用户名: 密码: 验证码:
生物质基糠醛和乙酰丙酸制备化学品和含氧燃料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质资源是一种碳中性的可再生资源。由于生物质资源是唯一可以转化为常规的液态、固态和气态燃料和其他化学品的可再生资源,因此生物质资源在替代化石资源的过程中具有独特的优势。通过生物炼制的过程,可以将生物质转化为大宗的低附加值的产品,如液态燃料和小宗的高附加值化学品,如琥珀酸,山梨糖醇和甘油。生物质基平台分子是生物炼制过程中重要的桥梁,链接了生物质原料和目标产品,如燃料、燃料添加剂和化学品。提高生物质资源对化石资源竞争力,发展简单低成本的平台分子制备工艺和高效转化平台分子到燃料和化学品的新方法是重要的手段。
     糠醛和乙酰丙酸是生物质转化过程中两种重要的平台分子。糠醛可以大规模的从木质纤维素生物质中半纤维素获得。目前,工业上应用无机酸催化剂实现了糠醛的规模化生产。但是,传统无机酸催化剂存在设备腐蚀和环境污染等问题,为了解决上述问题,我们发展了一种基于氢氧化钽的固体酸催化剂TA-p,实现了催化D-木糖到糠醛的高效转化。在木糖转化糠醛工作的基础上,我们建立了一条由糠醛经多步催化转化到聚呋喃二甲酸丁二醇酯(PBF)的新路线,首次实现了糠醛到呋喃二甲酸类聚酯的转化。
     乙酰丙酸可以低成本高收率的从木质纤维素生物质通过酸水解过程获得,从乙酰丙酸出发可以制备一系列的具备作为燃料添加剂应用潜力的衍生物。其中,戊酸酯类生物燃料由于其合适的燃料性质被认为是一种新型的含氧燃料。目前戊酸酯的制备取得了一系列进展,但是尚缺乏对乙酰丙酸一步高效转化戊酸酯过程的研究。我们发展了一种双功能催化剂Ru/SBA-SO3H实现了催化乙酰丙酸一步高效转化戊酸酯类含氧燃料。
     第1章围绕生物质资源和生物炼制两个方面,简要综述了生物质转化利用的几种途径和生物质基平台分子。在此基础上,详细介绍了糠醛和乙酰丙酸两种生物质平台分子的制备和转化的研究进展。
     第2章介绍了固体酸催化剂TA-p在水-有机溶剂双相体系中选择性催化D-木糖转化到糠醛的研究。系统研究了间歇式反应器和固定床反应器中的转化过程。研究发现间歇法过程中反应温度、有机溶剂的种类和反应时间对D-木糖的转化率和糠醛收率有明显的影响,反应体系中氯离子的加入会部分降低催化剂TA-p的催化效果。在水-1-丁醇的双相体系的连续固定床反应器中,最优条件下TA-p催化D-木糖转化率为96%,获得糠醛最高收率为59%。固定床反应器中连续运行80h,D-木糖的转化率和糠醛收率几乎保持不变,显示出TA-p催化剂高的催化活性和优秀的稳定性。
     第3章主要研究了由糠醛经多步催化转化到2,5-呋喃二甲酸聚酯的新路线,合成了聚呋喃二甲酸丁二醇酯(PBF)并对聚酯的结构和热力学性质进行了表征。由糠醛经糠酸两步转化生物质基重要平台分子、呋喃二甲酸聚酯单体2,5-FDCA的过程选择性超过了80%。PBF的单体2,5-呋喃二甲酸和1,4-丁二醇完全由糠醛转化得到,实现了糠醛到PBF的全碳转化。这一新的路径不仅可以有效避免5-羟甲基糠醛的短缺对下游衍生物发展造成的阻碍作用,促进2,5-呋喃二甲酸聚酯的工业化进程,而且进一步扩大了糠醛工业化应用的潜力。
     第4章主要围绕乙酰丙酸,研究了乙酰丙酸—步高效转化戊酸酯类含氧燃料的过程。研究发现合适的催化剂酸强度和适当的加氢活性是反应的关键因素。制备了一种双功能催化剂Ru/SBA-SO3H,戊酸乙酯和戊酸的选择性随着催化剂Ru/SBA-SO3H酸量的增加而升高,最高选择性达到94%(100%乙酰丙酸转化率)。通过对反应动力学的研究提出了可能的反应途径,并通过实验进行了验证。
     最后,对全文进行了总结和展望。
     综上所述,本文紧密围绕生物质转化中两种重要的平台分子糠醛和乙酰丙酸,借助非均相催化的手段,实现了木糖到糠醛的高效转化,发展了糠醛转化呋喃类高分子聚酯的新路线,完成了乙酰丙酸到戊酸酯类含氧燃料的一步高效加氢转化。
Biomass resource is a carbon-neutral renewable resource. Because biomass resource is the only one which can be converted into conventional liquid, solid and gaseous fuels and other chemicals among the renewable resources, it has a unique advantage in the process of substitution of fossil resources. Biomass can be converted into the bulk but low value-added products, such as liquid fuels and high value-added chemicals such as succinic acid, sorbitol and glycerin through bio-refinery process. Biomass-based platform molecules are important bridges which linked the biomass feedstocks and target products such as fuels, fuel additives and chemicals. The development of simple and inexpensive process for the preparation of platform molecules and efficient conversion of platform molecules into fuels and chemicals are significant to improve the competitiveness of biomass resources to fossil resources.
     Furfural and levulinic acid are two important platform molecules in the biomass conversion process. Furfural can be obtained from the hemicellulose in the lignocellulosic biomass. At present, the catalysts in large-scale industrial production of furfural are inorganic acids. However, there are some problems of traditional inorganic acid catalysts, such as equipment corrosion and environmental pollution. In order to solve the above problems, we developed a tantalum hydroxide-based solid acid catalyst TA-p to catalytic convert D-xylose to furfural. On the basis of the conversion of D-xylose to furfural, we have established a multi-step catalytic conversion of furfural into poly(butylene2,5-furandicarboxylate)(PBF) for the first time.
     Levulinic acid could be cost-effectively produced from lignocellulosic materials via acid hydrolysis process in high yields. Additionally, the LA derivatives which feature with proper combustion properties and energy density have the potential to serve as fuel additives. Among them, valerate esters as novel oxygenated fuels could be blended in both gasoline and diesel. Currently the preparation of valerate esters has been reported, but there is still lack of the research on the efficient conversion of levulinic acid into valerate esters in one step. We have developed a bifunctional catalyst Ru/SBA-SO3H to achieve efficient catalytic one-step conversion of levulinic acid into valerate esters as oxygenated fuels.
     Chapter1presetned the concepts of biomass resources and biorefineries, then a brief overview of the use of biomass in several ways and biomass-based platform molecules was introduced. We reviewed of the preparation of furfural and the transformation of furfural and levulinic acid.
     Chapter2described the solid acid catalyst TA-p in water-organic solvent biphasic system for selective catalytic conversion of D-xylose to furfural. This process was performed both in a batch reactor and a continuous fixed-bed reactor. In the batch process, D-xylose conversion and furfural yield were significantly affected by the organic solvents, reaction temperature and time.1-butanol, which could be obtained through the fermentation of biomass-based carbohydrates, was selected as organic phase and the highest furfural yield of59%was achieved with D-xylose conversion of96%at180℃in the continuous process. Moreover, the long-time stability test for80h under the optimal conditions showed excellent stability of TA-p.
     Chapter3studied a multi-step route of catalytic conversion of furfural into2,5-furandicarboxylic acid-based polyester PBF with total carbon utilization. Catalytic oxidation of furfural into furoate could be easily achieved with a selectivity of93%at100%furfural conversion. The best results of catalytic disproportionation of furoate to furan and2,5-furandicarboxylate were obtained with the selectivity to2,5-FDCA of86%at61%furoate conversion. We have presented a new pathway of converting furfural which was a bulk biomass-based chemical into the key monomer2,5-FDCA of2,5-furandicarboxylic acid-based polyester with a good overall selectivity (80%for the two-step process). This route provides a hitherto important yet neglected strategy linking the platform molecule furfural from C5sugars and2,5-FDCA from C6sugars. It opens a new pathway for biorefinery and further study of the process is necessary. Moreover, furan was converted into1,4-BDO with the highest selectivity of70%at99%furan conversion. The furan-based polyester PBF was prepared from2,5-FDCA and1,4-BDO with total carbon utilization of furfural.
     Chapter4mainly discussed the hydrogenation of levulinic acid to valerate esters over supported Ru catalysts. The suitable acidity and proper hydrogenation activity of catalyst were the key factors for the reaction. A bifunctional catalyst Ru/SBA-SO3H was developed as active catalyst and characterized. The increase in the amount of acid sites on the support improved the selectivity to EV and VA, and the highest yield of94%to EV and VA was achieved. Probable reaction pathways were proposed and verified.
     Finally, we summaried the full paper and outlook the future work.
     In summary, this paper focused on two important platform molecules of furfural and levulinic acid in biomass conversion. The efficient conversion of D-xylose to furfural, a new route of conversion of furfural into2,5-furandicarboxylic acid-based polyester and the hydrogenation of levulinic acid to valerate esters in one-step with heterogeneous catalysis were achieved.
引文
[1]United Nations, Department of Economic and Social Affairs, Population Division.2013. World Population Prospects:The 2012 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.227.
    [2]Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle:a test of our knowledge of earth as a system[J]. science,2000,290(5490):291-296.
    [3]Sheldon R A. Utilisation of biomass for sustainable fuels and chemicals:Molecules, methods and metrics[J]. Catalysis Today,2011,167(1):3-13.
    [4]Martinot E, Sawin J. Renewables global status report:2009 update[J]. Paris, France:REN21 Secretariat,2009.
    [5]Mascal M, Nikitin E B. Direct, High-Yield Conversion of Cellulose into Biofuel[J]. Angewandte Chemie,2008,120(41):8042-8044.
    [6]Brasholz M, Von Kaenel K, Hornung C H, et al. Highly efficient dehydration of carbohydrates to 5-(chloromethyl) furfural (CMF),5-(hydroxymethyl) furfural (HMF) and levulinic acid by biphasic continuous flow processing[J]. Green Chemistry,2011,13(5):1114-1117.
    [7]Mascal M, Nikitin E B. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural[J]. Green Chemistry,2010,12(3):370-373.
    [8]Gandini A, Silvestre A J D, Neto C P, et al. The furan counterpart of poly (ethylene terephthalate):An alternative material based on renewable resources[J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47(1):295-298.
    [9]Breeden S W, Clark J H, Farmer T J, et al. Microwave heating for rapid conversion of sugars and polysaccharides to 5-chloromethyl furfural[J]. Green Chemistry,2013,15(1):72-75.
    [10]Budarin V L, Shuttleworth P S, Dodson J R, et al. Use of green chemical technologies in an integrated biorefinery[J]. Energy & Environmental Science,2011,4(2):471-479.
    [11]Pham V, El-Halwagi M. Process synthesis and optimization of biorefinery configurations[J]. AIChE Journal,2012,58(4):1212-1221.
    [12]Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J]. Energy conversion and Management,2001,42(11):1357-1378.
    [13]Ma F, Hanna M A. Biodiesel production:a review[J]. Bioresource technology,1999,70(1): 1-15.
    [14]Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund M F, et al. Bio-ethanol-the fuel of tomorrow from the residues of today[J]. Trends in biotechnology,2006,24(12):549-556.
    [15]Stocker M. Biofuels and biomass-to-liquid fuels in the biorefinery:Catalytic conversion of lignocellulosic biomass using porous materials[J]. Angewandte Chemie International Edition, 2008,47(48):9200-9211.
    [16]Balu A M, Budarin V, Shuttleworth P S, et al. Valorisation of orange peel residues:waste to biochemicals and nanoporous materials[J]. ChemSusChem,2012,5(9):1694-1697.
    [17]Kleinert M, Barth T. Towards a lignincellulosic biorefinery:direct one-step conversion of lignin to hydrogen-enriched biofuel[J]. Energy & fuels,2008,22(2):1371-1379.
    [18]FitzPatrick M, Champagne P, Cunningham M F, et al. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products[J]. Bioresource technology,2010,101(23):8915-8922.
    [19]Mascal M, Dutta S. Synthesis of the natural herbicide δ-aminolevulinic acid from cellulose-derived 5-(chloromethyl) furfural[J]. Green Chemistry,2011,13(1):40-41.
    [20]Gnanasambandam R, Proctor A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy[J]. Food chemistry,2000,68(3):327-332.
    [21]Saeman J F. Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature[J]. Industrial & Engineering Chemistry,1945,37(1): 43-52.
    [22]Sasaki M, Kabyemela B, Malaluan R, et al. Cellulose hydrolysis in subcritical and supercritical water[J]. The Journal of Supercritical Fluids,1998,13(1):261-268.
    [23]Kobayashi H, Komanoya T, Hara K, et al. Water-Tolerant Mesoporous-Carbon-Supported Ruthenium Catalysts for the Hydrolysis of Cellulose to Glucose[J]. ChemSusChem, 2010,3(4):440-443.
    [24]Zhang Q, Chang J, Wang T, et al. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy Conversion and Management,2007,48(1):87-92.
    [25]Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil:a critical review[J]. Energy & Fuels,2006,20(3):848-889.
    [26]Gomez L D, Steele-King C G, McQueen-Mason S J. Sustainable liquid biofuels from biomass:the writing's on the walls[J]. New Phytologist,2008,178(3):473-485.
    [27]Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review[J]. Bioresource technology,2002,83(1):1-11.
    [28]Bridgwater T. Biomass for energy[J]. Journal of the Science of Food and Agriculture,2006, 86(12):1755-1768.
    [29]Alonso D M, Bond J Q, Dumesic J A. Catalytic conversion of biomass to biofuels[J]. Green Chemistry,2010,12(9):1493-1513.
    [30]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering[J]. Chemical reviews,2006,106(9):4044-4098.
    [31]Zhou C H, Xia X, Lin C X, et al. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels[J]. Chemical Society Reviews,2011,40(11):5588-5617.
    [32]Lange J P. Lignocellulose conversion:an introduction to chemistry, process and economics[J]. Biofuels, byproducts and biorefining,2007,1(1):39-48.
    [33]Werpy T, Petersen G, Aden A, et al. Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas[R]. DEPARTMENT OF ENERGY WASHINGTON DC,2004.
    [34]Bozell J J, Petersen G R. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's "top 10" revisited[J]. Green Chemistry,2010,12(4):539-554.
    [35]Al-Zuhair S, Al-Hosany M, Zooba Y, et al. Development of a membrane bioreactor for enzymatic hydrolysis of cellulose[J]. Renewable Energy,2013,56:85-89.
    [36]Madhavan A, Srivastava A, Kondo A, et al. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae[J]. Critical reviews in biotechnology,2012, 32(1):22-48.
    [37]Soccol C R, Vandenberghe L P S, Medeiros A B P, et al. Bioethanol from lignocelluloses: status and perspectives in Brazil[J]. Bioresource Technology,2010,101(13):4820-4825.
    [38]Regalbuto J R. Cellulosic biofuels-got gasoline[J]. Science,2009,325(5942):822-824.
    [39]Lopez-Linares J C, Romero I, Moya M, et al. Pretreatment of olive tree biomass with FeCl3 prior enzymatic hydrolysis[J]. Bioresource technology,2013,128:180-187.
    [40]Ribeiro N M, Pinto A C, Quintella C M, et al. The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels:a review[J]. Energy & Fuels,2007,21(4):2433-2445.
    [41]Kottke R H, in Kirk-Othmer Encyclopedia of Chemical Technology[M], Wiley Interscience, New York,2004.
    [42]Kamm B, Gruber P R, Kamm M, Biorefineries-Industrial Processes and Products[M], Wiley-VCH, Weinheim,2006.
    [43]Brownlee H J, Miner C S. Industrial development of furfural[J]. Industrial & Engineering Chemistry,1948,40(2):201-204.
    [44]Dumitriu S, Polysaccharides:Structural Diversity and Functional Versatility[M], Marcel Dekker, New York,2nd edn,2005.
    [45]Puukemia E, Forest chemistry, Otakustantamo, Espoo, Finland,1978.
    [46]Laine C, Structures of hemicelluloses and pectins in wood and pulp, Doctoral Dissertations, Helsinki University of Technology,2005.
    [47]Lu Y, Mosier N S. Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover[J]. Biotechnology and bioengineering,2008,101(6):1170-1181.
    [48]Lundqvist J, Jacobs A, Palm M, et al. Characterization of galactoglucomannan extracted from spruce (Picea abies) by heat-fractionation at different conditions[J]. Carbohydrate polymers, 2003,51(2):203-211.
    [49]Maki-Arvela P, Salmi T, Holmbom B, et al. Synthesis of sugars by hydrolysis of hemicelluloses-a review[J]. Chemical reviews,2011,111(9):5638-5666.
    [50]Lai Y Z, in Wood and cellulosic chemistry[M], Dekker, Basel, Switzerland,2001,443.
    [51]Sharples A. The hydrolysis of cellulose and its relation to structure[J]. Transactions of the Faraday Society,1957,53:1003-1013.
    [52]Marzialetti T, Valenzuela Olarte M B, Sievers C, et al. Dilute acid hydrolysis of Loblolly pine: A comprehensive approach[J]. Industrial & Engineering Chemistry Research,2008,47(19): 7131-7140.
    [53]Lemieux R U, Koto S. The conformational properties of glycosidic linkages[J]. Tetrahedron, 1974,30(13):1933-1944.
    [54]Nevell T P, Upton W R. The hydrolysis of cotton cellulose by hydrochloric acid in benzene[J]. Carbohydrate research,1976,49:163-174.
    [55]Sun H J, Yoshida S, Park N H, et al. Preparation of (1→4)-β-d-xylooligosaccharides from an acid hydrolysate of cotton-seed xylan:suitability of cotton-seed xylan as a starting material for the preparation of (1-4)-β-d-xylooligosaccharides[J]. Carbohydrate research,2002,337(7): 657-661.
    [56]Kusema B T, Xu C, Maki-Arvela P, et al. Kinetics of acid hydrolysis of arabinogalactans[J]. International Journal of Chemical Reactor Engineering,2010,8(1).
    [57]Wong C H. Hydrolysis and formation of glycosidic bonds[J]. Enzyme Catalysis in Organic Synthesis:A Comprehensive Handbook, Second Edition,2002:609-653.
    [58]Kusema B T, Tonnov T, Maki-Arvela P, et al. Acid hydrolysis of O-acetyl-galactoglucomannan[J]. Catalysis Science & Technology,2013,3(1):116-122.
    [59]Bohn J A, BeMiller J N. (1-3)-p-D-Glucans as biological response modifiers:a review of structure-functional activity relationships[J]. Carbohydrate polymers,1995,28(1):3-14.
    [60]Rubin E M. Genomics of cellulosic biofuels[J]. Nature,2008,454(7206):841-845.
    [61]Fukuoka A, Dhepe P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie International Edition,2006,45(31):5161-5163.
    [62]Luo C, Wang S, Liu H. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angewandte Chemie International Edition,2007,46(40):7636-7639.
    [63]Dhepe P L, Sahu R. A solid-acid-based process for the conversion of hemicellulose[J]. Green Chemistry,2010,12(12):2153-2156.
    [64]Zeitsch K J, The Chemistry and Technology of Furfural and Its Many By-Products[M], Elsevier, Amsterdam,2000.
    [65]Sievers C, Musin I, Marzialetti T, et al. Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase[J]. ChemSusChem,2009,2(7):665-671.
    [66]Weingarten R, Cho J, Conner Jr W C, et al. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating[J]. Green chemistry,2010,12(8): 1423-1429.
    [67]Huber G W, Chheda J, Barrett C B, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science,2005,308:1446-2079.
    [68]Binder J B, Blank J J, Cefali A V, et al. Synthesis of furfural from xylose and xylan[J]. ChemSusChem,2010,3(11):1268-1272.
    [69]Zhang Z, Zhao Z K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid[J]. Bioresource technology,2010,101(3):1111-1114.
    [70]vom Stein T, Grande P M, Leitner W, et al. Iron-Catalyzed Furfural Production in Biobased Biphasic Systems:From Pure Sugars to Direct Use of Crude Xylose Effluents as Feedstock[J]. ChemSusChem,2011,4(11):1592-1594.
    [71]vom Stein T, Grande P M, Kayser H, et al. From biomass to feedstock:one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system[J]. Green Chemistry,2011,13(7):1772-1777.
    [72]Yang Y, Hu C W, Abu-Omar M M. Synthesis of furfural from xylose, xylan, and biomass using AlCl36 H2O in biphasic media via xylose isomerization to xylulose[J]. ChemSusChem, 2012,5(2):405-410.
    [73]Gurbuz E I, Wettstein S G, Dumesic J A. Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents[J]. ChemSusChem,2012,5(2): 383-387.
    [74]Kim E S, Liu S, Abu-Omar M M, et al. Selective conversion of biomass hemicellulose to furfural using maleic acid with microwave heating[J]. Energy & Fuels,2012,26(2):1298-1304.
    [75]Antal Jr M J, Leesomboon T, Mok W S, et al. Mechanism of formation of 2-furaldehyde from D-xylose[J]. Carbohydrate Research,1991,217:71-85.
    [76]Marcotullio G, De Jong W. Furfural formation from d-xylose:the use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields[J]. Carbohydrate research, 2011,346(11):1291-1293.
    [77]Shi X, Wu Y, Yi H, et al. Selective preparation of furfural from xylose over sulfonic acid functionalized mesoporous SBA-15 materials[J]. Energies,2011,4(4):669-684.
    [78]Dias A S, Pillinger M, Valente A A. Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts[J]. Journal of Catalysis,2005,229(2):414-423.
    [79]Dias A S, Pillinger M, Valente A A. Mesoporous silica-supported 12-tungstophosphoric acid catalysts for the liquid phase dehydration of D-xylose[J]. Microporous and mesoporous materials,2006,94(1):214-225.
    [80]Dias A S, Lima S, Carriazo D, et al. Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-xylose into furfural[J]. Journal of Catalysis,2006,244(2):230-237.
    [81]Dias A S, Lima S, Pillinger M, et al. Modified versions of sulfated zirconia as catalysts for the conversion of xylose to furfural[J]. Catalysis letters,2007,114(3-4):151-160.
    [82]Lima S, Fernandes A, Antunes M M, et al. Dehydration of xylose into furfural in the presence of crystalline microporous silicoaluminophosphates[J]. Catalysis letters,2010,135(1-2):41-47.
    [83]Zhang J, Zhuang J, Lin L, et al. Conversion of D-xylose into furfural with mesoporous molecular sieve MCM-41 as catalyst and butanol as the extraction phase[J]. Biomass and Bioenergy,2012,39:73-77.
    [84]Brown G E, Henrich V E, Casey W H, et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms[J]. Chemical Reviews,1999,99(1):77-174.
    [85]Rinaldi R, Schuth F. Design of solid catalysts for the conversion of biomass[J]. Energy & Environmental Science,2009,2(6):610-626.
    [86]Kasprzyk-Hordern B. Chemistry of alumina, reactions in aqueous solution and its application in water treatment[J]. Advances in colloid and interface science,2004,110(1):19-48.
    [87]Weingarten R, Tompsett G A, Conner Jr W C, et al. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates:The role of Lewis and Br(?)nsted acid sites[J]. Journal of Catalysis,2011,279(1):174-182.
    [88]Takagaki A, Ohara M, Nishimura S, et al. One-pot formation of furfural from xylose via isomerization and successive dehydration reactions over heterogeneous acid and base catalysts[J]. Chemistry Letters,2010,39(8):838-840.
    [89]Tuteja J, Nishimura S, Ebitani K. BCSJ Award Article[J]. Bull. Chem. Soc. Jpn,2012,85(3): 275-281.
    [90]Yamaguchi K, Sakurada T, Ogasawara Y, et al. Tin-tungsten mixed oxide as efficient heterogeneous catalyst for conversion of saccharides to furan derivatives[J]. Chemistry letters, 2011,40(5):542-543.
    [91]Lam E, Majid E, Leung A C W, et al. Synthesis of furfural from xylose by heterogeneous and reusable nafion catalysts[J]. ChemSusChem,2011,4(4):535-541.
    [92]Agirrezabal-Telleria I, Larreategui A, Requies J, et al. Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen[J]. Bioresource technology,2011,102(16):7478-7485.
    [93]Jeong G H, Kim E G, Kim S B, et al. Fabrication of sulfonic acid modified mesoporous silica shells and their catalytic performance with dehydration reaction of d-xylose into furfural[J]. Microporous and Mesoporous Materials,2011,144(1):134-139.
    [94]Suzuki T, Yokoi T, Otomo R, et al. Dehydration of xylose over sulfated tin oxide catalyst: Influences of the preparation conditions on the structural properties and catalytic performance[J]. Applied Catalysis A:General,2011,408(1):117-124.
    [95]Lima S, Antunes M M, Fernandes A, et al. Catalytic cyclodehydration of xylose to furfural in the presence of zeolite H-Beta and a micro/mesoporous Beta/TUD-1 composite material[J]. Applied Catalysis A:General,2010,388(1):141-148.
    [96]Lam E, Chong J H, Majid E, et al. Carbocatalytic dehydration of xylose to furfural in water[J]. Carbon,2012,50(3):1033-1043.
    [97]Takagaki A, Ohara M, Nishimura S, et al. A one-pot reaction for biorefinery:combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides[J]. Chemical Communications,2009 (41):6276-6278.
    [98]Moliner M, Roman-Leshkov Y, Davis M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proceedings of the National Academy of Sciences, 2010,107(14):6164-6168.
    [99]Nikolla E, Roman-Leshkov Y, Moliner M, et al. "One-Pot" synthesis of 5-(hydroxymethyl) furfural from carbohydrates using tin-beta zeolite[J]. Acs Catalysis,2011,1(4):408-410.
    [100]Choudhary V, Pinar A B, Sandier S I, et al. Xylose isomerization to xylulose and its dehydration to furfural in aqueous media[J]. Acs Catalysis,2011,1 (12):1724-1728.
    [101]Bare S R, Kelly S D, Sinkler W, et al. Uniform catalytic site in Sn-β-zeolite determined using X-ray absorption fine structure[J]. Journal of the American Chemical Society,2005, 127(37):12924-12932.
    [102]Collyer C A, Blow D M. Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase[J]. Proceedings of the National Academy of Sciences,1990,87(4):1362-1366.
    [103]Corma A, Nemeth L T, Renz M, et al. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations[J]. Nature,2001,412(6845):423-425.
    [104]Sahu R, Dhepe P L. A One-Pot Method for the Selective Conversion of Hemicellulose from Crop Waste into C5 Sugars and Furfural by Using Solid Acid Catalysts[J]. ChemSusChem, 2012,5(4):751-761.
    [105]Lange J P, van der Heide E, van Buijtenen J, et al. Furfural—a promising platform for lignocellulosic biofuels[J]. ChemSusChem,2012,5(1):150-166.
    [106]Bremner J G M, Keeys R K F. The hydrogenation of furfuraldehyde to furfuryl alcohol and sylvan (2-methylfuran)[J]. JOURNAL OF THE CHEMICAL SOCIETY,1947 (AUG): 1068-1080.
    [107]Burnett L W, Johns I B, Holdren R F, et al. Production of 2-Methylfuran by vapor-phase hydrogenation of furfural[J]. Industrial & Engineering Chemistry,1948,40(3):502-505.
    [108]Lessard J, Morin J F, Wehrung J F, et al. High yield conversion of residual pentoses into furfural via zeolite catalysis and catalytic hydrogenation of furfural to 2-methylfuran[J]. Topics in Catalysis,2010,53(15-18):1231-1234.
    [109]Linares G E G, Nudelman N S. Reactions of lithiated aromatic heterocycles with carbon monoxide[J]. Journal of physical organic chemistry,2003,16(8):569-576.
    [110]孙强,刘世峰.二氧化硅负载聚(丙烯腈-乙烯基三乙氧基硅)钯(Ⅱ)络合物对羰基氢化还原成甲基或亚甲基[J].合成化学,1996,4(2):146-150.
    [111]Windom B C, Lovestead T M, Mascal M, et al. Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel[J]. Energy & Fuels,2011,25(4): 1878-1890.
    [112]Olson E S, Kjelden M R, Schlag A J, in Chemicals and Materials from Renewable Resources[M], ed. J. J. Bozell, Oxford University Press,2001:51.
    [113]Sunjic V, Horvat J, Klaic B. Levulinska kiselina. II. Bazna sirovina iz vlastitih izvora[J]. Kem. Ind,1984,33(11):599-606.
    [114]Fitzpatrick S W. WO patent 8910362,1989.
    [115]Capai B, Lartigau G. Preparation of laevulinic acid:U.S. Patent 5,175,358[P].1992-12-29.
    [116]Lange J P, van de Graaf W D, Haan R J. Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts[J]. ChemSusChem,2009,2(5):437-441.
    [117]Zhang Z, Dong K, Zhao Z K. Efficient conversion of furfuryl alcohol into alkyl levulinates catalyzed by an organic-inorganic hybrid solid acid catalyst[J]. ChemSusChem,2011,4(1): 112-118.
    [118]Khusnutdinov R I, Baiguzina A R, Smirnov A A, et al. Furfuryl alcohol in synthesis of levulinic acid esters and difurylmethane with Fe and Rh complexes[J]. Russian Journal of Applied Chemistry,2007,80(10):1687-1690.
    [119]Sen A, Yang W, US Patent,0307050[P],2010.
    [120]Zheng H Y, Zhu Y L, Bai Z Q, et al. An environmentally benign process for the efficient synthesis of cyclohexanone and 2-methylfuran[J]. Green Chemistry,2006,8(1):107-109.
    [121]Zheng H Y, Zhu Y L, Teng B T, et al. Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran[J]. Journal of Molecular Catalysis A: Chemical,2006,246(1):18-23.
    [122]Stevens J G, Bourne R A, Twigg M V, et al. Real-Time Product Switching Using a Twin Catalyst System for the Hydrogenation of Furfural in Supercritical CO2[J]. Angewandte Chemie,2010,122(47):9040-9043.
    [123]Wei S, Cui H, Wang J, et al. Preparation and activity evaluation of NiMoB/y-Al203 catalyst by liquid-phase furfural hydrogenation[J]. Particuology,2011,9(1):69-74.
    [124]Sitthisa S, An W, Resasco D E. Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts[J]. Journal of Catalysis,2011,284(1):90-101.
    [125]Alam M I, De S, Dutta S, et al. Solid-acid and ionic-liquid catalyzed one-pot transformation of biorenewable substrates into a platform chemical and a promising biofuel[J], RSC Advances, 2012,2(17):6890-6896.
    [126]Corma A, de la Torre O, Renz M, et al. Production of High-Quality Diesel from Biomass Waste Products[J]. Angewandte Chemie,2011,123(10):2423-2426.
    [127]Horvat J, Klaic B, Metelko B, et al. Mechanism of levulinic acid formation[J]. Tetrahedron letters,1985,26(17):2111-2114.
    [128]Ghorpade V M, Hanna M A. Method and apparatus for production of levulinic acid via reactive extrusion:U.S. Patent 5,859,263[P].1999-1-12.
    [129]Timokhin B V, Baransky V A, Eliseeva G D. Levulinic acid in organic synthesis[J]. Russian chemical reviews,1999,68(1):73-84.
    [130]Fitzpatrick S W, WO Pat.,8910362,1989.
    [131]Fitzpatrick S W, WO Pat.,9640609,1996.
    [132]Schraufnagel R A, Rase H F. Levulinic acid from sucrose using acidic ion-exchange resins[J]. Industrial & Engineering Chemistry Product Research and Development,1975,14(1): 40-44.
    [133]Jow J, Rorrer G L, Hawley M C, et al. Dehydration of D-fructose to levulinic acid over LZY zeolite catalyst[J]. Biomass,1987,14(3):185-194.
    [134]Lourvanij K, Rorrer G L. Reactions of aqueous glucose solutions over solid-acid Y-zeolite catalyst at 110-160. degree. C[J]. Industrial & engineering chemistry research,1993,32(1): 11-19.
    [135]Lourvanij K, Rorrer G L. Dehydration of glucose to organic acids in microporous pillared clay catalysts[J]. Applied Catalysis A:General,1994,109(1):147-165.
    [136]Girisuta B. Levulinic acid from lignocellulosic biomass[M]. University Library Groningen, 2007.
    [137]Yan K, Wu G, Wen J, et al. One-step synthesis of mesoporous H4SiW12O40SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel[J]. Catalysis Communications,2013, 34:58-63.
    [138]Saravanamurugan S, Riisager A. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono-and disaccharides[J]. Catalysis Communications,2012,17:71-75.
    [139]Hu X, Li C Z. Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery [J]. Green Chemistry,2011,13(7):1676-1679.
    [140]Mascal M, Nikitin E B. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl) furfural, levulinic acid, and levulinic esters via 5-(chloromethyl) furfural[J]. Green Chemistry,2010,12(3):370-373.
    [141]Tominaga K, Mori A, Fukushima Y, et al. Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose[J]. Green Chemistry,2011,13(4):810-812.
    [142]Lange J P, van de Graaf W D, Haan R J. Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts[J]. ChemSusChem,2009,2(5):437-441.
    [143]Horvath I T, Mehdi H, Fabos V, et al. y-Valerolactone——a sustainable liquid for energy and carbon-based chemicals[J]. Green Chemistry,2008,10(2):238-242.
    [144]Osakada K, Ikariya T, Yoshikawa S. Preparation and properties of hydride triphenyl-phosphine ruthenium complexes with 3-formyl (or acyl) propionate [RuH (ocochrchrcor')(PPh3)3](R H, CH3, C2H5; R H, CH3, C6H5) and with 2-formyl (or acyl) benzoate [RuH (o-OCCOC6H4COR')(PPh3)3](R' H, CH3)[J]. Journal of Organometallic Chemistry,1982,231(1):79-90.
    [145]Chalid M, Broekhuis A A, Heeres H J. Experimental and kinetic modeling studies on the biphasic hydrogenation of levulinic acid to y-valerolactone using a homogeneous water-soluble Ru-(TPPTS) catalyst[J]. Journal of Molecular Catalysis A:Chemical,2011,341(1):14-21.
    [146]Li W, Xie J H, Lin H, et al. Highly efficient hydrogenation of biomass-derived levulinic acid to Y-valerolactone catalyzed by iridium pincer complexes[J]. Green Chemistry,2012,14(9): 2388-2390.
    [147]Wright W R H, Palkovits R. Development of Heterogeneous Catalysts for the Conversion of Levulinic Acid to γ-Valerolactone[J]. ChemSusChem,2012,5(9):1657-1667.
    [148]Manzer L E. Catalytic synthesis of a-methylene-y-valerolactone:a biomass-derived acrylic monomer[J]. Applied Catalysis A:General,2004,272(1):249-256.
    [149]Bourne R A, Stevens J G, Ke J, et al. Maximising opportunities in supercritical chemistry: the continuous conversion of levulinic acid to y-valerolactone in CO2[J]. Chemical communications,2007 (44):4632-4634.
    [150]Upare P P, Lee J M, Hwang D W, et al. Selective hydrogenation of levulinic acid to y-valerolactone over carbon-supported noble metal catalysts[J]. Journal of Industrial and Engineering Chemistry,2011,17(2):287-292.
    [151]Lange J P, Price R, Ayoub P M, et al. Valeric biofuels:a platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition,2010,49(26):4479-4483.
    [152]Hengne A M, Rode C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to y-valerolactone[J]. Green Chemistry,2012,14(4):1064-1072.
    [153]Yan K, Jarvis C, Lafleur T, et al. Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance[J]. RSC Advances,2013,3(48):25865-25871.
    [154]Deng L, Li J, Lai D M, et al. Catalytic conversion of biomass-derived carbohydrates into y-valerolactone without using an external H2 supply[J]. Angewandte Chemie International Edition,2009,48(35):6529-6532.
    [155]Tukacs J M, Kiraly D, Stradi A, et al. Efficient catalytic hydrogenation of levulinic acid:a key step in biomass conversion[J]. Green Chemistry,2012,14(7):2057-2065.
    [156]Alonso D M, Wettstein S G, Bond J Q, et al. Production of biofuels from cellulose and corn stover using alkylphenol solvents[J]. ChemSusChem,2011,4(8):1078-1081.
    [157]Braden D J, Henao C A, Heltzel J, et al. Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid (vol 13, pg 1755,2011)[J]. GREEN CHEMISTRY, 2011,13(12):3505-3505.
    [158]Heeres H, Handana R, Chunai D, et al. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to y-valerolactone using ruthenium catalysts[J]. Green Chemistry,2009,11(8):1247-1255.
    [159]Girisuta B, Janssen L, Heeres H J. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid[J]. Industrial & engineering chemistry research,2007,46(6): 1696-1708.
    [160]Chia M, Dumesic J A. Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts[J]. Chemical Communications,2011,47(44):12233-12235.
    [161]Bui L, Luo H, Gunther W R, et al. Inside Cover:Domino Reaction Catalyzed by Zeolites with Br(?)nsted and Lewis Acid Sites for the Production of γ-Valerolactone from Furfural [J]. Angewandte Chemie International Edition,2013,52(31):7890-7890.
    [162]Geilen F M A, Engendahl B, Holscher M, et al. Selective Homogeneous Hydrogenation of Biogenic Carboxylic Acids with [Ru (TriPhos) H]+:A Mechanistic Study[J]. Journal of the American Chemical Society,2011,133(36):14349-14358.
    [163]Elliott D C, Frye J G. Hydrogenated 5-carbon compound and method of making:U.S. Patent 5,883,266[P].1999-3-16.
    [164]Upare P P, Lee J M, Hwang Y K, et al. Direct Hydrocyclization of Biomass-Derived Levulinic Acid to 2-Methyltetrahydrofuran over Nanocomposite Copper/Silica Catalysts[J]. ChemSusChem,2011,4(12):1749-1752.
    [165]Du X L, Bi Q Y, Liu Y M, et al. Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived y-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran[J]. Green Chemistry,2012,14(4):935-939.
    [166]Mehdi H, Fabos V, Tuba R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass:From sucrose to levulinic acid, y-valerolactone,1,4-pentanediol,2-methyl-tetrahydrofuran, and alkanes[J]. Topics in Catalysis, 2008,48(1-4):49-54.
    [167]Bond J Q, Alonso D M, Wang D, et al. Integrated catalytic conversion of y-valerolactone to liquid alkenes for transportation fuels[J]. Science,2010,327(5969):1110-1114.
    [168]Serrano-Ruiz J C, Braden D J, West R M, et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen[J]. Applied Catalysis B:Environmental,2010,100(1): 184-189.
    [169]Alonso D M, Bond J Q, Serrano-Ruiz J C, et al. Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes[J]. Green Chemistry, 2010,12(6):992-999.
    [170]Schwartz T J, van Heiningen A R P, Wheeler M C. Energy densification of levulinic acid by thermal deoxygenation[J]. Green Chemistry,2010,12(8):1353-1356.
    [171]Case P A, van Heiningen A R P, Wheeler M C. Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures[J]. Green chemistry,2012,14(1):85-89.
    [172]Rebeiz C A, Montazer-Zouhoor A, Hopen H J, et al. Photodynamic herbicides:1. Concept and phenomenology[J]. Enzyme and microbial technology,1984,6(9):390-396.
    [173]Rebeiz C A, Juvik J A, Rebeiz C C. Porphyric insecticides:1. Concept and phenomenology[J]. Pesticide biochemistry and physiology,1988,30(1):11-27.
    [174]MacDonald S F. Methyl 5-bromolevulinate[J]. Canadian Journal of Chemistry,1974,52(18): 3257-3258.
    [175]Benedikt E, Kost H P. Synthesis of 5-aminolevulinic acid[J]. Zeitschrift fur Naturforschung. Teil b, Anorganische Chemie, organische Chemie,1986,41(12):1593-1594.
    [176]Yinglin H, Hongwen H. A convenient synthesis of aminomethyl ketones (a-amino ketones)[J]. Synthesis,1990,1990(07):615-618.
    [177]Moens L. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters[P]. US patent 5907058 to Midwest Research Institute,1999.
    [178]Isoda Y, Azuma M. Preparation of bis(hydroxyaryl)pentanoic acids[P]. Japanese patent 08053390 to Honshu Chemical Ind.,1996.
    [179]CarlosaSerrano-Ruiz J. Catalytic upgrading of levulinic acid to 5-nonanone[J]. Green Chemistry,2010,12(4):574-577.
    [180]Buitrago-Sierra R, Serrano-Ruiz J C, Rodriguez-Reinoso F, et al. Ce promoted Pd-Nb catalysts for y-valerolactone ring-opening and hydrogenation[J]. Green Chemistry,2012,14(12): 3318-3324.
    [181]Chan-Thaw C E, Marelli M, Psaro R, et al. New generation biofuels:y-valerolactone into valeric esters in one pot[J]. RSC Advances,2013,3(5):1302-1306.
    [1]Sievers C, Musin I, Marzialetti T, et al. Acid-catalyzed conversion of sugars and furfurals in an ionic-liquid phase[J]. ChemSusChem,2009,2(7):665-671.
    [2]Zhang L, Yu H, Wang P, et al. Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlC13 as catalyst in ionic liquid[J]. Bioresource technology,2013,130:110-116.
    [3]Yang F, Liu Q, Yue M, et al. Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural[J]. Chemical Communications,2011,47(15): 4469-4471.
    [4]Yang F, Liu Q, Bai X, et al. Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst[J]. Bioresource technology,2011,102(3):3424-3429.
    [5]Marcotullio G, De Jong W. Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions[J]. Green chemistry,2010,12(10):1739-1746.
    [6]Marcotullio G, De Jong W. Furfural formation from D-xylose:the use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields[J]. Carbohydrate research, 2011,346(11):1291-1293.
    [7]Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels[J]. Nature,2008,451(7174):86-89.
    [8]Jang Y S, Malaviya A, Cho C, et al. Butanol production from renewable biomass by clostridia[J]. Bioresource technology,2012,123:653-663.
    [1]Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals[J]. Chemical Reviews,2007,107(6):2411-2502.
    [2]Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass:chemistry, catalysts, and engineering[J]. Chemical reviews,2006,106(9):4044-4098.
    [3]Holladay J E, Bozell J J, White J F, et al. Top value-added chemicals from biomass. Volume Ⅱ-Results of Screening for Potential Candidates from Biorefinery Lignin, Report prepared by members of NREL, PNNL and University of Tennessee,2007.
    [4]Holm M S, Saravanamurugan S, Taarning E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts[J]. Science,2010,328(5978):602-605.
    [5]Buntara T, Noel S, Phua P H, et al. Caprolactam from Renewable Resources:Catalytic Conversion of 5-Hydroxymethylfurfural into Caprolactone[J]. Angewandte Chemie International Edition,2011,50(31):7083-7087.
    [6]Robert C, de Montigny F, Thomas C M. Tandem synthesis of alternating polyesters from renewable resources[J]. Nature communications,2011,2:586.
    [7]Gandini A. Polymers from renewable resources:a challenge for the future of macromolecular materials[J]. Macromolecules,2008,41(24):9491-9504.
    [8]Okada M. Chemical syntheses of biodegradable polymers[J]. Progress in Polymer Science, 2002,27(1):87-133.
    [9]Amass W, Amass A, Tighe B. A review of biodegradable polymers:uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies[J]. Polymer International,1998,47(2): 89-144.
    [10]Chiellini E, Solaro R. Biodegradable polymeric materials[J]. Advanced Materials,1996,8(4): 305-313.
    [11]Gandini A. Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers:a review of recent progress[J]. Polymer Chemistry,2010,1(3):245-251.
    [12]Gandini A, Belgacem M N. Furans in polymer chemistry[J]. Progress in Polymer Science, 1997,22(6):1203-1379.
    [13]Gandini A, Silvestre A J D, Neto C P, et al. The furan counterpart of poly (ethylene terephthalate):An alternative material based on renewable resources[J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47(1):295-298.
    [14]Eerhart A, Faaij A P C, Patel M K. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance[J]. Energy & Environmental Science,2012,5(4): 6407-6422.
    [15]Moreau C, Belgacem M N, Gandini A. Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers[J]. Topics in Catalysis,2004, 27(1-4):11-30.
    [16]Jiang M, Liu Q, Zhang Q, et al. A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources[J]. Journal of Polymer Science Part A: Polymer Chemistry,2012,50(5):1026-1036.
    [17]Taarning E, Nielsen I S, Egeblad K, et al. Chemicals from renewables:aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts[J]. ChemSusChem,2008,1(1-2): 75-78.
    [18]Gorbanev Y Y, Klitgaard S K, Woodley J M, et al. Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature[J]. ChemSusChem,2009,2(7): 672-675.
    [19]Casanova O, Iborra S, Corma A. Biomass into Chemicals:Aerobic Oxidation of 5-Hydroxymethyl-2-furfural into 2,5-Furandicarboxylic Acid with Gold Nanoparticle Catalysts[J]. ChemSusChem,2009,2(12):1138-1144.
    [20]Casanova O, Iborra S, Corma A. Biomass into chemicals:One pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria[J]. Journal of Catalysis,2009,265(1):109-116.
    [21]Kroger M, PriiBe U, Vorlop K D. A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose[J]. Topics in Catalysis,2000,13(3):237-242.
    [22]Ribeiro M L, Schuchardt U. Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid[J]. Catalysis Communications,2003,4(2):83-86.
    [23]Roman-Leshkov Y, Chheda J N, Dumesic J A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose[J]. Science,2006,312(5782):1933-1937.
    [24]Zhao H, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science,2007,316(5831):1597-1600.
    [25]Yong G, Zhang Y, Ying J Y. Efficient Catalytic System for the Selective Production of 5- Hydroxymethylfurfural from Glucose and Fructose[J]. Angewandte Chemie,2008,120(48): 9485-9488.
    [26]Binder J B, Raines R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131(5): 1979-1985.
    [27]Hu S, Zhang Z, Song J, et al. Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnC14 in an ionic liquid[J]. Green Chemistry,2009,11(11): 1746-1749.
    [28]Dutta S, De S, Saha B. Advances in biomass transformation to 5-hydroxymethylfurfural and mechanistic aspects[J]. Biomass and Bioenergy,2013,55:355-369.
    [29]Wang T, Nolte M W, Shanks B H. Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical[J]. Green Chem, 2014,16(2):548-572.
    [30]van Putten R J, van der Waal J C, de Jong E, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chemical reviews,2013,113(3): 1499-1597.
    [31]Moliner M, Roman-Leshkov Y, Davis M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proceedings of the National Academy of Sciences, 2010,107(14):6164-6168.
    [32]Roman-Leshkov Y, Moliner M, Labinger J A, et al. Mechanism of glucose isomerization using a solid Lewis acid catalyst in water[J]. Angewandte Chemie International Edition,2010, 49(47):8954-8957.
    [33]Moye C J. The formation of 5-hydroxymethylfurfural from hexoses[J]. Australian Journal of Chemistry,1966,19(12):2317-2320.
    [34]Caratzoulas S, Vlachos D G. Converting fructose to 5-hydroxymethylfurfural:a quantum mechanics/molecular mechanics study of the mechanism and energetics [J]. Carbohydrate research,2011,346(5):664-672.
    [35]Rosatella A A, Simeonov S P, Frade R F M, et al.5-Hydroxymethylfurfural (HMF) as a building block platform:Biological properties, synthesis and synthetic applications[J]. Green Chem.,2011,13(4):754-793.
    [36]Mansilla H D, Baeza J, Urzua S, et al. Acid-catalysed hydrolysis of rice hull:evaluation of furfural production[J]. Bioresource technology,1998,66(3):189-193.
    [37]Dias A S, Pillinger M, Valente A A. Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts[J]. Journal of Catalysis,2005,229(2):414-423.
    [38]Weingarten R, Cho J, Conner Jr W C, et al. Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating[J]. Green chemistry,2010,12(8): 1423-1429.
    [39]Lam E, Majid E, Leung A C W, et al. Synthesis of furfural from xylose by heterogeneous and reusable nafion catalysts[J]. ChemSusChem,2011,4(4):535-541.
    [40]Karinen R, Vilonen K, Niemela M. Biorefining:heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural[J]. ChemSusChem, 2011,4(8):1002-1016.
    [41]Danon B, Marcotullio G, de Jong W. Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis[J]. Green Chemistry, 2014,16(1):39-54.
    [42]Cai C M, Zhang T, Kumar R, et al. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass[J]. Journal of Chemical Technology and Biotechnology,2014,89(1):2-10.
    [43]Mamman A S, Lee J M, Kim Y C, et al. Furfural:Hemicellulose/xylosederived biochemical[J]. Biofuels, Bioproducts and Biorefining,2008,2(5):438-454.
    [44]Lange J P, van der Heide E, van Buijtenen J, et al. Furfural-a promising platform for lignocellulosic biofuels[J]. ChemSusChem,2012,5(1):150-166.
    [45]Dutta S, De S, Saha B, et al. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels[J]. Catalysis Science & Technology,2012,2(10):2025-2036.
    [46]Hu L, Zhao G, Hao W, et al. Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes[J]. RSC Advances,2012,2(30):11184-11206.
    [47]Nakato T, Furumi Y, Terao N, et al. Reaction of layered vanadium phosphorus oxides, VOPO4·2H2O and VOHPO4 0.5 H2O, with amines and formation of exfoliative intercalation compounds[J]. Journal of Materials Chemistry,2000,10(3):737-743.
    [48]Pillai U R, Sahle-Demessie E. Vanadium phosphorus oxide as an efficient catalyst for hydrocarbon oxidations using hydrogen peroxide[J]. New journal of chemistry,2003,27(3): 525-528.
    [49]Sanchez F J C, Wells R P K, Rhodes C, et al. In situ laser Raman spectroscopy studies of the transformation of VOHPO4·0.51 H2O and (VO) 2P2O7[J]. Physical Chemistry Chemical Physics,2001,3(18):4122-4128.
    [50]Fischer R, Pinkos R. Method of producing 1,4-butanediol and tetrahydrofuran from furan: U.S. Patent 5,905,159[P].1999-5-18.
    [51]Harrisson R J, Moyle M.2-Furoic Acid[J]. Organic Syntheses,1956:36-36; 1963,4:493-494.
    [52]Baecke B, Angew. Chem[J].1958,70:1.
    [53]Ogata Y, Tsuchida M, Muramoto A. The Preparation of terephthalic acid from phthalic or benzoic acid[J]. Journal of the American Chemical Society,1957,79(22):6005-6008.
    [54]Kazuo O, Shimosato K. PROCESS FOR THE PREPARATION OF NAPHTHALENE-2, 6-DICARBOXYLIC ACID:U.S. Patent 3,671,578[P].1972-6-20.
    [55]Laurence P T, Shuttleworth H. HENKEL REACTION CONDITIONS:U.S. Patent 3,873,608[P].1975-3-25.
    [56]Shang R, Liu L. Transition metal-catalyzed decarboxylative cross-coupling reactions[J]. Science China Chemistry,2011,54(11):1670-1687.
    [57]Sorm F, Ratusky J, Chem. Ind[J],1958:294.
    [58]Furuyama S. An Investigation of the Mechanism of the Henkel Reaction by Deuterium and Carbon-14 Isotope Techniques[J]. Bulletin of the Chemical Society of Japan,1967,40(5): 1212-1217.
    [59]Attig T G, Budge J R, Graham A M. Two-stage maleic anhydride hydrogenation process for 1, 4-butanediol synthesis:U.S. Patent 5,196,602[P].1993-3-23.
    [60]Gilbert W W. PROCESS OF HYDBOGENATING MALEIC ANHY:U.S. Patent 2,772,293[P].1956.
    [61]Mcshane H P. Hydrogenation of maleic anhydride:U.S. Patent 2,772,291[P].1956-11-27.
    [62]White D R. Novel compounds, compositions and processes:U.S. Patent 4,361,701 [P]. 1982-11-30.
    [63]Prichard W W. Conversion of furan to 1,4-butanediol and tetrahydrofuran:U.S. Patent 4,146,741[P].1979-3-27.
    [64]Chia M, Pagan-Torres Y J, Hibbitts D, et al. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts[J]. Journal of the American Chemical Society,2011,133(32):12675-12689.
    [65]Koso S, Furikado I, Shimao A, et al. Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol[J]. Chemical Communications,2009 (15):2035-2037.
    [66]Chen K, Koso S, Kubota T, et al. Chemoselective Hydrogenolysis of Tetrahydropyran-2-methanol to 1,6-Hexanediol over Rhenium-Modified Carbon-Supported Rhodium Catalysts[J]. ChemCatChem,2010,2(5):547-555.
    [67]Koso S, Nakagawa Y, Tomishige K. Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide[J]. Journal of Catalysis,2011, 280(2):221-229.
    [68]Gomes M, Gandini A, Silvestre A J D, et al. Synthesis and characterization of poly (2,5- furan dicarboxylate) s based on a variety of diols[J]. Journal of Polymer Science Part A: Polymer Chemistry,2011,49(17):3759-3768.
    [69]Ma J, Pang Y, Wang M, et al. The copolymerization reactivity of diols with 2, 5-furandicarboxylic acid for furan-based copolyester materials[J]. Journal of Materials Chemistry,2012,22(8):3457-3461.
    [70]Ma J, Yu X, Xu J, et al. Synthesis and crystallinity of poly (butylene 2, 5-furandicarboxylate)[J]. Polymer,2012,53(19):4145-4151.
    [1]Armaroli N, Balzani V. The future of energy supply, challenges and opportunities[J]. Angewandte Chemie International Edition,2007,46(1-2):52-66.
    [2]Kamm B, Gruber P R, Kamm M. Biorefineries-industrial processes and products[M]. Wiley-VCH Verlag GmbH & Co. KGaA,2007.
    [3]van Putten R J, van der Waal J C, de Jong E, et al. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources[J]. Chemical reviews,2013,113(3):1499-1597.
    [4]Rosatella A A, Simeonov S P, Frade R F M, et al.5-Hydroxymethylfurfural (HMF) as a building block platform:Biological properties, synthesis and synthetic applications[J]. Green Chem.,2011,13(4):754-793.
    [5]Timokhin B V, Baransky V A, Eliseeva G D. Levulinic acid in organic synthesis[J]. Russian chemical reviews,1999,68(1):73-84.
    [6]Bozell J J, Moens L, Elliott D C, et al. Production of levulinic acid and use as a platform chemical for derived products[J]. Resources, Conservation and Recycling,2000,28(3): 227-239.
    [7]Huber G W, Cortright R D, Dumesic J A. Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Derived Oxygenates[J]. Angewandte Chemie International Edition,2004,43(12): 1549-1551.
    [8]Zhang J, Wu S B, Li B, et al. Advances in the catalytic production of valuable levulinic acid derivatives[J]. ChemCatChem,2012,4(9):1230-1237.
    [9]Zhang Q, Jiang T, Li B, et al. Highly Selective Sorbitol Hydrogenolysis to Liquid Alkanes over Ni/HZSM-5 Catalysts Modified with Pure Silica MCM-41[J]. ChemCatChem,2012,4(8): 1084-1087.
    [10]Alonso D M, Bond J Q, Dumesic J A. Catalytic conversion of biomass to biofuels[J]. Green Chemistry,2010,12(9):1493-1513.
    [11]Serrano-Ruiz J C, Dumesic J A. Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels[J]. Energy & Environmental Science,2011,4(1):83-99.
    [12]Van de Vyver S, Geboers J, Jacobs P A, et al. Recent advances in the catalytic conversion of cellulose[J]. ChemCatChem,2011,3(1):82-94.
    [13]Geboers J A, Van de Vyver S, Ooms R, et al. Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls[J]. Catalysis Science & Technology,2011,1(5):714-726.
    [14]Zhou C H, Xia X, Lin C X, et al. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels[J]. Chemical Society Reviews,2011,40(11):5588-5617.
    [15]Gallezot P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews,2012,41(4):1538-1558.
    [16]Kobayashi H, Ohta H, Fukuoka A. Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis[J]. Catalysis Science & Technology,2012,2(5):869-883.
    [17]Palkovits R. Pentenoic acid pathways for cellulosic biofuels[J]. Angewandte Chemie International Edition,2010,49(26):4336-4338.
    [18]Fitzpatrick S W. WO patent 8910362[P],1989.
    [19]Fitzpatrick S W. WO patent 9640609[P],1996.
    [20]Windom B C, Lovestead T M, Mascal M, et al. Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel[J]. Energy & Fuels,2011,25(4): 1878-1890.
    [21]Christensen E, Williams A, Paul S, et al. Properties and performance of levulinate esters as diesel blend components[J]. Energy & Fuels,2011,25(11):5422-5428.
    [22]Mehdi H, Fabos V, Tuba R, et al. Integration of homogeneous and heterogeneous catalytic processes for a multi-step conversion of biomass:From sucrose to levulinic acid, y-valerolactone,1,4-pentanedio1,2-methyl-tetrahydrofuran, and alkanes[J]. Topics in Catalysis, 2008,48(1-4):49-54.
    [23]Horvath I T, Mehdi H, Fabos V, et al. γ-Valerolactone—a sustainable liquid for energy and carbon-based chemicals[J]. Green Chemistry,2008,10(2):238-242.
    [24]Alonso D M, Wettstein S G, Dumesic J A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass[J]. Green Chemistry,2013,15(3):584-595.
    [25]Geilen F, Engendahl B, Harwardt A, et al. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system[J]. Angewandte Chemie,2010, 122(32):5642-5646.
    [26]Lange J P, Price R, Ayoub P M, et al. Valeric biofuels:a platform of cellulosic transportation fuels[J]. Angewandte Chemie International Edition,2010,49(26):4479-4483.
    [27]Dayma G, Halter F, Foucher F, et al. Experimental and detailed kinetic modeling study of ethyl pentanoate (ethyl valerate) oxidation in a jet stirred reactor and laminar burning velocities in a spherical combustion chamber[J]. Energy & Fuels,2012,26(8):4735-4748.
    [28]Luo W, Deka U, Beale A M, et al. Ruthenium-catalyzed hydrogenation of levulinic acid: Influence of the support and solvent on catalyst selectivity and stability[J]. Journal of Catalysis, 2013,301:175-186.
    [29]Chan-Thaw C E, Marelli M, Psaro R, et al. New generation biofuels:y-valerolactone into valeric esters in one pot[J]. RSC Advances,2013,3(5):1302-1306.
    [30]Zhang B, Zhu Y, Ding G, et al. Selective conversion of furfuryl alcohol to 1,2-pentanediol over a Ru/MnO x catalyst in aqueous phase[J]. Green Chemistry,2012,14(12):3402-3409.
    [31]Gurbuz E I, Kunkes E L, Dumesic J A. Integration of C-C coupling reactions of biomass-derived oxygenates to fuel-grade compounds[J]. Applied Catalysis B:Environmental, 2010,94(1):134-141.
    [32]Margolese D, Melero J A, Christiansen S C, et al. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups[J]. Chemistry of Materials,2000,12(8): 2448-2459.
    [33]Melero J A, Stucky G D, van Grieken R, et al. Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups[J]. Journal of Materials Chemistry, 2002,12(6):1664-1670.
    [34]Lai D, Deng L, Li J, et al. Hydrolysis of cellulose into glucose by magnetic solid acid[J]. ChemSusChem,2011,4(1):55-58.
    [35]Lai D, Deng L, Guo Q, et al. Hydrolysis of biomass by magnetic solid acid[J]. Energy & Environmental Science,2011,4(9):3552-3557.
    [36]Reyes-Luyanda D, Flores-Cruz J, Morales-Perez P J, et al. Bifunctional materials for the catalytic conversion of cellulose into soluble renewable biorefinery feedstocks[J]. Topics in catalysis,2012,55(3-4):148-161.
    [37]Tang Y, Miao S, Shanks B H, et al. Bifunctional mesoporous organic-inorganic hybrid silica for combined one-step hydrogenation/esterification[J]. Applied Catalysis A:General,2010, 375(2):310-317.
    [38]Lange J P, Vestering J Z, Haan R J. Towards 'bio-based' Nylon:conversion of y-valerolactone to methyl pentenoate under catalytic distillation conditions[J]. Chemical Communications,2007 (33):3488-3490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700