用户名: 密码: 验证码:
FKM/NBR螺杆泵定子共混胶摩擦磨损行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺杆泵采油是一种新型的人工举升方式,具有结构简单、适用性强、安装方便、占地小、投资少、泵效高等特点,已经在国内外的油田生产中普遍使用。特别是目前较多油田已进入三次采油阶段,开采原油的难度不断加大,该技术的应用正呈明显上升趋势。螺杆泵的主要工作部件是由螺杆(金属转子)和衬套(橡胶定子)组成,定子橡胶衬套的性能直接影响整个采油螺杆泵系统的工作性能,其中螺杆泵的定子橡胶衬套的磨损是导致螺杆泵失效的主要原因之一。定子橡胶在工作过程中受多种因素的影响,引起橡胶的物理、化学性质发生变化,加速其老化和磨损进程,导致其使用寿命缩短,严重限制了螺杆泵的应用。螺杆泵定子橡胶材料的选择及进一步改进,对于提高采油螺杆泵性能,发挥螺杆泵在稠油井、携砂井、斜井中的作用,以及延长螺杆泵的工作寿命至关重要。目前,国内外已经有研究人员采用工程塑料或各种高性能填料与丁腈橡胶共混,以提高定子橡胶材料的性能,但是至今为止,研究人员没有考虑到针对采油需求引入性能更加优良的橡胶对螺杆泵常用定子橡胶进行共混改性,使定子橡胶进一步满足对强度、耐磨性、抗老化性等各种性能的要求,也没有对如何选择不同橡胶共混配比的问题进行深入研究。本文以不同性能的定子橡胶的共混为手段,为了能够根据实际工况选择最佳共混橡胶的配比,进一步实现在不同工况下提高定子橡胶衬套寿命及定子橡胶性价比的目标,将氟橡胶和丁腈橡胶进行了共混,开展其配方设计的试验研究和摩擦磨损机理分析。
     考虑到采油螺杆泵定子橡胶的磨损受制于高温、高压、溶胀、转速等因素交互耦合作用,且各因素与磨损量之间的关系无法用精确的数学表达式进行描述。因此,本文对多种不同配比的丁腈基和氟基螺杆泵定子橡胶的耐磨性在MPV-600及MLS-225摩擦磨损试验机上进行了试验研究,分析了各种因素对磨损量的影响,确定了其间的影响关系;设计了能够模拟实际工况中高温、液体溶胀、气体溶胀等因素的专门试验装置,研究温度、溶胀对橡胶性能的影响,使实验数据及结果更加准确;整理了不同配比共混胶的实验数据并进行了对比分析,找到了与某种实际采油工况相匹配的性能优异的螺杆泵定子共混胶;采用扫描电镜和红外光谱分析等方式对不同配比的共混胶在不同工况下磨损试验前后的本构关系进行分析,确定了其在不同工况下的磨损机理。
     在螺杆泵采油系统的实际工作过程中,定子橡胶的配方、共混胶的配比需要根据实际工况的变化而变化。为保证螺杆泵定子橡胶适应实际工况,自行开发了不同工况(温度、气体及液体溶胀等因素的影响)下的实验装置并结合磨损试验机,分析不同配方及配比的定子橡胶在不同工况下(干摩擦、水润滑、原油润滑条件下)的耐磨性。形成了考虑螺杆泵实际工况的载荷、温度、溶胀、转速等因素对定子橡胶耐磨性影响的一整套实验研究方法。通过磨损前后共混胶的实验数据、红外光谱和扫描照片的对比分析,验证了该实验方法的有效性和实用性。
     通过上述实验方法的研究和试验设备的研制,本文构建了一个融合多因素于一体并针对螺杆泵定子橡胶性能进行分析的综合实验平台,该平台可以结合实际工况对不同配方及配比的定子橡胶进行相关试验分析,最终确定适应不同工况的最优定子橡胶配方及配比。
Progressing cavity pump (PCP) is a new type of artificial lift equipments with thecharacteristics of simple structure, great applicability, easy installation, less floor area, lessinvestment, high efficiency, etc. It has been widely used in oil production at home andabroad. At present, more oil fields have entered into the tertiary oil recovery stage and oilexploration is becoming difficult. Therefore, the application of progressing cavity pumpshows the clear upward trend. The progressing cavity pump composes of the stator ofelasticity and the metal rotor. The performance of stator rubber bushing directly affects theperformance of entire oil pumping system, and the wear of stator rubber is one of the mainreasons which lead to the failure of progressing cavity pump. The life of stator rubber isaffected by many factors in the course of working, which results in physical and chemicalproperty change of rubber, and accelerates aging and wear of the stator rubber. Theaffecting factors decrease the mechanical and volumetric efficiency of pump, shorten thelife of pump, and limit the scope of application. The selection of stator rubber material andits further improvement are crucial for improving the performance of progressing cavitypump, which plays an important role for extending the working life of progressing cavitypump in heavy oil wells, sand wells and inclined wells.
     Currently, in order to improve the performance of the stator rubber, researchers haveused plastic or various kinds of high performance fillers for blending with nitrile rubber.But so far, no researchers has taken the comprehensive performance requirements of statorrubber into account, such as strength, abrasive resistance and aging resistance, and also hasnot researched the optimization problem of rubber blend ratio. Therefore, the research onthe blend technology will be carried out in this thesis to optimize the stator rubber ofprogressing cavity pump by mixing fluorine rubber and nitrile rubber, and on wearmechanism to provide the theoretical basis for choosing stator rubber. The main works andcontributions of this thesis are listed as follows:
     Considering that the wear of stator rubber is subjected to the interactive coupling ofhigh temperature, high pressure, swelling, rotate speed and other factors, and the relationship between the various factor and wear loss cannot be precisely described bymathematical expression, the wear resistance of rubber blend with the different ratio ofNBR (Nitrile butadiene rubber) and FKM (Fluorine rubber) was investigated by theMPV-600and MLS-225testers. In this thesis, the effect of various factors on the wear losswas analyzed and the relation model was constructed. Specialized experimental apparatusfor simulating the high temperature, high pressure, gas swelling, which was similar to thatin the actual working conditions, was designed to analyze the effect of these factors on theproperties of rubber, and it would make the experiment data and results more accurate. Theexperimental data was disposed and contrasted to find out the excellent performance blendadapt to the practical oil extraction condition. The constitutive relation of blend rubbers isanalyzed by using scanning electron microscopy and infrared spectroscopy before and afterthe wear experiment in different conditions to determine the wear mechanism.
     During the actual working process of screw pump, the formulation of stator rubberand the blends ratio must be adjusted in accordance with the working conditions. Tocooperate the stator rubber formulation with the actual working conditions, theexperimental apparatus for the different conditions (temperature, swelling and other factors)is self-designed, and the relations between different formulations of stator rubber and thewear resistance in different condition (dry sliding, water lubrication, base oil lubrication)was analyzed using this wear tester. The full set of experimental method is proposed aboutthe effect of speed, load, temperature, swelling and other factors in the actual conditions onthe wear resistance of the stator rubber. The effectiveness and practicality of experimentalmethods are verified by the experimental data, infrared analysis and scanning photographsof wear experiment.
     Through the above research about the experimental method the design of testequipment, this paper construct the comprehensive experiment platform, which could fusemultiple factors into one and aim at the analysis of the stator rubber of screw pump. Theexperiment and analysis of stator rubber with different formulation and ratio could berealized in this platform according to the actual condition. Finally, the optimal formulationand ratio of rubber blend could be found adapt to the related operation condition.
引文
[1]孙喜寿.机械采油方法的正确选择[J].国外油田工程,1994,(3):13~14.
    [2]冯耀忠.油井机械采油方法的选择[J].石油机械,1989,17(12):14~18.
    [3] Clegg J. D, Bucaram S. M, Hein Jr N. W. Recommendations and comparisons for selectingartificial lift methods. Journal of Petroleum Technology[J].1993,45(12):1128~1131.
    [4]高又炘.潜油永磁同步电动机的控制应用[J].电气技术,2011,(4):63~65.
    [5]张连山.螺杆泵采油系统技术发展现状与动向研究[J].石油机械,1994,22(1):46~50.
    [6] Beauquin J. L, Boireau C, Lemay L, Seince L. Development status of a metal progressing cavitypump for heavy-oil and hot-production wells. Journal of Petroleum Technology[J].2006,58(5):59~61.
    [7] Klein Steven. Development of composite progressing cavity pumps[C]. Proceedings of the AnnualSouthwestern Petroleum Short Course,2003,4:74~78.
    [8]黄有泉,何艳,曹刚.大庆油田螺杆泵采油技术新进展[J].石油机械,2003,31(11):65~69.
    [9]何希杰,劳学苏.螺杆泵现状与发展趋势[J].水泵技术,2007,(5):1~12.
    [10]王世杰,李勤.潜油螺杆泵采油技术及系统设计[M].北京:冶金工业出版社,2006.
    [11]罗旋,王世杰.多因素耦合态下ESPCP系统输出转速的优化方法[J].中国工程机械学报,2011,9(3):295~298.
    [12]师国臣,徐桂艳,张颖等.定子橡胶对螺杆泵工作特性影响的试验研究[J].石油机械,2000,28:66~67.
    [13] Lewis Blain, Daves Dusty, Skelton Gregg. Case history of a successful progressing cavity pumpapplication in an extremely low pressure environment[J]. Society of Petroleum Engineers,2010,(1):21~25.
    [14]万邦烈.单螺杆式水力机械[M].东营:石油大学出版社,1993.
    [15]金红杰,吴恒安,曹刚,等.螺杆泵系统漏失和磨损机理研究[J].工程力学,2010,27(4):179~184.
    [16]魏纪德.螺杆泵工作特性研究及应用[D].大庆:大庆石油学院,2007.
    [17]周波.国外螺杆泵装置的新进展[J].国外油田工程,1997,22(4):54~55.
    [18]盛国富.国外螺杆泵举升工艺的新进展[J].国外油田工程,2004,20(4):12~13.
    [19]申亮.地面驱动螺杆泵工况诊断技术研究[D].北京:中国石油大学,2011.
    [20]熊希.地面驱动螺杆泵采油系统优化设计[D].武汉:长江大学,2012.
    [21] Bohorquez, M., Rubiano, E., Labrador, L., Suarez, M.C. Implementation of bottom-driveprogressive-cavity pumps technology in La Cira-Infantas oil field as a reliable artificial liftmethod[C]. Society of Petroleum Engineers2013SPE Artificial Lift Conference,2013,19~27.
    [22]孔倩倩.电动潜油螺杆泵工况诊断方法研究[D].北京:中国石油大学,2008.
    [23]齐振林.螺杆泵采油技术问答[M].北京:石油工业出版社,2002.
    [24]操建平.单螺杆泵的接触疲劳磨损分析[J].水泵技术,2011,(3):1~6.
    [25]曹刚,刘合,黄有泉,等.国外螺杆泵举升工艺的新进展[J].石油机械,2004,32(3):54~55.
    [26] Jose Gamboa, Aurelio Olivet, Sorelys Espin. New approach for modeling progressive cavitypumps performance [R]. Society of Petroleum Engineers,2003.SPE84137-MS:13―21.
    [27] Klein S. Advances expand application or progressive cavity pumps[R]. The American Oil&GasReporter,1995,38(6):83~85.
    [28]全国石油钻采设备和工具标准化技术委员会. SY/T6731—2008不压井作业装备[S].北京:石油工业出版社,2008.
    [29]廖开贵,李允,陈次昌.采油螺杆泵研发新进展[J].国外油田工程,2006,22(10):41~43.
    [30]任龙.螺杆泵采油系统新进展[J].国外油田工程,2007,23(1):30~36.
    [31] Lea James F, Winkler Herald W, Snyde Robert E. What’s new in artificial lift[J]. World Oil.2007,228(5):59~67.
    [32] Lea James F, Winkler Herald W. What's new in artificial lift[J]. World Oil.2009,230(5):29~45.
    [33] Lea James F, Winkler Herald W. What’s new in artificial lift[J]. World Oil.2009,230(5):77~85.
    [34]管延收.电潜螺杆泵采油系统的理论研究与应用分析[D].北京:中国石油大学,2008.
    [35]张建伟.井下采油单螺杆泵的现状及发展[J].石油机械,2000,28(8):56~58.
    [36]何艳,魏纪德,等.采油等壁厚定子螺杆泵[P].中国专利,200520021785.7,2007-02-14.
    [37]操建平,孟庆昆,高圣平,等.等壁厚螺杆泵采油技术[J].机电产品开发与创新,2012,25(1):48~49.
    [38]褚楔军.一种等壁厚空心螺杆泵转子[P].中国专利,200720038155.X.2008-09-10.
    [39]朱成林,朱丽君,才小丽.耐高温螺杆泵采油装置[P].中国专利,200820117624.1.2009-04-15.
    [40]陈玉祥,王霞等.提高螺杆泵定子橡胶材料寿命的分析与研究[J].灌溉机械,2005,23(4):6~9.
    [41]张连山.国外螺杆泵采油系统的现状与发展[J].国外石油机械,1997,8(1):27~34.
    [42]朱国新,谢西奎,等.螺杆钻具定子橡胶类型与钻具性能分析[J].石油矿场机械,1998,27(5):22~24.
    [43]朱恒.大排量螺杆泵的设计和开发[D].北京:中国石油大学,2009.
    [44]郁文正,梁德山.螺杆泵定子橡胶的新发展[J].国外石油机械,1997,8(4):41~47.
    [45]张防,郭强.氢化丁腈橡胶及其应用研究进展[J].特种橡胶制品,2001,22(2):54~57.
    [46]朱永康编译.丁腈橡胶与三元乙丙橡胶并用胶的共硫化[J].世界橡胶工业,2004,3(8):23.
    [47]赵素合,贺春江.二元聚酞胺对丁腈橡胶/三元聚酰胺TPV结晶行为及性能的影响[J].中国塑料,2003,17(7):31~33.
    [48]邓本诚.橡胶并用与橡塑共混技术—性能、工艺与配方[M].北京:化学工业出版社,1998.
    [49] Aminabhavi T M, Manjeshwar L S, Cassidy P E. Water permeation through elastomer laminates.IV. NBR/EPDM[J]. J Appl. Polym. Sci.,1986,32(2):3719~3723.
    [50] Dunn J R. Compounding elastomers for tomorrow's automotive market(PartⅡ)[J]. Elastomerics,1989,121(2):28~32.
    [51] Namboodiri C S S, Tripathy D K. Strain-dependent isothermal damping behavior of filled EPDMrubber[J]. Effect of Vulcanizing System,1992,17(3):171~178.
    [52] Maity S K, Chakraborty K K. Studies on curing characteris-tics of natural rubber-, nitrile rubberand silicone rubber-based gum vulcanizates in the presence of boron compounds[J]. Journal ofElastomers and Plastics,1993,25(4):358~380.
    [53]王世杰,吕彬彬,李勤.潜油螺杆泵采油系统设计与应用技术分析[J].沈阳工业大学学报,2005,27(2):121~125.
    [54]金红杰等.螺杆泵系统漏失和磨损机理研究[J].工程力学,2010,27(4):179~184.
    [55]青岛科技大学成功研发超高耐油性羧基丁腈橡胶[J].润滑与密封,2012,37(7):32.
    [56]钱伯章.耐腐蚀螺杆泵定子橡胶研究项目通过鉴定[J].现代橡胶技术,2012,(5):33.
    [57] Burwell J T. Survey of possible wear mechanism[J]. Wear,1958,(1):115~119.
    [58]张嗣伟.橡胶磨损原理[M].北京:石油工业出版社,1998.
    [59] Ahman L, Oberg A. Mechanisms of micro-abrasion-in-situ studies in SEM[J]. Wear of Materials,ASME1983.108~112.
    [60] Southern E, Thomas A G. Studies of rubber abrasion[J]. Rubber Chem. Technol.1979,(52):1004~1008.
    [61] Gent A N, Pulford C T R. Mechanisms of rubber abrasion[J]. Appl. Polym. Sci.1983,(28):40~43.
    [62] Zhang S W. Investigation of abrasion of nitrile rubber[J]. Rubber Chem. Technol.1984,(57):765~769.
    [63] Zhang S W. Theory of rubber abrasion by a line contact[M]. Polymer Wear and its Control, LeeLH(ed.), ACS, Washington DC:1985.
    [64]张嗣伟.橡胶磨粒磨损机理的研究[J].固体润滑,1987,(7):128~131.
    [65] Fukahori Y, Yamazaki. Mechanism of rubber abrasion. Part I: Abrasion pattern formation innatural rubber valcanizate[J]. Wear,1994,171:190~195.
    [66] Fukahori Y, Yamazaki. Mechanism of rubber abrasion. Part II: General rule in abras ion patternformation in rubber-like mateials[J]. Wear,1994,178:103~109.
    [67] Fukahori Y, Yamazaki. Mechanism of rubber abrasion. Part III: How is friction linked to fracturein rubber abrasion[J].Wear,1995,188:15~19.
    [68] Lindey P B, Thomas A G. Fundamental study of the fatigue of rubbers[C]. Proc. of4th RubberTechnol. Conf. London, IRI,1962,422~428.
    [69] Gent A N. A hypothetical mechanism for rubber abrasion[J]. Rubber Chem. Technol.1988,62:746~750.
    [70] Mathew, N. M., De, S. K. Scanning electron microscopy studies on tear fracture of naturalrubber[J]. Polymer,1982,23(4):632~634.
    [71] Bhowmick A K, Basu S, De S K. The effects of carbon black-vulcanization system interactionson rubber network structures and properties[J]. Rubber Chemistry and Technology.1982,55(1):20~23.
    [72] Bhowmick A K, Basu S, De S K. Scanning electron microscopy studies of abraded rubbersurfaces[J]. Journal of Material Science,1981,16(6):1650~1654.
    [73]杨兆春.橡胶线接触摩擦规律的研究[J].润滑与密封,1999,(6):30~31.
    [74]姚斌.丁腈橡胶在干煤粉条件下磨损研究[J].润滑与密封,2001,(5):30~40.
    [75]何仁洋,张嗣伟,王德国.干摩擦条件下天然橡胶/钢的磨损机理研究[J].摩擦学学报,2001,21(4):260~265.
    [76]吕仁国,李同生.载荷对丁腈橡胶摩擦学特性的影响[J].润滑与密封,2001,(6):29~30.
    [77]吕仁国,李同生,黄新武.不同速度下丁腈橡胶摩擦特性[J].合成橡胶工业,2002,25(2):101~103.
    [78]杨秀萍,郭津津.单螺杆泵定子橡胶的接触磨损分析[J].润滑与密封,2007,32(4):33~39.
    [79]吕晓仁,王世杰等.干摩擦和原油润滑下丁腈橡胶、氟橡胶磨损行为研究[J].润滑与密封,2007,32(4):33~39.
    [80] Zhang S W. Wet abrasion of polymers[J]. Wear,1992,158(1-2):1-13.
    [81]柳琼俊,张嗣伟.边界润滑条件下丁腈橡胶-金属磨损机理的研究[J].摩擦学学报,1998,18(3):204~208.
    [82]杨兆春,张嗣伟等.单螺杆泵定子磨损分析[J].流体机械,1999,27(7):20~23.
    [83]杨兆春,张嗣伟等.输送水煤浆的单螺杆泵定子磨损机理分析[J].润滑与密封,1999,(4):37~39.
    [84]韩晶杰,何雪莲,李秋影,等.天然橡胶分子结构对橡胶干磨与湿磨的影响[J].高分子材料科学与工程,2009,25(2):70~72.
    [85]吕仁国,李同生.聚酰亚胺填充丁腈橡胶复合材料的研究[J].润滑与密封,2002,(6):16~17.
    [86]方晓波,黄承亚,林城,等. PTFE填充氟橡胶的摩擦磨损特性研究[J].特种橡胶制品,2008,29(4):1~7.
    [87]王力,栗付平,蒋洪罡,等.氟醚橡胶摩擦磨损性能研究[J].特种橡胶制品,2008,29(6):5~8.
    [88] Thavamani P, Khastgir D, Bhowmick A K. Microscopic studies on the mechanisms of wear ofNR,SBR and HNBR vulcanizates under different conditions[J]. Journal of Materials Science,1993,28(23):6318-6322.
    [89]王德国,张嗣伟,等.石英岩表面分子沉积膜的微观摩擦性能的试验研究[J].摩擦学学报,1999,19(1):28~31.
    [90]何仁洋,张嗣伟,王德国.聚氨酯磨粒侵蚀的机理[J].石油大学学报(自然科学版),1996,(20):38~40.
    [91]魏纪德,郑学成,等.采油螺杆泵定子温度场数值模拟分析[J].石油机械,2006,34(2):11~14.
    [92]李萍,陈勇.油田螺杆泵定子橡胶性能的影响因素[J].橡胶科技市场,2008,(13):23~25.
    [93]韩修廷,王秀玲.螺杆泵采油原理及应用[M].哈尔滨:哈尔滨工程大学出版社,1998.
    [94]王春艳.螺杆泵抽油井工况分析[D].大庆:大庆石油学院,2004.
    [95]魏纪德,吴文祥,等.螺杆泵工作特性曲线的数值模拟及应用[J].石油钻采工艺,2006,28(8):46~49.
    [96]丁波,徐太宗,等.空心转子螺杆泵过泵加热采油技术[J].石油矿场机械,2006,35(suppl.):63~65.
    [97]孙浩.转速对螺杆泵定子磨损影响的机理分析与速度优化[D].沈阳:沈阳工业大学,2011.
    [98]邱小庆.地面驱动螺杆泵井工况诊断研究及应用[J].新疆石油天然气,2011,7(2):73~75.
    [99]聂飞朋,马英.地面驱动螺杆泵井工况诊断新方法[J].断块油气田,2007,14(6):76~78.
    [100]王哲,王世杰,等.干摩擦及原油润滑条件下丁腈橡胶-钢摩擦副的磨损机理研究[J].组合机床与自动化加工技术,2010,(9):6~8.
    [101]司江涛.螺杆泵井故障分析与对策研究[D].北京:中国石油大学,2008.
    [102]赵殿勇.螺杆泵井转速对泵效的影响研究与应用[J].中外能源,2012,(17):64~67.
    [103]王永昌,郑贵,胡景新.螺杆泵试验转速和黏度对水力特性检测的影响[J].石油工业技术监督,2009,(7):5~9.
    [104]魏纪德,吴文祥,等.螺杆泵定子橡胶溶胀对容积效率的影响及对策[J].石油机械,2005,33(4):16~18.
    [105]奚国志,宋广俊,等.螺杆泵生产允许最低沉没度的确定[J].油气田地面工程,2007,26(3):21~22.
    [106]王庆楠.液压驱动螺杆泵油井生产系统的优化设计及软件开发[D].北京:中国石油大学,2007.
    [107]杨樟柏.提高螺杆泵举升性能研究[D].大庆:大庆石油学院,2006.
    [108]侯宇.螺杆泵定转子合理过盈量确定方法研究[D].大庆:东北石油大学,2011.
    [109]操建平.影响螺杆泵密封性能的直接因素分析[J].润滑与密封,2011,40(11):5~10.
    [110]孙复钱.曾国屏等.生物医用抗菌性硅橡胶材料的研究进展[J].高分子通报,2012,(5):61~69.
    [111]王进文.减小橡胶摩擦因数的表面改性方法[J].橡胶工业,2002,49(12):761~762.
    [112]毕莲英.改变橡胶摩擦性能的综合方法[J].世界橡胶工业,2001,28(1):36~39.
    [113]石锐,田明,等.橡胶表面改性的方法[J].橡胶工业,2006,53(3):186~190.
    [114] Tyczkowski J, Krawczyk I, Wozniak B. Modification of styrene-butadiene rubber surfaces byplasma chlorination[J]. Surface and Coatings Technology,2003,174-175:849~853.
    [115]王其磊,杨逢瑜,等.纳米Fe3O4与纳米SrO·6Fe2O3填充丁腈橡胶复合材料的力学与磁学性能[J].材料工程,2011,(7):75~79.
    [116]吴绍吟,马文石,等.纳米碳酸钙在弹性体中的应用[J].弹性体,2003,13(1):57~62.
    [117]邹德容.纳米碳酸钙对RTV硅橡胶性能的影响[J].有机硅材料,2002,16(2):7~9.
    [118] A. I. Khalf, D. E. El. Nashar, N. A. Maziad. Effect of grafting cellulose acetate andmethylmethacrylate as compatibilizer onto NBR/SBR blends[J]. Materials and Design,2010,31:2592~2598.
    [119] Shokri A. A, Bakhshandeh G, Farahani T. D. An investigation of mechanical and rheologicalproperties of NBR/PVC blends: influence of anhydride additives, mixing procedure and NBRform[J]. Iranian Polymer Journal (English Edition),2006,15(3):227-237.
    [120]谢遂志.橡胶工业手册(第一分册)[M].北京:化学工业出版社,2001.
    [121]刘霞.丁腈橡胶/天然橡胶共混胶的硫化性能和力学性能[J].橡胶参考资料,2003,33(2):52~55.
    [122]杨向宏,黄玉惠,赵树录,等.填充PPC/NBR共混弹性体研究(IV)加工条件和力学性能[J].功能材料,1994,(4):322~327.
    [123]陈焜盛,罗权焜.影响氯磺化聚乙烯/丁腈橡胶共混物耐热老化性能的因素[J].合成橡胶工业,2006,29(5):360-363.
    [124]陈旭东,等.舰船用高性能密封橡胶研究[J].弹性体,2004,14(5):20~23.
    [125]王霞,朱臣昌.纳米CaCO3与聚氯乙烯对采油螺杆泵定子橡胶材料(NBR)的改性研究[J].弹性体,2007,17(4):4~8.
    [126]刘辉.插层型HNBR配方设计及其工业化放大的研究[D].哈尔滨:哈尔滨工业大学,2009.
    [127]赵洪国,胡海华,等.改性氧化锌晶须对丁腈橡胶性能的影响[J].特种橡胶制品,2010,31(1):22~25.
    [128] M. Abdul Kader, Anil K. Bhowmick. Thermal ageing, degradation and swelling of acrylaterubber, fluororubber and their blends containing polyfunctional acrylates[J]. PolymerDegradation and Stability.2003,(79):283~295.
    [129]唐坤明,吕春力,陈善良. ACM/FPM并用胶的性能研究[J].特种橡胶制品,1995,16(1):20~24.
    [130]武卫莉. ACM/FKM并用胶耐热性和耐油性研究[J].弹性体,2002,12(5):40~42.
    [131]魏伯荣,权俊栓.二元乙丙橡胶与四丙氟橡胶的并用研究[J].特种橡胶制品,1995,16(4):6~9.
    [132]杨清芝.现代橡胶工艺学[M].北京:中国石化出版社,1997.
    [133]张殿荣,辛振祥.现代橡胶配方设计[M].北京:化学工业出版社,2001.
    [134]张孟存,孟祥考,等.氟橡胶/丁腈橡胶混炼胶的研制[J].特种橡胶制品,2009,30(3):59~61.
    [135]魏伯荣,刘郁扬.氟橡胶与丁腈橡胶并用的研究[J].特种橡胶制品,1999,20(6):6-9.
    [136]陈春明,熊传溪.氟橡胶/丁腈橡胶共混物的相态结构及性能[J].合成橡胶工业,2008,31(6):460~463.
    [137]黄红英,尹齐和.傅里叶变换衰减全反射红外光谱法(ATR-FTIR)的原理与应用进展[J].中山大学研究生学刊(自然科学、医学版),2011,32(1):20~31.
    [138]罗传秋,刘泳,杨继萍,等.表面改性医用橡胶的光谱研究[J].光谱学与光谱分析,1999,19(4):553~555.
    [139]陈青,宫大军,等.端羧基丁腈橡胶改性环氧树脂的研究[J].绝缘材料,2011,42(2):30~38.
    [140]陈天佑.橡胶的红外光谱分析[J].福建分析测试,1997,6(1):597~600.
    [141]沈德言.红外光谱法在高分子研究中的应用[M].北京:科学出版社,1981.
    [142] M. Barquins, Adherence, friction and wear of rubber-like materials[J]. Wear,1992,158:87~117.
    [143]张嗣伟.橡胶磨损原理[M].北京:石油工业出版社,1998.
    [144]刘东升,李金玲,等.强碱三元复合驱硅结垢特点及防垢措施研究[J].石油学报,2007,28(5):139~142.
    [145] D. Xu, J. Karger-Kocsis. Unlubricated rolling and sliding wear against steel ofcarbon-black-reinforced and in situ cured polyurethane containing ethylene/propylene/dienerubber compounds[J]. Journal of Applied Polymer Science,2010,115(3):1651-1662.
    [146] A. Shojaei, M. Arjmand, A. Saffar. Studies on the friction and wear characteristics ofrubber-based friction materials containing carbon and cellulose fibers[J]. Journal of MaterialsScience,2010,46(6):1890-1901
    [147]温诗铸,黄平著.摩擦学原理[M].北京:清华大学出版社,2008,9~241.
    [148]赵全文.浅析复杂条件下的石油开采技术[J].中国石油和化工标准与质量,2010,12(2):65-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700