.35:1851-1854.
    [52] Pei Yuchen, Li Shuqin, Yu Changqing, et al. Thermal shock resistance of in situ formedSi2N2O–Si3N4composites by gelcasting[J]. Ceramics International,2009.35:3365-3369.
    [53] Dechang Jia, Yingfeng Shao, Boyang Liu, et al. Characterization of porous siliconnitride/silicon oxynitride composite ceramics produced by sol infiltration[J]. Materials Chemistryand Physics,2010.124:97-101.
    [54] Feng Yu, Kenneth W. White. Relationship between microstructure and mechanicalperformance of a70%silicon nitride–30%barium aluminum silicate self-reinforced ceramiccomposite[J]. J. Am. Ceram. Soc.,2001.84(1):5-12.
    [55] S. Chen, F. Ye, Y. Zhou. Low temperature hot-pressed BAS matrix composites reinforcedwith in situ grown Si3N4whiskers[J]. Ceramics International,2002.28:51-58.
    [56] Feng Ye, Sheng Chen, Mikio Iwasa. Synthesis and properties of barium aluminosilicateglass–ceramic composites reinforced with in situ grown Si3N4whiskers[J]. Scripta Materialia,2003.48:1433-1438.
    [57] Feng Ye, Liemeng Liu, Haijiao Zhang, et al. Mechanical properties and thermal shockresistance of refractory self-reinforced-SiAlONs using barium aluminosilicate as an additive[J].Int. J. Appl. Ceram. Technol.,2011.8(4):928-939.
    [58]吕建华,叶枫,刘春凤,等. Y-SiAlON-BaSi2Al2O8复合陶瓷的微观结构与力学性能[J].硅酸盐学报,2012.40(9):1253-1258.
    [59] Shamiul Islam, Min-Sung Kim, Byong-Taek Lee. Fabrication and characterization of porousunidirectional Si2N2O–Si3N4composite[J]. Materials Letters,2009.63:168-170.
    [60] Fang Ye, Litong Zhang, Xiaowei Yin, et al. Fabrication of Si3N4–SiBC composite ceramicand its excellent electromagnetic properties[J]. Journal of the European Ceramic Society,2012.32:4025-4029.
    [61] Huijie Cheng, Yali Li, Edwin Kroke, et al. In situ synthesis of Si2N2O/Si3N4compositeceramics using polysilyloxycarbodiimide precursors[J]. Journal of the European Ceramic Society,2013.33:2181-2188.
    [62] Kun Liu, Changrui Zhang, Yongdong Xiao, et al. Synthesis of Si3N4–BN composites usingborazine as the precursor[J]. Materials Science&Engineering A,2013,575:48-50.
    [63] Kun Liu, Changrui Zhang, Bin Li, et al. Effect of pyrolysis temperature on properties ofporous Si3N4-BN composites fabricated via PIP route[J]. Journal of Materials Engineering andPerformance,2013. DOI:10.1007/s11665-013-0682-0.
    [64]韩欢庆,葛启录,陈玉萍,等.晶须补强增韧熔石英材料的热学性能[J].材料科学与工艺,1999.7(1):30-33.
    [65] Hongli Dua, Yan Li, Chuanbao Cao. Effect of temperature on dielectric properties ofSi3N4/SiO2composite and silica ceramic[J]. Journal of Alloys and Compounds,2010,503:9-13.
    [66]贾德昌,段小明,杨治华,等.氮化硼基复合陶瓷透波材料及其制备方法[P].China,CN101648809B,2012-06-27.
    [67] Qingfeng Tong, Yan Li, Zhongping Li, et al. Preparation and properties ofSi2N2O/-cristobalite composites[J]. Journal of the European Ceramic Society,2008,28:1227-1233.
    [68] Yoshitaka Kamino, Yoshihiro Hirata, Satsuo Kamata. Preparation and mechanical propertiesof long alumina fiber/alumina matrix composites[J]. Materials Letters,1996,28:161-165.
    [69] M. Koopman, S.Duncan, K.K, Chawla, et al. Processing and characterization of bariumzirconate coated alumina fibers alumina matrix composites[J]. Composites part A,2001,32:1039-1044.
    [70] P. Y. Lee, T. Uchijima, T. Yano. Processing and performance of alumina fiber reinforcedalumina composites[J]. J.Mater.Sci. Technol,2003,19(4):337-340.
    [71] Yasuhiro Tanimoto, Kimiya Nemoto, DDS. Effect of sintering temperature on flexuralproperties of alumina fiber-reinforced, alumina-based ceramics prepared by tape castingtechnique[J]. Journal of Prosthodontics,2006,15(6):345-352.
    [72] Davis, Marina B. Ruggles Wrenn, Tufan Yeleser, et al. Effects of steam environment oncreep behavior of Nextel610/monazite/alumina composite at1,100°C[J]. Appl Compos Mater,2009,16:379-392.
    [73] Milan Kanti Naskar, Kunal Basu, Minati Chatterjee. Sol-gel approach to near-net-shapeoxide-oxide composites reinforced with short alumina fibres-The effect of crystallization[J].Ceramics International,2009,35:3073-3079.
    [74] Martin Schmucker, Peter Mechnich. Improving the microstructural stability of Nextelt610alumina fibers embedded in a porous alumina matrix[J]. Journal of the American CeramicSociety(Rapid Communications of the American Ceramic Society),2010,93(7):1888-1890.
    [75] Antonio Licciulli, Vincenzo Contaldi, Sanosh Kunjalukkal Padmanabhan, et al. Influence ofglass phase on Al2O3fiber-reinforced Al2O3composites processed by slip casting[J]. Journal ofthe European Ceramic Society,2011,31:385-389.
    [76] M. B. Ruggles-Wrenn, B. A. Whiting. Cyclic creep and recovery behavior of Nextel720alumina ceramic composite at1200[J]. Materials Science and Engineering,2011, A528:1848-1856.
    [77] K. Mohamed Bak, K. Kalaichelvan. Fatigue damage mechanisms in fiber reinforced withAl2O3composites under cyclic reversed loading[C]. Proceedings of International Conference,INCOSET2012,2012:231-240.
    [78]李端,张长瑞,李斌,等.氮化硼透波材料的研究进展与展望[J].硅酸盐通报,2010,29(5):1072-1085.
    [79] Gufang Han, Litong Zhang, Laifei Cheng. Processing and performance of2D fused-silicafiber reinforced porous Si3N4matrix composites[J]. Journal of university of science andtechnology beijing,2008,15(1):58-61.
    [80]齐共金,张长瑞,胡海峰.两种先驱体低温裂解制备石英纤维增强氮化硅复合材料[J].复合材料学报,2006.23(5):107-110.
    [81] Gongjin Qi, Changrui Zhang, Haifeng Hu. High strength three-dimensional silica fiberreinforced silicon nitride-based composites via polyhydridomethylsilazane pyrolysis[J]. CeramicsInternational,2007,33:891-894.
    [82] Bin Li, Changrui Zhang, Feng Cao, et al. Effect of pyrolysis temperature on the properties ofthree-dimensional silica fiber reinforced nitride matrix composites [J]. Journal of MaterialsEngineering and Performance,2008,17(1):111-114.
    [83] Jiang Yonggang, Zhang Changrui, Cao Feng, et al. Ablation and radar-wave transmissionperformances of the nitride ceramic matrix composites[J]. Science in China Series E:Technological Sciences,2008,51(1):40-45.
    [84] Duan Li, Changrui Zhang, Bin Li, et al. Preparation and properties of unidirectional boronnitride fibre reinforced boron nitride matrix composites via precursor infiltration and pyrolysisroute[J]. Materials Science and Engineering A,2011,528:8169-8173.
    [85] Chunrong Zou, Changrui Zhang, Yongdong Xiao, et al. Fabrication of high performancesilicon oxynitride fibers reinforced boron nitride composites via borazine precursor infiltration andheating[J]. Journal of Non-Crystalline Solids,2012,358:3338-3341.
    [86] F. Cao, Z.Fang, F. Chen, et al. Fabrication and properties of SiNO continuous fiberreinforced BN wave-transparent composites[J]. Materials Science-Poland,2012,30(2):137-142.
    [87] Feng Cao, Zhenyu Fang, Changrui Zhang. High-temperature properties andassociatedstructure evolution of continuous SiNO fiber-reinforced BN composites for wave transparency[J].Materials and Design,2013,43:258-263.
    [88] Duan Li, Changrui Zhang, Bin Li, et al. Mechanical properties of unidirectional SiBN fiberreinforced boron nitride matrix composites[J]. Materials Letters,2012,68:222-224.
    [89] Yaping Ye, Uta Graupner, Reinhard Kru¨ger. Hexagonal boron nitride from a borazineprecursor for coating of SiBNC fibers using a continuous atmospheric pressure CVD process[J].Chemical Vapor Deposition,2011,17:221-227.
    [90] Yu Zheng, Shubin Wang. The effect of SiO2-doped boron nitride multiple coatings onmechanical properties of quartz fibers[J]. Applied Surface Science,2012,258:2901-2905.
    [91] Gilreath M.C, Castellow. S. L. High temperature dielectric properties of candidate space-shuttle thermal proptection system and antenna window materials[R]. National Aeronautics andSpace Administration,1974,1-53.
    [92] Ha Neul Kim, Dong Jun Kim, Eul Son Kang, et al. Mechanical properties of2-D silica-silicacontinuous fiber-reinforced ceramic-matrix composite fabricated by Sol-Gel infiltration[J]. Kor. J.Mater. Res.,2009,19(7):391-396.
    [93] M. Tomas, H. Amaveda, L.A. Angurel, et al. Effect of silica sol on the dispersion–gelationprocess of concentrated silica suspensions for fibre-reinforced ceramic composites[J]. Journal ofthe European Ceramic Society,2013,33(4):727-736.
    [94] Suresh Kumar, K.V.V.S. Murthy Reddy, Anil Kumar, et al. Development andcharacterization of polymer–ceramic continuous fiber reinforced functionally graded compositesfor aerospace application[J]. Aerospace Science and Technology,2013,26(1):185-191.
    [95] Y. Liu, J. Zhu, Z. Chen, et al. Mechanical behaviour and microstructural characterization of3D four‐directional braided SiO2f/SiO2composites[J]. Fatigue Fract Engng Mater Struct,2012,35:953-961.
    [96] Yong Liu, Jianxun Zhu, Zhaofeng Chen, et al. Mechanical behavior of2.5D (shallow straight-joint) and3D four-directional braided SiO2f/SiO2composites [J]. Ceramics International,2012,38(5):4245-4251.
    [97] Yong Liu, Zhaofeng Chen, Jianxun Zhu, et al. Comparison of3D four-directional andfive-directional braided SiO2f/SiO2composites with respect to mechanical properties and fracturebehavior [J]. Materials Science and Engineering: A,2012,558:170-174.
    [98] Li Binbin, Zhu Jianxun, Lin Long, et al. Fracture mechanism of3D, five-directional braided(SiO2)f/SiO2composites prepared by silicasol-infiltration-sintering method[J]. Journal of WuhanUniversity of Technology-Mater. Sci. Ed.,2013,28(2):355-357.
    [99] Binbin Li, Jianxun Zhu, Yun Jiang, et al. Processing and flexural properties of3D,seven-directional braided (SiO2)f/SiO2composites prepared by silica sol-infiltration-sinteringmethod[J]. Ceramics International,2012,38(3):2209-2212.
    [100] Binbin Li, Long Lin, Jianxun Zhu, ete al. Directionality effect on mechanical properties of3D n-directional braided (SiO2)f/SiO2composites prepared by silica sol-infiltration-sinteringmethod[J]. Ceramics International,2012,38(5):4017-4021.
    [101] Chengdong Li, Zhaofeng Chen, Jianxun Zhu, et al. Mechanical properties andmicrostructure of3D orthogonal quartz fiber reinforced silica composites fabricated bysilicasol-infiltration-sintering[J]. Materials and Design,2012,36:289-295.
    [102] Yong Liu, Jianxun Zhu, Zhaofeng Chen, et al. Mechanical properties and microstructure of2.5D (shallow straight-joint) quartz fibers-reinforced silica composites by silicasol-infiltration-sintering [J]. Ceramics International,2012,38(1):795-800.
    [103] Yong Liu, Jianxun Zhu, Zhaofeng Chen, et al. Mechanical behavior of2.5D (shallowbend-joint) and3D orthogonal quartzf/silica composites by silicasol-infiltration-sintering [J].Materials Science and Engineering: A,2012,532:230-235.
    [104] Duan Li, Changrui Zhang, Bin Li, et al. Preparation and mechanical properties ofunidirectional boron nitride fibre reinforced silica matrix composites[J]. Materials and Design,2012,34:401-405.
    [105] Li Duan, Changrui Zhang, Li Bin, et al. Effects of oxidation treatment on properties ofSiO2f/SiO2-BN composites[J]. J. Cent. South Univ.,2012,19:30-35.
    [106] Ronald J. Kerans, Randall S. Hay, Triplicane A. Parthasarathy, et al. Interface design foroxidation-resistant ceramic composites[J]. J. Am. Ceram. Soc.,2002,85(11):2599-2622.
    [107] Yahui Chen, Xianhong Cheng, Laifei Wang, et al. Corrosion behavior of AlPO4asenvironmental barrier coating in water vapor enviroment[J]. Journal of Inorganic materials,2009,24(2)397-401.
    [108] Vippola M, Vuorinen J, Vuoristo P, et al.. Thermal analysis of plasma sprayed oxidecoatings sealed with aluminium phosphate[J]. Journal of the European Ceramic Society,2002,22(12):1937-1946.
    [109] Dachuan Chen, Liping He, Shouping Shang. Study on aluminum phosphate binder andrelated Al2O3–SiC ceramic coating[J]. Materials Science and Engineering: A,2003,348(1-2):29-35.
    [110] Chung, D.D.L. Acid aluminum phosphate for the binding and coating of materials[J]. ournalof materials science,2003,38(13):2785-2791.
    [111] Kaitong Wang, Liyun Cao, Jianfeng Huang, et al. Microstructure and oxidation resistance ofC-AlPO4–mullite coating prepared by hydro thermal electrophoretic deposition for SiC–C/Ccomposites[J]. Ceramics International,2013,39:1037-1044.
    [112] Yahua Bao, Patrick S. Nicholson. AlPO4-coated mullite/alumina fiber reinforcedreaction-bonded mullite composites[J]. Journal of the European Ceramic Society,2008,28:3041-3048.
    [113] Yahua Bao, Patrick S. Nicholson. AlPO4coating on alumina/mullite fibers as a weakinterface in fiber-reinforced oxide composites[J]. Journal of the American Ceramic Society,2006,89(2):465-470.
    [114] WD, Kingery. Fundamental staudy of phosphate bonding in refractories: I, literaturereview[J]. J. Am. Ceram. Soc.,1950,33:239-241.
    [115] Morris JH, Perkins PG, Rose AEA, et al. The chemistry and binding properties ofaluminium phosphates[J]. Chem. Soc. Rev.,1997,173-194.
    [116]陈嘉甫,谭光薰.磷酸盐的生产与应用[M].成都:成都科技大学出版,1989:257-258.
    [117] Hye-Jung Han, Dong-Pyo Kim. Studies on curing chemistry of aluminum-chromium-phosphates as low temperature curable binders[J]. Journal of Sol-Gel Science and Technology,2003,26:223-228.
    [118]张杰.磷酸盐体系透波材料的制备与性能研究[D].哈尔滨:哈尔滨工业大学,2004:24-25.
    [119]邹超,张大海,黎义,等.磷酸铬粘接剂热演变过程分析[C].中国硅酸盐学会2003年学术年会.北京:中国硅酸盐学会,2003:197-198.
    [120] Lan-Young Hong, Hye-Jung Han, Hunseung Ha, et al. Development of Cr-free aluminumphosphate binders and their composite applications[J]. Composites Science and Technology,2007,67:1195-1201.
    [121] Dong Pyo Kim, Heung Shik Myung, Jae Seong Rho, et al. Fabrication and properties ofthermal insulating glass fiber reinforced composites from low temperature curable polyphosphateinorganic polymers[J]. Composites Science and Technology,2003,63:493-499.
    [122]敖辽辉.天线罩技术的发展[J].电讯技术.2002,(2):14~15.
    [123] Shifeng Deng, Canfeng Wang, Yan Zhou, et al. Preparation and properties of aluminumphosphate/organosilicon resin organic–inorganic hybrid materials and fiber reinforcedcomposites[J]. Materials Science and Engineering: A,2008,477(1-2):96-99.
    [124]杜磊,邓诗峰,周燕,等.石英纤维增强磷酸铬铝/有机硅杂化树脂基复合材料性能[J].功能材料,2009,40(4):650-652.
    [125] Shifeng Deng, Canfeng Wang, Yan Zhou, et al. Preparation and characterization offiber-reinforced aluminum phosphate/silica composites with interpenetrating phase structures[J].Int. J. Appl. Ceram. Technol.,2011,8(2):360-365.
    [126]王政阅,徐明霞,梁辉,等.磷酸铬铝粘接剂固化机理的研究[J].稀有金属材料与工程,2008.37(1):565-568.
    [127]王政阅.磷酸盐耐热涂层的制备及固化机理的研究[D].天津:天津大学,2007:45-48.
    [128]陈大庆,王海滨,霍冀川,等.有机硅改性磷酸铬铝透波材料[J].功能材料,2013,44(11):1217-1220.
    [129]崔韶丽,陈宁,霍冀川,等.稀土磷酸铬铝粘接剂的制备及其热处理中的相变研究[J].非金属矿,2013,36(5):7-10.
    [130] S. Hoshii, A. Kojima, T. Tamaki. Carbon fiber/ceramic composite using aluminumphosphate with different P/Al molar ratios[J]. Journal of materials science letters,2000,19:557-560.
    [131]唐红艳,王继辉,肖永栋,等.一种新型无机耐烧蚀复合材料固化机理的研究[J].宇航材料工艺,2005(4):25-28.
    [132]王锋,王继辉,肖永栋.磷酸铝系透波复合材料的力学性能与介电性能研究[J].宇航材料工艺,2006(6):26-28.
    [133]王犇.磷酸盐基复合材料的制备及性能研究[D].哈尔滨:哈尔滨工业大学,2010:1-24.
    [134]周燕,郭卫红,罗进文,等.磷酸盐基复合材料的纤维涂膜与性能的研究[C].第五届中国功能材料及其应用学术会议论文集Ⅲ.秦皇岛,2004:2127-2130.
    [135]周燕,邓诗峰,黄发荣.磷酸盐基复合材料中石英纤维的表面处理[J].玻璃钢/复合材料,2009(2):37-41.
    [136]仇义霞,霍冀川,雷永林. Al2O3涂层相变对石英纤维及其磷酸铬铝复合材料性能影响[J].功能材料,2011.42(12):2253-2256.
    [137]雷永林,霍冀川,仇义霞,等.一种石英纤维增强磷酸铬铝透波材料的制备方法[P].China, CN102653147A,2012-09-05.
    [138]白雪峰,王超,曹先启,等.一种提高磷酸盐增强石英纤维复合材料强度的表面涂层处理剂的制备方法及涂层处理方法[P]. China, CN103265186A,2013-08-28.
    [139] Robert A. Marra, Donald J.Bray, G.Edward Graddy, et al. Fiber reinforced compositehaving an aluminum phosphate bonded matrix[P]. USA, US006309994B1,2001-10-30.
    [140] Wang Xinpeng, Tian Shi. Infliences of heat treatment if SiC fiber on the property ofunidirectional SiC fiber-reinforced aluminum phosphate composite[J]. Journal of the chineseceramic society,2006.34(10):1204-1207.
    [141] Donghai Ding, Wancheng Zhou, Fa Luo, et al. The effects of CVD SiC interphase onmechanical properties of KD-1SiC fiber reinforced aluminum phosphate composites[J]. MaterialsScience and Engineering A,2012,534:347-352.
    [142]曹峰,丁扬,张长瑞.一种纤维增强磷酸盐耐高温复合材料的制备方法[P]. China:CN103086691A,2013-02-26.
    [143] Lu Zhenyu, Geng HaoRan, Zhang Mingxi, et al. Preparation of aluminum borate whiskerreinforced aluminum phosphate wave-transparent materials[J]. Chinese Science Bulletin,2008,53(19):3073-3076.
    [144]刘文娟.晶须增强磷酸铝透波材料的研究[D].济南:济南大学,2010:1-50.
    [145]王河.高性能磷酸铝基透波材料的制备及性能研究[D].济南:济南大学,2012:15-60.
    [146] He Wang, Haoran Geng, Conglin Liu. The influence of SiO2on the aluminum boratewhisker reinforced aluminum phosphate wave-transparent materials[J]. Procedia Engineering,2012,27:1222-1227.
    [147] Fei Chen, Feiyu Li, Qiang Shen, et al. Cold spray and presureless sintering of zirconiumphosphate bonded silicon nitride ceramics with porous gradient structure[J]. Journal of Physics:Conference Series,2013,419:1-5.
    [148] Meng Zhao, Yue Zhang. Preparation of phosphate bonded silicon nitride porous ceramics inair[J]. Procedia Engineering,2012,27:1313-1319.
    [149]马玲玲.磷酸盐结合氮化硅多孔陶瓷的孔隙结构控制与化学结合机理[D].武汉:武汉理工大学,2011:23-40.
    [150] Dong-Kyu Kim, Waltraud M. Kriven. Mullite (3Al2O32SiO2)–aluminum phosphate (AlPO4),oxide, fibrous monolithic composites[J]. Journal of the American Ceramic Society,2004,87(5):794-803.
    [151] Dong-Kyu Kim, Waltraud M. Kriven. Fibrous monoliths of mullite-AlPO4andalumina/YAG-alumina platelets[J]. Materials Science and Engineering,2004, A380:237-244.
    [152] Dong-Kyu Kim, Waltraud M. Kriven. Mullite–aluminum phosphate laminated compositefabricated by tape casting[J]. J. Am. Ceram. Soc.,2003,86(11):1962-1964.
    [153] P. Robinson, Eric R. Mccartney. Subsolidus relations in the system SiO2-Al2O3-P2O5[J].Journal of the American Ceramic Society,1964,47(11):587-592.
    [154]张锦化.莫来石晶须的制备_生长机理及其在陶瓷增韧中的应用[D].北京:中国地质大学,2012:21-90.
    [155]张莹莹.具有低介电损耗性能的磷酸盐耐高温材料[D].北京:北极化工大学,2012:15-34.
    [156] Monika Bosacka, P. Jakubus, I. Rychlowska Himmel. Obtaining of chromium (III)phosphates(V) in the solid-state and their thermal stability[J]. J. Therm. Anal. Calorim.,2007,88:133-137.
    [157] Waleed Mekky, Patrick S. Nicholson. Nano-aluminum-phosphate via a polymerized organic–inorganic complex route[J]. Journal of Materials Processing Technology,2007,190:393-396.
    [158] Kolb ED, Glass AM, Rosenberg RL, et al. Dielectric and piezoelectric properties ofaluminum phosphate[J]. Ultrasonics Symposium,1981,332-336.
    [159] W. F. Horn, F. A. Hummel. The system aluminum phosphate-silicon dioxide [J]. Cent.Glass Ceram. Res. Inst. Bull.,1979,26(1-4):47-59.
    [160] Saruhan B, Albers W, Schneider H, et al. Reaction and sintering mechanisms of mullite inthe systems cristobalite/-Al2O3and amorphous SiO2/-Al2O3[J]. J. Eur. Ceram. Soc.,1996,16(10):1075-1081.
    [161] Schmücker M, Albers W, Schneider H. Mullite formation by reaction sintering of quartz and-Al2O3-A TEM study[J]. J. Eur. Ceram. Soc.,1994,14(6):511-515.
    [162] H. Schneider, S. Komarneni. Mullite[M]. Germany: Wiley-vch Verlag GmbH&Co.KGaA,2005:90-92.
    [163]刘沙,张静秋. TiC涂层反应标准吉布斯自由能变化的计算及其绘图[J].稀有金属与硬质合金,2005,33(4):60-62.
    [164] J. A.迪安.兰氏化学手册[M].北京:科学出版社,1991:1700-1750.
    [165]赵宏,金宗哲.颗粒增强复相陶瓷残余应力和增韧机制分析[J].硅酸盐学报,1996,24(5):491-497.
    [166]李全红,陈南春,唐鑫,等.莫来石复相晶体生长习性[J].科学通报,2011,56(35):2970-2974.
    [167]刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2003:131-133.
    [168]秦柏,秦汝虎,金崇君.―广义匹配规律‖的论证及在隐身材料中的应用[J].哈尔滨工业大学学报,1997,29(4):115-117.
    [169]张思远.复杂晶体化学键的介电理论及其应用[M].北京:科学出版社,2005:24-31
    [170]孙目珍.电介质物理基础[M].广州:华南理工大学出版社,2000:70-150.
    [171]韩继岭,陈喜生.原子间的键长随温度的变化[J].原子与分子物理学报,1990:57-58.
    [172]刘恩科,朱秉升,罗晋生,等.半导体物理学[M].北京:国防工业出版社,1994:98-101.
    [173] V. E. J. Chiochetti, E. C. Henry. Electrical conductivity of some commercial refractories inthe temperature range600°C to1500°C[J]. Hectrical Conductivity of Some CommercialRefractories,1953,36(6):180-184.
    [174] L. Wondraczek, G. Heide, M. Kilo, et al. Computer simulation of defect structure insillimanite and mullites[J]. Phys Chem Minerals,2002,29:341-345.
    [175]贾德昌,宋桂明,等.无机非金属材料性能[M].北京:科学出版社,2008:115-124.
    [176]华伟.复杂电磁媒质介电系数测量方法及实验研究[D].四川:四川大学2006:58-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700