用户名: 密码: 验证码:
表面活性剂提高油田污水回注效率的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田注水开发中后期大量污水产生,目前胜利油田油井产液量为86.7×104m3/d,综合含水92%,产水量为79.8×104m3/d。从地下采出的油田污水均需再次回注地下油藏用于驱替原油,从而实现污水的循环再利用。
     从地下采出的污水中含有原油、固体悬浮物、细菌以及大量的无机盐,在油田污水回注过程中主要存在两个方面的问题:一方面由于中低渗透油藏储层物性差、渗透率低、微孔隙发育、渗流阻力大等原因,在油田污水回注过程中普遍存在水井注水压力高、注水量小和水驱采收率低等问题。采用表面活性剂提高油田污水回注率是补充地层能量,提高油井产能的新方法。表面活性剂通过改善油/水界面和岩石/水界面活性,提高油水两相在地层中的渗流能力,降低污水回注压力,增加污水回注量。该研究在减少污水外排,实现污水注采良性循环以及中低渗油藏高效开发等方面具有重要意义。
     另一方面污水是导致化学驱油体系中聚合物溶液粘度损失的主要原因。在化学驱油过程中,通过投加大量的聚合物增加注入水粘度是提高原油采收率的主要手段。然而,污水中各种复杂的化学组分对聚丙烯酰胺分子的降解作用导致聚合物溶液在配制和注入过程中溶液粘度下降,驱替相的流度控制能力变差,驱油效率降低,进而限制了该项技术在油田的推广应用。
     本文在大量文献调研和文献分析基础上,从界面力学研究入手,分析油水两相在地层微孔隙中的渗流阻力和渗流特征;通过扫描电镜技术分析聚丙烯酰胺分子链的空间构象,研究聚丙烯酰胺分子降解机理。探索表面活性剂提高污水回注量及其驱油效率的内在机制,为实现油田污水循环再利用和中低渗油藏高效开发提供理论指导。主要研究内容及结果如下:
     1.采用物理模拟实验技术和核磁共振技术,分析了水驱油过程中的毛管阻力、贾敏效应、岩水界面摩阻和水驱毛管数与表面活性剂物化特性的相关性。
     研究结果表明,在水驱油过程中,用于提高低渗油藏注水能力的表面活性剂并非界面活性越高越好。在史深100油藏条件下,当活性剂体系将油水界面张力降至4×10-2~2×10-2mmN/m时,注水压力降幅最大达到75%。
     2.合成并提纯了不同种类阴离子表面活性剂,并分别测定了其主要物化性能,包括表面活性剂的表面张力(γcmc)、临界胶束浓度(cmc)、界面饱和吸附量、pC20、表面压、Gibbs吸附能。研究结果表明:(1)对于单一体的阴离子磺酸盐类表面活性剂,仅石油磺酸盐(SHL-PS、KAQ-PS)、C2024AOS、 C18AESO-3可以在较短时间内使动态界面张力瞬时达到10-3mN·m-1数量级,甚至10-4mN·m-1数量级,平衡界面张力维持在10-2mN·m-1数量级。其它表面活性剂因亲水性较强,因此油水界面张力较高,一般分布在10-1mN/m或更高数量级。(2)在以C2024AOS为主的二元体系中,按协同增效作用从小到大的排列顺序为:C2024AOS/C416AOS     3.考察了几组阴离子表面活性剂及复配体系的物化性能(γcmc、cmc)与应用性能(界面张力、乳化性能、油膜粘附功、岩石润湿性、洗油率)之间的相关性。研究结果表明:(1)对于不同种类的磺酸盐表面活性剂,总体来看,临界胶束浓度越低,界面张力亦较低,二者大体上呈正相关性。(2)不同表面活性剂水溶液的表面张力与其界面张力间无明显的关联。(3)降低临界胶束浓度,有利于提高乳化性能,但不同系列表面活性剂的临界胶束浓度与乳化指数之间无明确的对应关系。适度增加疏水链长度,有利于提高乳化力;EO数增加,不利于乳化。(4)表面活性剂的表面张力与乳化性能无相关性。(5)不同系列表面活性剂水溶液的表面张力与接触角、粘附功基本上呈正相关性,即在同一亲油固体表面上的接触角随表面张力降低而减小,但分子结构不同,润湿反转的能力不同。(6)表面活性剂的临界胶束浓度与油膜粘附功及润湿性之间无相关性。(7)对于亲油表面而言,界面张力和乳化对洗油率的影响程度不及润湿性。换言之,当润湿性处于中性润湿状态时,驱油效率最高。(8)较低的界面张力、较高的乳化能力和中等润湿状态均有利于提高驱油效率,且三者的贡献具有加合性。(9)不同分子结构的表面活性剂对原油和石蜡的洗脱能力明显不同。脂肪醇聚氧乙烯醚磺酸盐表面活性剂能有效洗出原油中的芳烃类组成,而对石蜡类物质的洗脱能力较低,Dow8390对石蜡的洗脱能力较高。
     4.采用单因素分析法系统研究了油田污水中的各水质参数对聚合物溶液粘度的影响。采用正交实验分析法研究了各水质参数在降低聚合物溶液粘度过程中的协同作用以及影响聚合物溶液粘度的主要水质参数。研究结果表明:(1)油田污水中含有大量的金属离子,这些金属离子对聚合物溶液粘度具有不同程度的影响,阳离子对聚合物溶液粘度的影响程度由大到小的为Fe2+>Fe3+>Ca2+、Mg2+> Na+、K+。(2)油田污水中的Fe2+、S2等离子具有还原性,这种离子对聚合物溶液粘度的影响远大于其它离子,它们对聚合物溶液的粘度的影响与溶解氧的存在有密切的关系。在密闭条件下,Fe2+、S2对聚合物溶液粘度的影响较大;当的溶解氧一定浓度时,污水中的Fe2+、S2大幅度减少或消失。
     5.采用红外光谱和扫描电镜分析方法,探讨了污水降低聚合物溶液粘度的机理。研究结果表明:(1)Na+、K+、Ca2+、Mg2+引起聚合物溶液粘度下降的原因是Na+、K+、Ca2+、Mg2+所带的正电荷,具有屏蔽聚丙烯酰胺分子羧酸基上负电荷的能力,从而使聚丙烯酰胺分子发生去水化作用,分子链收缩,导致聚合物溶液粘度降低,其中Ca2+、Mg2+因为具有较多的电荷而且Mg2+、Ca2+易与羧酸基相结合且不易电离,导致聚合物溶液粘度降低程度更大。(2)Fe2+对聚合物溶液粘度的影响由Fe2+的氧化还原反应引起。它在水中与氧发生反应生成氧自由基,同时在水的存在下生成过氧化物,诱发一系列的自由基链反应,从而使聚丙烯酰胺分子链断裂,聚合物溶液的粘度降低。S2-的影响机理与Fe2+相类似。
     要想保持聚合物水溶液粘度的稳定性,必须改善聚丙烯酰胺分子的空间效应,增加聚丙烯酰胺分子的电荷密度,增强聚丙烯酰胺分子链节的静电斥力,增加聚丙烯酰胺分子的溶剂化作用。以增强聚合物溶液粘度稳定性为主要功能的表面活性剂配方设计可以从这三方面攻关研究。
     6.针对油田污水对聚合物溶液粘度的影响,研制了三种表面活性剂配方进行水质改性,将污水配制的聚合物溶液粘度从12.5mPa·s提高至30mPa·s以上,实现了油田污水在化学驱油单元的资源化利用。
Large amount of wastewater has been produced in middle and later stage of water-flooding oilfield. At present, Shengli oilfield is characterized by fluid production rate86.7×104m3/d, composite water cut92%, and daily water production7.6×104m3. All of oilfield sewage will be reinjected underground reservoir for displacing oil and realizing the resource recycling.
     There are two main problems in the sewage reinjection process for oilfield sewage containing oil, suspended solids, bacteria and a large amount of inorganic salts. At first, the main characteristics of medium-low permeable reservoir are bad reservoir physical property, low permeability, narrow channel which oil and water pass by, very strong percolation flow resistance force, the notable interaction force between liquid-solid interface and liquid-liquid interface. That results in high water injection pressure, low water injection rate and Enhanced Oil Recovery. Enhancing sewage reinjection rate by surfactant is the new method of supplement the formation energy and improving well productivity. Surfactant can reduce sewage reinjection pressure and increase sewage injection rate by improving the oil-water and rock-water interface activity to improve oil-water percolation capacity in stratum. The study plays an important role in reducing sewage discharge, increasing sewage injection production cycle and oil displacement efficiency of mid-low permeability reservoir.
     On the other hand, sewage is the major cause of the polymer solution viscosity loss. In chemical flooding processes, increasing the viscosity of injected water is the main means of enhancing oil recovery by adding a lot of polymer. As a result of polyacrylamide molecular degradation for a variety of complex chemical composition in oilfield sewage, the polymer solution viscosity decreased in the preparation and injection process, the mobility control ability weaken, the oil displacement efficiency reduced. That has been hindering application of the chemical flooding technique in oilfield.
     On the basis of the analysis of a large number of literatures and documents, the seepage resistance and percolation characteristics of oil-water two-phase flow was analyzed starting with the interface mechanics research. The polymer molecular chain conformation was described by the scanning electron microscopy for analysis of degradation mechanism. The internal mechanism was explored to increase injection production and oil displacement efficiency by the surfactant. All these possess the theoretical guidance for oil field sewage reuse and efficient development of the mid-low permeability reservoir. The main research contents and results are as follows:
     1. Analysis of surfatant's correlation with the capillary resistance, Jiamin effection, Interfacial friction and water flooding capillary number in the process of water flooding by physical simulation experimental technique and NMR techniques.
     The research result shows that the better interfacial activity of surfactant is not corresponding to the better water injection capacity in low permeability reservoir. Under Shishen100reservoir conditions, the injection pressure drop maximum up to75%as oil-water interfacial tension4x10-2~2×10"2mN/m.
     2. Synthesis and purification of different kinds of anionic surfactant, which physicochemical properties including surface tension (ycmc), the critical micelle concentration (cmc), interface adsorption quantity of PC20, surface pressure, Gibbs adsorption energy. We obtained the following relation:(1) As the single sulfonate surfactant, petroleum sulfonate (SHL-PS, KAQ-PS), C2024AOS, C1gAESO-3can rapidly reduce the dynamic interfacial tension to10-3mN/m or10-4mN/m, and equilibrium interfacial tension is maintained at10-2mN/m finally. While the oil-water interfacial tension of other surfactant is at10-1mN/m or higher due to their stronger hydrophilicity.(2) In the binary system mainly of C2024AOS, according to synergistic effect the sequence from small to large were C2024AOS/C1416AOS     3. The correlation was investigated between properties (ycmc, cmc) and performance (interfacial tension, emulsion performance, oil film adhesion work, wettability, oil cleaning efficiency) of a few groups of anionic surfactants and compound system. We obtained the following relation:(1) Overall, it is substantially positive correlation between the critical micelle concentration and the oil-water interfacial tension for different types of sulfonate surfactants.(2) There is no apparent association between the surface tension and the oil-water interfacial tension for the different sulfonate surfactants solution.(3) To reduce the critical micelle concentration is beneficial to improving the emulsifying properties, but there is no apparent relationship between CMC and emulsified index for different series of surfactants. To moderately increase alkyl chain length is beneficial to improving the emulsifying capacity. To increase the number of EO is not conducive to the emulsion.(4) There is no correlation between the surface tension and emulsion performance.(5) It is a basically positively correlated among the surface tension, the contact angle and the adhesion work for series of different surfactants solution, i.e. the contact angle decreases as the surface tension reduces on the same hydrophobicity solid surface, but the wettability reversal ability is changing with the molecular structure.(6) There is no correlation among critical micelle concentration, oil membrane adhesion work and wettability.(7) Wettability has greater influence than interfacial tension and emulsification on oil displacement efficiency for lipophilic surface. In other words, with the rock wettability transfered to middle wetting state, the oil displacement efficiency could get up to the highest value.(8) Lower interfacial tension, stronger emulsifying ability and medium wetting surface are beneficial to enhance oil displacement efficiency, which contributions have good additity.(9) With different molecular structure, surfactants have significantly different elution capacities for crude oil and paraffin. Aliphatic alcohol ether sulfonate can wash out the aromatic in the oil, but not waxy substance. Dow8390has high eluting capacity on paraffin.
     4. Influence of quality parameters on polymer solution viscosity was investigated by the method of single factor analysis. The method of orthogonal testing was used to study the synergistic effect of water quality parameters on reducing the polymer solution viscosity, and to determine main water parameters for the viscosity of polymer solution. We obtained the following relation:(1) Large amounts of metal ions in oil field sewage have different effects on the polymer solution viscosity. The sequence of cationic from big to small effcting polymer solution viscosity were Fe2+> Fe3+> Ca2+/Mg2+> Na+/K+.(2) Fe2+/S2-possesses reducing property in oilfield sewage and more impact on the polymer solution viscosity than the other ions, that is closely related to dissolved oxygen in oilfield sewage. Under oxygen free conditions, Fe2+/S2-would rapidly reduce the polymer solution viscosity of. As the oxygen reach the best concentration, Fe2+/S2-would significantly decrease or disappear.
     5. By the method of infrared spectroscopy and scanning electron microscope analysis, the degradation mechanism of the polymer was discussed. We obtained the following relation:(1) Influence of Na+, K+, Ca2+, Mg2+on the polymer solution viscosity should mainly owe to their positive charge, which shield polyacrylamide molecule carboxyl negative charge, then make the polyacrylamide molecule to hydration, molecular chain to contraction, and polymer solution viscosity to reduction, in which Ca2+/Mg2+decreased more polymer solution viscosity because of more charge, firmly bonded to carboxylic acid moiety.(2) Fe2+affects on polymer solution viscosity by redox reaction between Fe2+and oxygen. Fe2+reacts with oxygen and generates oxygen free radicals, at the same time generates of peroxides in water, then induces a series of free radical chain reaction, thus makes the polyacrylamide molecular chain fractured and polymer solution viscosity reduced. The degradation mechanism of S2-is similar to Fe2+.
     For the stability of the polymer solution viscosity, it is need to improve the spatial effect, the charge density and salvation of polyacrylamide molecular. Surfactant design for viscosity stability can be considered from these three aspects.
     6. In view of influence of sewage on the polymer solution viscosity, three kinds of surfactants were designed for quality modification, that increased the polymer solution viscosity from12.5mPa·s to above30mPa·s, implemented resource utilization of oilfield sewage in chemical flooding.
引文
[1]BP Statistical Review of World Energy 2013. www.bp.com/statisticalreview.
    [2]张琪.采油工程原理与设计[M].东营:石油大学出版社,2000.235.
    [3]李道品.低渗透油藏高效开发决策论[M].北京:石油工业出版社,2003.80-211.
    [4]李道品,罗迪强,刘雨芬.低渗透油田的概念及其在我国的分布[M].低渗透油气田研究与实践.北京:中国石油天然气总公司,石油工业出版社,1998,6-7.
    [5]吴景春.改善特低渗透油藏注水开发效果技术及机理研究[M].大庆:大庆石油学院,2006,32-34.
    [6]姜兰兰.注水开发工艺技术应用分析[J].科学技术与工程,2011,33(11):8321-8330
    [7]胡博仲.聚合物驱采油工程[M].北京:石油工业出版社,2004.9-14.
    [8]陈铁龙.三次采油概论[M].北京:石油工业出版社,2000.243.
    [9]杨振宇,陈广宇.国内外复合驱技术研究现状及发展方向[J].大庆石油地质与开发,2004,23(5):94-96.
    [10]Jiang, H., Yu, Q., Yi, Z.. The Influence of the Combination of Polymer and Polymer-Surfactant Flooding on Recovery, Petroleum Sci. Technol.,2011, 29(5):514-521.
    [11]Gong, H.J., Xu, G.Y., Zhu, Y.Y., Wang, Y.J., Wu, D., Niu, M.Y., Wang, L.S., Guo, H.J., Wang, H.B. Influencing Factors on the Properties of Complex Systems Consisting of Hydrolyzed Polyacrylamide/Triton X-100/Cetyl Trimethyl-ammonium Bromide:Viscosity and Dynamic Interfacial Tension Studies, Energy & Fuels,2009,23:300-305.
    [12]Hamid Emami Meybodi, Riyaz Kharrat, Benyamin Yadali Jamaloei. Effect of orientation of strate on macroscopic sweep efficency of water/polymer flooding in layered porous media. J. Porous Media,2011,14 (9):761-776.
    [13]Han, D.K., Yang, C.Z., Zhang, Z.Q., Lou, Z.H., Chang, Y.Ⅰ. Recent development of enhanced oil recovery in China. J. Petrol. Sci. Eng.1999,22 (1-3):181-188.
    [14]秦积舜,李爱芬.油层物理学[M].北京:石油大学出版社,2001.228-291.
    [15]徐春梅,张荣,马丽萍,罗必林.注水开发储层的动态变化特征及影响因素分析[J].岩性油气藏,2010,22:89-92.
    [16]宋万超,孙焕泉,孙国等.油藏开发流体动力地质作用一以胜坨油田二区为例[J].石油学报,2002,23(5):52-55.
    [17]李健,李红南.油藏开发流体动力地质作用对储集层的改造[J].石油勘探与开发,2003,30(5):86-89.
    [18]黄伟,徐红梅.注入水对储层流动性能影响因素分析[J].油气田地面工程,2003,22(8):54.
    [19]贺凤云,于天忠.水驱对储层和地层原油性质的影响[J].大庆石油学院学报,2002,26(2):21-23.
    [20]康晓珍,张德强,任雪艳.油田注水开发效果评价方法研究[J].辽宁化工,2011,40(11):1151-1155.
    [21]Monteux C, Williams CE, Meunier J, Anthony O, Bergeron V. Adsorption of oppositely charged polyelectrolyte/surfactants complexes at the air-water interface:Formation of interfacial microgels. Langmuir 2004,20:57-63.
    [22]A. Settari, R. B. Sullivan, R. C. Bachman, The Modeling of the Effect of Water Blockage and Geomechanics in Waterfracs [J]. SPE,2002,77600.
    [23]Collings R. C, Hild GP. Abidi H. R. Pattern Modification by Injection Well Shut-in:A Combined Cost Reduction and Sweep Improvement Effect [J].SPE30736.1996.
    [24]Hou J.R., Liu Z.C., Zhang S.F., Yue X.A., Yang J.Z.. The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery, J. Petrol. Sci. Eng. 2005,47:219-235.
    [25]刘怀珠,李良川,孙桂玲等.油藏润湿性对提高原油采收率的影响[J].化学工程与装备,2009,10:74-76.
    [26]彭珏,康毅力.润湿性及其演变对油藏采收率的影响[J].油气地质与采收率,2008,15(1):72-75.
    [27]宋新旺,张立娟,曹绪龙等.润湿性对油水渗流特性的影响[J].油田化学,2008,25(4):305-308.
    [28]陈涛平,崔志松,张晓娇.润湿性对低渗透油层采收率影响的实验研究[J].西安石油大学学报,2008,24(6):42-45.
    [29]董卫兵.中国东部老油田开发的实践探索与启示[J].会计之友,2011,20(1):122-124.
    [30]Faruk Civan. Formation damage mechanisms and their phenomenological modeling-an overview [J]. SPE 107857,2007.
    [31]Taylor DJF, Thomas RK, Penfold J. The adsorption of oppositely charged polyelectrolyte/surfactant mixtures:neutron reflection from dodecyl trimethylammonium bromide and sodium poly(styrene sulphonate) at the air/water interface. Langmuir 2002,18:4748-4757.
    [32]Monteux C, Williams CE, Meunier J, Anthony O, Bergeron V. Adsorption of oppositely charged polyelectrolyte/surfactants complexes at the air-water interface:Formation of interfacial microgels. Langmuir 2004,20:57-63.
    [33]赵亚杰.低渗透油田水井降压增注技术研究与应用[J].化学工程与装备,2010,6:89-92.
    [34]苏永新,常瑛,史连杰等.高效开发大庆东部低渗透油藏的关键技术[J].大庆石油学院学报,1999,23(2):94-95
    [35]M.Л.苏尔古伊耶夫,Ю.B.热托夫等.低渗透油田开发的问题和原则[M].北京:石油工业出版社,1993.
    [36]曾大乾,李淑贞.中国低渗透砂岩储层类型及地质特征[J].石油学报,1994,15(1):38-45.
    [37]A.I.莱复生著,张更等译.石油地质学[M].北京:地质出版社,1975.
    [38]黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998:26-27.
    [39]李道品.低渗透油田开发概论[J].大庆石油地质与开发,1997,16(3):33-37.
    [40]张继超,曹绪龙,汤战宏等.聚硅材料改善低渗透油藏注水效果实验[J].油气地质与采收率,2003,10(4):59-60.
    [41]马宝东.表面活性剂的降压机理[J].大庆石油学院学报,2008,32(增刊):17-18.
    [42]高瑞民.活性Si02纳米粉体改善油田注水技术研究[J].油田化学,2004,21(3):248-267.
    [43]陆先亮,吕广忠,栾志安等.纳米聚硅材料在低渗透油田中的应用[J].石油勘探与开发,2003,30(6):110-122.
    [44]方晓红.表面活性剂性能及降压实验研究[J].大庆石油地质与开发,2002, 21(2):62-63.
    [45]缪云,周长林,王斌等.高温高盐低渗油层表面活性剂增注技术研究[J].钻采工艺,2009,32(2):71-73.
    [46]Jain NJ, Albouy PA, Langevin D. Study of adsorbed monolayers of a cationic surfactant and an anionic polyelectrolyte at the air-water interface. Langmuir 2003,19:5680-5690.
    [47]Wu D, Xu GY, Feng Y, Li Y. Aggregation behaviors of gelatin with cationic gemini surfactant at air/water interface. Int. J. Biol. Macromol.2007,40(4): 345-350.
    [48]Huang YP, Zhang L, Zhang L, Luo L, Zhao S, Yu JY. Dynamic Interfacial Dilational Properties of Hydroxy-Substituted Alkyl Benzenesulfonates. J. Phys. Chem.2007,111:5640-5647.
    [49]Juarez J, Galaz JG, Machi L, Burboa M, Gutierrez-Millan L E, Goycoolea F M, Valdez M A. Interfacial Behavior of N-Nitrosodiethylamine/Bovine Serum Albumin Complexes at the Air-Water and the Chloroform-Water Interfaces by Axisymmetric Drop Tensiometry. J. Phys. Chem.2007,111:2727-2735.
    [50]梁玉纪,海心科,李玉明.低渗透油田表面活性剂降压增注技术及应用[J].石油天然气学报,2010,32(4):353-355.
    [51]Rao A, Kim Y, Kausch CM, Thomas RR. Effect of Binding of an Oligomeric Cationic Fluorosurfactant on the Dilational Rheological Properties of Gelatin Adsorbed at the Air-Water Interface. Langmuir 2006,22:7964-7968.
    [52]Babak VG, Desbrieres J. Dynamic surface tension and dilational viscoelasticity of adsorption layers of alkylated chitosans and surfactant-chitosan complexes. Colloid. Polym. Sci.2006,284(7):745-754.
    [53]付美龙,王何伟,罗跃等.吴旗油田表面活性剂降压增注物模实验和现场试验[J].油田化学,2008,25(4):332-335.
    [54]Wang YY, Dai YH, Zhang L, Luo L, Chu YP, Zhao S, Li MZ, Wang EJ, Yu JY Hydrophobically Modified Associating Polyacrylamide Solutions:Relaxation Processes and Dilational Properties at the Oil-Water Interface. Macromolecule 2004,37:2930-2937.
    [55]胡博仲.聚合物驱采油工程[M].北京:石油工业出版社,2004.9-14.
    [56]陈铁龙.三次采油概论[M].北京:石油工业出版社,2000.243.
    [57]叶仲斌.提高采收率原理[M].北京:石油工业出版社,2000:5-9.
    [58]Nilsson S., Lohne A., Veggeland K. Effect of polymer on surfactant fioodings of oil reservoirs, Colloids Surf.1997,127(1-3):241-247.
    [59]Taylor, K.C., NASR-EL-DIN, H.A. Water-soluble hydrophobically associating polymers for improved oil recovery:A literature review. J Petrol. Sci. Eng.1998, 19:265-280.
    [60]曹绪龙,李阳等.驱油用聚丙烯酰胺溶液的界面扩张流变特征研究[J].石油大学学报(自然科学版),2005,29(2):70-72.
    [61]Taylor, K.C., Burke, R.A., Nasr-El-Din, H.A., Schramm, L.L. Development of a flow injection analysis method for the determination of acrylamide copolymers in brines. J. Petrol. Sci. Eng.1998,21 (1-2):129-139.
    [62]周成裕,萧瑛,张斌.国内化学驱油技术的研究进展[J].日用化学工业,2011,41(2):131-135.
    [63]Wang, B., Wu, T., Li, Y.J., Sun, D.J., Yang, M., Gao, Y.X., Lu, F.J., Li, X. The effects of oil displacement agents on the stability of water produced from ASP (alkaline/surfactant/polymer) flooding, Colloids Surf.2011,379(1-3):121-126.
    [64]Zhang, F.S., Ouyang, J., He, Y. W., Wang, D.W., Feng, X. F. Study of the stability of the emulsion produced by alkaline surfactant polymer(ASP) flooding; Chemistry and Technology of Fuels and Oils.2012,47(6):434-439.
    [65]姚胜林,陈明强,王克伟等.提高采收率研究的现状[J]. 石油化工应用,2009,28(4):1-3.
    [66]Zhang L, Wang XC, Gong QT, Zhang L, Luo L, Zhao S, Yu JY. Interfafcial dilational properties of tri-substituted alkyl benzene sulfonates at air/water and decane/water interfaces. J. Colloid Interf Sci.2008,327,451-458.
    [67]郭万奎,程杰成,廖广志.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发,2002,21(3):1-6.
    [68]计秉玉.对大庆油田进一步开展三次采油技术研究工作的几点意见[J]. 大庆石油地质与开发,2003,22(6):60-62.
    [69]庞丽丽,宁宇清.三次采油化学驱油技术发展现状[J]. 内蒙古石油化工,2010(8):142-145.
    [70]郭文敏,吕爱华,吴蔚等.大庆油田聚合物驱特征评价方法及其应用[J]. 内蒙古石油化工,2010(11):1-2.
    [71]林翔.埕东油田聚驱过程聚合物黏度影响因素[J]. 油气田地面工程,2010, 29(3):34-35.
    [72]Zhang, Z., Li, J.C., Zhou, J.F. Microscopic Roles of "Viscoelasticity" in HPMA polymer flooding for EOR, Transport in Porous Media.2011,86(1): 199-214.
    [73]李振泉,张玉玺,张云龙等.聚合物驱油剂LH-2500的溶液性能及模拟驱油效果研究[J].油田化学,2010,27(2):200-204.
    [74]吴文祥,王德民.聚合物黏弹性提高驱油效率研究[J].中国石油大学学报(自然科学版),2011,35(5):134-138.
    [75]唐洪明,黎菁,张健.聚合物驱采出液中聚丙烯酰胺的分子参数、结构及形貌研究[J].油田化学,2011,28(1):49-53.
    [76]Ge, X., Yang, J., Xu, X., Gao, J.. The Demulsification of Crude Emulsion of ASP Flooding by an Organic Silicone Demulsifier, Petroleum, Sci. Technol. 2010,28(10):1013-1024.
    [77]Zhang, Y.Q., Gao, B.Y., Lu, L., Yue, Q.Y., Wang, Q., Jia, Y.Y. Treatment of produced water from polymer flooding in oil production by the combined method of hydrolysis acidification-dynamic membrane bioreactor-coagulation process, J. Petrol. Sci. Eng.2010,74(1-2):14-19.
    [78]张晓龙,张煜,屈撑囤等.长庆油田池46联合站采油污水回注处理实验研究[J].环境科学与技术,2011,34(3):93-97.
    [79]王莹,康万利,高倩倩等.油田污水中去除阳离子的方法[J].光谱实验室,2011,28(3):1223-1226.
    [80]范韬.油田污水水质稳定技术的研究[J].石油与天然气化工,2011,40(2):214-217.
    [81]张文.油田污水处理技术现状及发展趋势[J].油气地质与采收率,2010,17(2):108-110.
    [82]侯腱膨,陈东明,付晓.油田污水处理技术现状和新进展[J].内蒙古石油化工,2010(10):55-59.
    [83]任永忠,陈素宁,刘智金等.油田外排污水处理技术及研究进展[J].安全与环境工程,2011,18(2):45-48.
    [84]Eduardo Bessa, Sant Anna G L, Dezotti M. Photocatalytic/H2O2 Treatment of Oilfield Produced Waters [J]. Applied Catalysis B:Environmental,2001,29: 125-134.
    [85]孙天祥,徐亚霞,李浩等.油田化学剂在油田污水处理中的应用概况[J].化学工程与设备,2011(10):160-163.
    [86]. Petroleum Energy Center. Treatment and Utilization of Oil-containing Produced Water in Oman.1999,9:1-7.
    [87]Gilbert T Tellez, N Nirmalakhandan, Jorge L Gardea-Torresdey. Performance Evaluation of an ActivatedSludge System for Removing Petroleum Hydrocarbonsfrom Oilfield Produced Water [J]. Advances in Environmental Research,2002,6(4):455-470.
    [88]Freire D D, Cammarota M C, Santanna G L Jr. Biological Treatment of Oil Field Wastewater in a Sequencing Batch Reactor [J]. Environmental Technology,2001, 22(10):1125-1135.
    [89]祝威,董健,谷梅霞.胜利油田污水资源化处理试验研究[J].广东化工,2011,38(10):36-38.
    [90]闫毓霞,王志强,陈家清等.胜利油田采油废水污染现状及达标处理技术探讨[J].山东环境,2000,7:146-148.
    [91]Cynthia Murray-Gulde, Heatley J E, Karanfil T, et al. Performance of a Hybrid Reverse Osmosis-constructed Wetland Treatment System for Brackish Oil Field Produced Water [J]. Water Research,2003,37 (3):705-713.
    [92]柳荣伟.油田污水中聚丙烯酰胺降解机理研究[J].石油化工应用,2010,29(4):1-5.
    [93]詹亚力,郭绍辉,闫光绪.部分水解聚丙烯酰胺降解机理研究进展[J].高分子通报,2004(2):70-74.
    [94]徐楠.采出水配注聚合物对粘度影响因素分析[J].内蒙古石油化工,2011(13):79-81.
    [95]詹亚力,杜娜,郭绍辉.聚丙烯酰胺水溶液的氧化降解作用研究[J].石油大学学报(自然科学版),2005,29(2):108-120.
    [96]文凤余,程若江.聚合物溶液粘度不稳定因素分析与治理[J].胜利油田职工大学学报,2006,20(4):47-49.
    [97]刘雨文.矿化度对疏水缔合聚合物溶液粘度的影响[J].油气地质与采收率,2003,10(3):62-63.
    [98]王方,吴艳峰,王书明.驱油聚合物溶液粘度稳定性研究[J].精细石油化工进展,2009,10(2):7-9.
    [99]朱麟勇,常志英,李妙贞等.部分水解聚丙烯酰胺在水溶液中的氧化降解Ⅰ.温度的影响[J].高分子材料科学与工程,2000,16(1):113-116.
    [100]朱麟勇,常志英,李明宇等.部分水解聚丙烯酰胺在水溶液中的氧化降解Ⅱ.温度的影响[J].高分子材料科学与工程,2000,16(2):112-114.
    [101]朱麟勇,常志英,马昌期等.部分水解聚丙烯酰胺在水溶液中的氧化降解Ⅲ.温度的影响[J].高分子材料科学与工程,2002,18(2):93-96.
    [102]张铁锴,吴红军,王宝辉等.Fenton试剂氧化降解聚丙烯酸胺的机理研究[J].化学工程师,2004(9):6-8.
    [103]南玉明,贾辉,郑海洋等.聚丙烯统胺化学降解的研究[J].大庆石油学院院报,1997,21(1):49-51.
    [104]李美蓉,柳智,宋新旺等.金属阳离子对聚丙烯酰胺溶液粘度的影响及其降粘机理研究[J].燃料化学学报,2012,40(1):43-46.
    [105]王其伟.S2-对聚合物粘度的影响[J].中国石油大学学报(自然科学版),2011,35(2):157-161.
    [106]马宝东,陈晓彦,张本艳等.聚合物驱新型污水处理剂的研制和应用[J].油气地质与采收率,2005,12(5):70一72.
    [107]Chen,T.,Gao B.Y,Yue Q.Y.Effect of dosing method and pH on color removal performance and floc aggregation of polyferric chloride-polyamine dual-coagulant in synthetic dyeing wastewater treatment,Colloids Surf.A,355, 2010::121-129.
    [108]马宝东.胜利油田注聚区采出液处理方法研究[J].油田化学应用,2008,7(专刊):121-123.
    [109]于洪敏,左景栾,任韶然.油田采油污水回注处理技术及工艺探讨[J.腐蚀与防护,2008,29(12):776-779.
    [110]图影,徐颖.油田含油污水处理技术及发展趋势[J].能源与环境,2009(2):97-99.
    [111]梁伟,赵修太,韩有祥等.油田含聚污水处理与利用方法技术探讨[J].工业水处理,2010,30(10):1-4.
    [112]刘江红,潘洋,贾云鹏.油田含聚污水处理技术研究进展[J].化学与与生物工程,2011,28(1):1-3.
    [113]姚明修,祝威,桂召龙.油田含聚污水聚结气浮处理工艺实验研究[J].石油 化工应用,2011,30(1):80-82.
    [114]单芳,贺露,周栋.油田三次采油污水处理方法研究[J].内江科技,2011,(6):104.
    [115]贾凌志,张春玲,白云鹏等.曝氧污水配制聚合物溶液/ASP复合体系粘度的稳定性[J].石油化工高等学校学报,2010,23(1):11-15.
    [116]马宝东,高宝玉,卢磊等.聚合物/表面活性剂二元体系油水乳化过程动态表征方法研究[J].山东大学学报,2010,40(4):117-120.
    [117]马宝东,张继超,张永民等.石油磺酸盐及其复配体系的界面性能研究[J].日用化学工业,2011,41(1):19-26.
    [118]张继超,马宝东,张永民等.不同氧乙基数十六烷基聚氧乙烯醚磺酸钠的界面性能[J].日用化学工业,2011,41(2):87-91.
    [119]李移乐,任海晶,李俊莉.Gemini表面活性剂在驱油体系中的应用进展[J].广东化工,2011,38(12):64-65.
    [120]Dong Zhaoxia, Lin Meiqin, Wang Hao, et al. Influence of surfactants used in surfactant-polymer flooding on the stability of Gudong crude oil emulsion [J]. Pet.Sci. (2010)7:263-267.
    [121]Wu Wenxiang, Pan Jianhua, Guo Mingri. Mechanisms of oil displacement by ASP-foam and its influencing factors [J]. Pet.Sci.(2010)7:100-105.
    [122]董玲,张群志,李织宏等.表面活性剂—聚合物二元复合体系评价指标探讨[J].油气地质与采收率,2011,18(2):52-54.
    [123]吴文祥,张向宇,郭明.表面活性剂BS复合驱油体系物理模拟实验研究[J].油田化学,2010,27(1):92-95.
    [124]周定照,向兴金,何诗彪.表面活性剂HKH-8为主剂的驱油体系在渤海油砂上的吸附与损失[J].精细石油化工进展,2010,11(10):9-12.
    [125]胡荣,郑延成.表面活性剂的润湿性及增注机理研究[J].石油天然气学报,2012,34(4):143-146.
    [126]李珀月洋,蒲万芬,孟令俊等.表面活性剂驱油藏适应性研究[J].新疆石油地质,20112,33(1):75-79.
    [127]肖波,程杰成,江波.表面活性剂体系驱油效果分子动力学模拟研究[J].油田化学,2010,27(3):291-294.
    [128]刘立平,王云龙,刘福林等.长春岭油田表面活性剂驱可行性[J].大庆石油 学院学报,2010,34(4):82-84.
    [129]王冲,张贵才,张建强等.陈庄原油超低界面张力驱油体系研究[J].石油与天然气化工,2012,41(1):74-78.
    [130]杨勇,王海峰,刘然等.大庆三次采油用表面活性剂技术现状及发展方向[J].中外能源,2010,15(10):43-49.
    [131]冯岸洲,张建强,蒋平等.低渗透油藏高浓度表面活性剂体系降压增注试验研究[J].油田化学,2011,28(1):69-73.
    [132]刘江.低渗透油藏活性水驱油物理模拟试验研究[J].石化技术,2011,18(4):9-12.
    [133]梁玉纪,海心科,李玉明.不低渗透油田表面活性剂降压增注技术及应用[J].石油天然气学报(江汉石油学院学报),2010,32(4):353-355.
    [134]杨斌,董俊艳,王斌等.低渗油藏表面活性剂驱油技术研究[J].精细石油化工进展,2012,13(1):41-44.
    [135]刘春天,李星.驱替体系的主要性质对驱油效率的影响[J].油气地质与采收率,2012,19(1):66-68.
    [136]王其伟,陈晓彦,马宝东等.国内外聚合物驱水质研究概况[J].油气地质与采收率,2002,9(5):54-56.
    [137]马宝东.注聚区污水处理剂研究[D].山东大学硕士论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700