用户名: 密码: 验证码:
纳米化药物载体用于基因药物共运输的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去的十几年,基因和药物运载受到了广泛关注,很多具备不同化学性质和表面形态的纳米颗粒被引入这一方向。综述大量研究工作后得知,纳米颗粒可以有效地诱导细胞内吞作用和递送基因/药物进入肿瘤细胞。现在很多工作还停留在定性的层面上,在类似的纳米颗粒平台上包覆不同的涂层。不同的纳米内核和不同的包覆层对于不同的细胞系会引入不同的实验结果。在临床基因治疗中使用纳米颗粒前,提高其转染效率、生物相容性、生物降解周期以及组织选择性仍然是必需的。总之,纳米颗粒是可以经过很多种方法制备和表面官能化以提供生物适配性和核酸保护能力。在不远的将来,更多的更高效的载体会相继面世。1.双功能pH敏感Zn(Ⅱ)-姜黄素纳米颗粒/siRNA在体内/体外高效抑制人膀胱癌细胞的增长
     为了克服抗药性,联用两种或多种不同机制的治疗手段在近年来受到了广泛关注。在这项工作中,一个常见的方法被用来将姜黄素分子和锌离子合成被称为纳米粒子的分散性胶体,这一方法很便宜、容易执行且具备高重现性。这种新型的载体具备良好的生物适配性和高的细胞摄取率,适用于同时递送药物分子姜黄素和siRNA到肿瘤细胞中。锌离子和姜黄素分子的键合增强了憎水性药物姜黄素的水溶性并进一步增强了姜黄素的细胞摄取率和生物利用度。Zn(Ⅱ)-姜黄素中酸不稳定的Zn (Ⅱ)-O键可以响应肿瘤细胞内的酸性环境,并释放出姜黄素达到细胞内酸触发药物释放的目的。带正电的Zn(Ⅱ)-姜黄素可以有效地将siRNA递送到人膀胱癌细胞中,保护siRNA不被核酸酶降解并从内体中逃逸出来进入细胞质。负载了siRNA的复合物可以有效地下调EIF5A2癌基因,从而在体内和体外抑制癌细胞的生长。EIF5A2的表达水平被抑制和促凋亡因子BAX对抗凋亡因子BCL-2比例的上升抑制了肿瘤细胞的增殖和迁移。体内和体外实验证明,双功能的Zn(Ⅱ)-姜黄素可以结合药物治疗和基因治疗,从而得到比单独治疗手段更高的治疗效果。
     2.Fe(Ⅱ)-儿茶素和siEIF5A2在体内和体外对人膀胱癌细胞的协同抗癌作用
     癌症是中国和世界上很多其它国家排名第一位的死亡原因。其中,膀胱癌是世界上排名第九的常见恶性肿瘤。绿茶是最早被证实为最为有效的抗癌食物。绿茶中的儿茶素的抗癌活性已被广泛研究。作为自然植物中提取的化合物,儿茶素被用于药用的时候表现出很低的副作用。我们使用天然药物儿茶素自身和二价铁离子络合构建纳米载体。我们测试了这一载体负载EIF5A2siRNA后在体内和体外的人膀胱癌T24细胞中诱导凋亡的能力。得到的Fe(Ⅱ)-Cat/siEIF5A2在用于基因/药物共运输时表现出高转染效率和低副作用的特点。另外体内实验表明Fe(Ⅱ)-Cat/siEIF5A2和Fe(Ⅱ)-Cat可以有效地控制肿瘤的形态抑制肿瘤的恶化和扩散。
     3.石墨烯包裹的磁性纳米颗粒研究:偶极作用诱导Fe304纳米颗粒组装成纳米环通过定向生长机制
     我们开发了一种新型的水热法合成四氧化三铁环形结构通过四氧化三铁颗粒的定向生长通过四氧化三铁薄片中间体。获得的样品经过X射线衍射分析(XRD);X射线光电子能谱(XPS);扫描电子显微镜(SEM);透射电子显微镜(TEM);选择性区域电子衍射(SAED);高分辨透射电子显微镜(HRTEM)以及振动样品磁强计(VSM)分析。磁性四氧化三铁颗粒在用作生长控制剂的无机离子和二维模板氧化石墨烯纳米片的联合作用下自组装。相互独立的磁性颗粒之间的内在偶极-偶极作用成为组装成环的驱动力。超顺磁性颗粒组装后表现出比未组装颗粒高出很多的饱和磁化强度。这一增强是由于有序的环形结构使磁畴导向一致而获得了额外的协同磁性。本工作提供了又一种新的方法用于合成其它纳米结构通过定向生长的方法。
Although considerable progresses have been made in the study on the delivery of gene and drugs, many kind of nanoparticles with different chemical nature and surface topography are still developing. Literature presented in this review clearly indicates that nanoparticles can efficiently induce endocytosis and deliver gene and drugs into cancer cells. Many of the studies are still qualitative and produce different coatings with a similar platform. Variations in nanosized core, coatings and cell types would introduce variability in the experimental results. In clinical gene therapy by nanoparticles, higher transfection efficiency is still needed, as well as biocompatibility, long-term biodegradation,and site-selective application. In summary, nanoparticles offer many ways for preparation with a defined particle size, surface functionalization, biocompatibility, and nucleic acid protection. And more efficient carriers would be designed in future.
     1. Bifunctional pH-Sensitive Zn(Ⅱ)-Curcumin Nanoparticles/siRNA Effectively Inhibit Growth of Human Bladder Cancer Cells in Vitro and in Vivo
     To overcome drug resistance, the combination of two or more therapeutic strategies with different mechanisms has been received much attention in recent years. In this study, a common approach has been used to process curcumin and Zn2+into colloidal dispersions known as "nanoparticles", which is cheap and simple to prepare with high reproducibility. This novel vehicle has good biocompatibility and high cellular uptake for simultaneously delivering curcumin drug and siRNA into tumor cells. Complexation of Zn2+with curcumin enhances the aqueous solubility of hydrophobic drug curcumin and further improves the cellular uptake and bioavailability. The acid-labile coordination Zn(Ⅱ)-O bond in Zn(Ⅱ)-curcumin drug nanoparticles (Zn(Ⅱ)-Cur NPs) can respond to tumor intracellular acidic pH environments to release curcumin, and promoting acid-triggered intracellular drug release. The positively charged Zn(Ⅱ)-Cur NPs can efficiently deliver siRNA into human bladder cancer cells, protect siRNA against enzymatic degradation, and facilitate the escape of loaded siRNA from the endosome into the cytoplasm, which successfully downregulates the targeted EIF5A2oncogene and consequently inhibits cancer cell growth in vitro and in vivo. Proliferation and migration of cancer cells are inhibited by silencing the expression of EIF5A2and increasing the ratio of pro-apoptotic BAX to anti-apoptotic BCL-2. In vitro and in vivo experiments have demonstrated that bifunctional Zn(II)-Cur NPs/siEIF5A2can combine chemotherapy with gene therapy to afford higher therapeutic efficacy than the individual therapeutic protocols
     2. Synergistic Anticancer Activity of Fe(II)-Catechin and siRNA for Human Bladder Cancer Cells in Vitro and in Vivo
     Cancer is the first leading cause of death in the China and in many other nations in the world. The bladder cancer represents the ninth most common malignancy worldwide. Green tea is now confirmed to be the most effective food for cancer prevention. The green tea catechin has been studied for cancer preventive activity. As a naturally produced compound from common beverage, catechin induces much less side effects than other medicine used for chemical therapy. Herein, we use catechin natural drug itself to directly fabricate a nanocarrier with Fe2+ions. The ability to induce apoptosis in bladder cancer cell using the T24cell line is investigated both in vitro and in vivo. The obtained Fe(Ⅱ)-Cat/siEIF5A2have shown high transfection efficiency and few side effects based on the synergistic use of chemotherapy and gene therapy methods. In vivo experiments show that Fe (Ⅱ)-Cat/siEIF5A2and Fe (Ⅱ)-Cat can effectively control the morphology of the tumor and inhibit the proliferation of tumor progression.
     3. Graphene wrapped magnetic nanoparticles:Dipole-directed assembly of Fe3O4nanoparticles into nanorings via oriented attachment
     We have developed a novel hydrothermal method to fabricate Fe3O4ring-like nanostructures via oriented attachment of Fe3O4nanoparticles through intermediate Fe3O4platelets. The obtained samples were characterized by X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selective-area electron diffractometry (SAED), high-resolution TEM (HRTEM) and vibrating-sample magnetometer (VSM). A reasonable mechanism based on the self-assembly of magnetic Fe3O4nanoparticles on graphene nanosheets using inorganic ions as crystal growth modifiers is proposed. The intrinsic dipole-dipole interactions between the individual magnetic Fe3O4nanoparticles act as the driving force for nanoring formation. Saturation moment of the superparamagnetic Fe3O4nanorings is much higher than that of the corresponding unassembled nanoparticles. The enhancement of saturation moment is due to the oriented ring-like assembly with synergistic magnetism. This study could provide an additional tool for fabricating other nanostructures via oriented attachment
引文
[1]C. M. Niemeyer, C. A. Mirkin, Nanobiotechnology:concepts, applications and perspectives, Vol.1, John Wiley & Sons,2004.
    [2]G P. Dietz, M. Bδhr, Mol. Cell. Neurosci.2004,27,85-131.
    [3]W. C. Heiser, Gene delivery to mammalian cells, Springer,2004.
    [4]R. Langer, N. A. Peppas, AIChE J.2003,49,2990-3006.
    [5]A. Rolland, Advanced gene delivery, Vol.10, CRC Press,2003.
    [6]T. Azzam, A. J. Domb, Curr. Drug Deliv.2004,1,165-193.
    [7]K. Kodama, Y. Katayama, Y. Shoji, H. Nakashima, Curr. Med. Chem.2006,13, 2155-2162.
    [8]S. E. McNeil, Y. Perrie,2006.
    [9]I. R. Gilmore, S. P. Fox, A. J. Hollins, S. Akhtar, Curr. Drug Deliv.2006,3,147-155.
    [10]R. K. Leung, P. A. Whittaker, Pharmacol. Ther.2005,107,222-239.
    [11]P. Y. Lu, F. Xie, M. C. Woodle, Adv. Genet.2005,54,115-142.
    [12]G Meister, T. Tuschl, Nature 2004,431,343-349.
    [13]C. C. Mello, D. Conte, Nature 2004,431,338-342.
    [14]B. Mitterauer, Med. Hypothes.2004,62,907-910.
    [15]H. Schreier, Pharm. Acta Helv.1994,68,145-159.
    [16]J. A. Wolff, V. Budker, Adv. Genet.2005,54,1-20.
    [17]J. A. Wolff, R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. a. Jani, P. L. Felgner, Science 1990,247,1465-1468.
    [18]M. A. Hickman, R. W. Malone, K. Lehmann-Bruinsma, T. R. Sih, D. Knoell, F. C. Szoka, R. Walzem, D. M. Carlson, J. S. Powell, Hum. Gene Ther.1994,5,1477-1483.
    [19]M. L. Sikes, B. W. O'Malley Jr, M. J. Finegold, F. D. Ledley, Hum. Gene Ther.1994,5, 837-844.
    [20]A. Ardehali, A. Fyfe, H. Laks, D. C. Drinkwater Jr, J.-H. Qiao, A. J. Lusis, J. Thorac. Cardiov. Sur.1995,109,716-720.
    [21]B. Schwartz, C. Benoist, B. Abdallah, R. Rangara, A. Hassan, D. Scherman, B. Demeneix, Gene Ther.1996,3,405.
    [22]J. J. Yoo, S. Soker, L. F. Lin, K. Mehegan, P. D. Guthrie, A. Atala, J. Urology 1999,162, 1115-1118.
    [23]R. I. Mahato, K. Kawabata, Y. Takakura, M. Hashida, J. Drug Target.1995,3,149-157.
    [24]K. Kawabata, Y. Takakura, M. Hashida, Pharm. Res.1995,12,825-830.
    [25]F. Sakurai, T. Terada, K. Yasuda, F. Yamashita, Y. Takakura, M. Hashida, Gene Ther.2002, 9,1120-1126.
    [26]E. T. Castellana, P. S. Cremer, Surf. Sci. Rep.2006,61,429-444.
    [27]H. Sato, J. B. Feix, BBA-Biomembranes 2006,1758,1245-1256.
    [28]M. J. Chrispeels, P. Agre, Trends Biochem. Sci.1994,19,421-425.
    [29]H. Hasegawa, W. Skach, O. Baker, M. Calayag, V. Lingappa, A. Verkman, Science 1992, 258,1477-1479.
    [30]S. Y. Noskov, B. Roux, Biophys. Chem.2006,124,279-291.
    [31]O. Harush-Frenkel, N. Debotton, S. Benita, Y. Altschuler, Biochem. Biophys. Res. Commun.2007,353,26-32.
    [32]S. R. Pfeffer, Nat. Cell Biol.1999,1, E17-E22.
    [33]A. Vonarbourg, C. Passirani, P. Saulnier, J.-P. Benoit, Biomaterials 2006,27,4356-4373.
    [34]A. Coonrod, F. Li, M. Horwitz, Gene Ther.1997,4.
    [35]A. Loyter, G Scangos, D. Juricek, D. Keene, F. Ruddle, Exp. Cell Res.1982,139, 223-234.
    [36]S. L. Schmid, R. Fuchs, P. Male, I. Mellman, Cell 1988,52,73-83.
    [37]M. W. Goldberg, J. Cronshaw, E. Kiseleva, T. D. Allen, Protoplasma 1999,209,144-156.
    [38]R. Y. Lim, B. Fahrenkrog, Curr. Opin. Cell Biol.2006,18,342-347.
    [39]L. Josephson, C.-H. Tung, A. Moore, R. Weissleder, Bioconjugate Chem.1999,10, 186-191.
    [40]M. Zhao, M. F. Kircher, L. Josephson, R. Weissleder, Bioconjugate Chem.2002,13, 840-844.
    [41]M. Brisson, W.-C. Tseng, C. Almonte, S. Watkins, L. Huang, Hum. Gene Ther.1999,10, 2601-2613.
    [42]W. Godbey, K. K. Wu, A. G. Mikos, Proc. Natl. Acad. Sci. USA 1999,96,5177-5181.
    [43]W.-C. Tseng, F. R. Haselton, T. D. Giorgio, Biochim. Biophys. Acta 1999,1445,53-64.
    [44]Z. Racz, P. Hamar, Curr. Med. Chem.2006,13,2299-2307.
    [45]N. D. Zinder, J. Lederberg, J. Bacteriol.1952,64,679.
    [46]A. A. Bukovsky, J.-P. Song, L. Naldini, J.. virol.1999,73,7087-7092.
    [47]S. Yang, R. Delgado, C. S. Barker, Z.-Y. Yang, G. J. Nabel, S. R. King, C. Woffendin, L. Xu, G. P. Nolan, Hum. Gene Ther.1999,10,123-132.
    [48]S. K. Tripathy, H. B. Black, E. Goldwasser, J. M. Leiden, Nat. Med.1996,2,545-550.
    [49]P. C. Hendrie, D. W. Russell, Mol. Ther.2005,12,9-17.
    [50]J. Glorioso, N. DeLuca, D. Fink, Annu. Rev. Microbiol.1995,49,675-710.
    [51]N. Bessis, F. GarciaCozar, M. Boissier, Gene Ther.2004,11, S10-S17.
    [52]J. P. Burand, M. D. Summers, G. E. Smith, Virology 1980,101,286-290.
    [53]R. G. Crystal, Science 1995,270,404-410.
    [54]A. Schatzlein, Anti-Cancer Drugs 2001,12,275-304.
    [55]G A. Helm, H. Dayoub, J. A. Jane Jr, Neurosurg. Focus 2001,10,1-5.
    [56]G Y. Wu, C. H. Wu, J. Biol. Chem.1988,263,14621-14624.
    [57]F. Sorgi, S. Bhattacharya, L. Huang, Gene Ther.1997,4,961-968.
    [58]B. Quintanilla-Vega, D. Hoover, W. Bal, E. K. Silbergeld, M. P. Waalkes, L. D. Anderson, Am. J. Ind. Med.2000,38,324-329.
    [59]E. Neumann, M. Schaefer-Ridder, Y. Wang, P. Hofschneider, EMBO J.1982,1,841.
    [60]H. Aihara, J.-i. Miyazaki, Nat. Biotechnol.1998,16,867-870.
    [61]M.-P. Rols, C. Delteil, M. Golzio, P. Dumond, S. Cros, J. Teissie, Nat. Biotechnol.1998, 16,168-171.
    [62]R. Heller, M. Jaroszeski, A. Atkin, D. Moradpour, R. Gilbert, J. Wands, C. Nicolau, FEBS Lett.1996,389,225-228.
    [63]L. M. Mir, M. F. Bureau, J. Gehl, R. Rangara, D. Rouy, J.-M. Caillaud, P. Delaere, D. Branellec, B. Schwartz, D. Scherman, Proc. Natl. Acad. Sci. USA 1999,96,4262-4267.
    [64]D. Luo, W. M. Saltzman, Nat. Biotechnol.2000,18,33-37.
    [65]J. P. Behr, Acc. Chem. Res.1993,26,274-278.
    [66]N.-S. Yang, J. Burkholder, B. Roberts, B. Martinell, D. McCabe, Proc. Natl. Acad. Sci. USA 1990,87,9568-9572.
    [67]A. V. Zelenin, V. A. Kolesnikov, O. A. Tarasenko, R. A. Shafei, I. A. Zelenina, V. V. Mikhailov, M. L. Semenova, D. V. Kovalenko, O. V. Artemyeva, T. E. Ivaschenko, Febs Lett.1997,414,319-322.
    [68]R. S. Williams, S. A. Johnston, M. Riedy, M. J. DeVit, S. G. McElligott, J. C. Sanford, Proc. Natl. Acad. Sci. USA 1991,88,2726-2730.
    [69]K. Moelling, Cytokines Cell. Mol. Ther.1997,3,127-135.
    [70]W.-T. Kuo, H.-Y. Huang, Y.-Y. Huang, Curr. Drug Metab.2009,10,885-894.
    [71]C.-W. Hwang, D. Wu, E. R. Edelman, Circulation 2001,104,600-605.
    [72]E. Wagner, C. Plank, K. Zatloukal, M. Cotten, M. L. Birnstiel, Proc. Natl. Acad. Sci. U. S. A.1992,89,7934-7938.
    [73]M. A. Wolfert, P. R. Dash, O. Nazarova, D. Oupicky, L. W. Seymour, S. Smart, J. Strohalm, K. Ulbrich, Bioconjug. Chem.1999,10,993-1004.
    [74]R. Kircheis, L. Wightman, E. Wagner, Adv. Drug Deliv. Rev.2001,53,341-358.
    [75]K. Sagara, S. W. Kim, J. Control. Release 2002,79,271-281.
    [76]C. Rudolph, U. Schillinger, C. Plank, A. Gessner, P. Nicklaus, R. Muller, J. Rosenecker, BBA-Gene. Subjects 2002,1573,75-83.
    [77]D. G. Anderson, D. M. Lynn, R. Langer, Angew. Chem. Int. Ed.2003,115,3261-3266.
    [78]M. C. Garnett, Critical ReviewsTM in Therapeutic Drug Carrier Systems 1999,16.
    [79]A. Thierry, P. Rabinovich, B. Peng, L. Mahan, J. Bryant, R. Gallo, Gene Ther.1997,4.
    [80]P. L. Felgner, T. R. Gadek, M. Holm, R. Roman, H. W. Chan, M. Wenz, J. P. Northrop, G M. Ringold, M. Danielsen, Proc. Natl. Acad. Sci. U. S. A.1987,84,7413-7417.
    [81]N. Ishii, J. FUKUSHIMA, T. KANEKO, E. OKADA, K. TANI, S.-I. TANAKA, K. HAMAJIMA, K.-Q. XIN, S. KAWAMOTO, W. KOFF, AIDS Res. Hum. Retrov.1997,13, 1421-1428.
    [82]D. Lasic, N. Templeton, Adv. Drug Deliv. Rev.1996,20,221-266.
    [83]C. W. Pouton, P. Lucas, B. J. Thomas, A. N. Uduehi, D. A. Milroy, S. H. Moss, J. Control. Release 1998,53,289-299.
    [84]H. Lv, S. Zhang, B. Wang, S. Cui, J. Yan, J. Control. Release 2006,114,100-109.
    [85]M. X. Tang, C. T. Redemann, F. C. Szoka, Bioconjug. Chem.1996,7,703-714.
    [86]T. Byk, H. Haddada, W. Vainchenker, F. Louache, Hum. Gene Ther.1998,9,2493-2502.
    [87]G J. Nabel, E. G Nabel, Z.-Y. Yang, B. A. Fox, G E. Plautz, X. Gao, L. Huang, S. Shu, D. Gordon, A. E. Chang, Proc. Natl. Acad. Sci. U. S. A.1993,90,11307-11311.
    [88]N. J. Caplen, E. W. Alton, P. G. Mddleton, J. R. Dorin, B. J. Stevenson, X. Gao, S. R. Durham, P. K. Jeffery, M. E. Hodson, C. Coutelle, Nat. Med.1995,1,39-46.
    [89]K. L. Brigham, B. MEYRICK, M. MAGNUSON, G KING, L. C. BERRY, Am. J. Med. Sci.1989,298,278.
    [90]T. Ono, Y. Fujino, T. Tsuchiya, M. Tsuda, Neurosci. Lett.1990,117,259-263.
    [91]G E. Plautz, Z.-Y. Yang, B.-y. Wu, X. Gao, L. Huang, G J. Nabel, Proc. Natl. Acad. Sci. U. S. A.1993,90,4645-4649.
    [92]K. Son, L. Huang, Gene Ther.1996,3,630-634.
    [93]E. Raz, D. A. Carson, S. E. Parker, T. B. Parr, A. M. Abai, G. Aichinger, S. H. Gromkowski, M. Singh, D. Lew, M. A. Yankauckas, Proc. Natl. Acad. Sci. U. S. A.1994, 91,9519-9523.
    [94]G S. Kwon, Critical ReviewsTM in Therapeutic Drug Carrier Systems 1998,15.
    [95]G S. Kwon, K. Kataoka, Adv. Drug Deliv. Rev.1995,16,295-309.
    [96]G S. Kwon, T. Okano, Adv. Drug Deliv. Rev.1996,21,107-116.
    [97]C. Allen, D. Maysinger, A. Eisenberg, Colloid Surface B1999,16,3-27.
    [98]L. Yang, P. Alexandridis, Curr. Opin. Colloid In.2000,5,132-143.
    [99]K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, Chem. Rev.1999,99, 3181-3198.
    [100]S. Cammas-Marion, T. Okano, K. Kataoka, Colloid Surface B 1999,16,207-215.
    [101]J. E. Chung, M. Yokoyama, T. Okano, J. Control. Release 2000,65,93-103.
    [102]M. D. C. Topp, P. J. Dijkstra, H. Talsma, J. Feijen, Macromolecules 1997,30,8518-8520.
    [103]H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori, J. Control. Release 2000,65,271-284.
    [104]Y. Matsumura, H. Maeda, Cancer Res.1986,46,6387-6392.
    [105]M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, K. Kataoka, J. drug Target.1999,7,171-186.
    [106]S. Iijima, T. Ichihashi, Nature 1993,363,603-605.
    [107]D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. M. Reynolds, T. R. Webb, Toxicol. Sci.2004,77,117-125.
    [108]D. X. Cui, F. R. Tian, C. S. Ozkan, M. Wang, H. J. Gao, Toxicol. Lett.2005,155,73-85.
    [109]C. C. Ge, L. Meng, L. G. Xu, R. Bai, J. F. Du, L. L. Zhang, Y. Li, Y. Z. Chang, Y. L. Zhao, C. Y. Chen, Nanotoxicology 2012,6,526-542.
    [110]Y. Morimoto, M. Hirohashi, N. Kobayashi, A. Ogami, M. Horie, T. Oyabu, T. Myojo, M. Hashiba, Y. Mizuguchi, T. Kambara, B. W. Lee, E. Kuroda, M. Shimada, W. N. Wang, K. Mizuno, K. Yamamoto, K. Fujita, J. Nakanishi, I. Tanaka, Nanotoxicology 2012,6, 766-775.
    [111]S. T. Yang, X. Wang, G Jia, Y. Q. Gu, T. C. Wang, H. Y. Nie, C. C. Ge, H. F. Wang, Y. F. Liu, Toxicol. Lett.2008,181,182-189.
    [112]S. T. Yang, J. B. Luo, Q. H. Zhou, H. F. Wang, Theranostics 2012,2,271-282.
    [113]Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen, H. Dai, Nat. Nanotechnol.2007,2,47-52.
    [114]B. S. Harrison, A. Atala, Biomaterials 2007,28,344-353.
    [115]N. W. S. Kam, Z. Liu, H. Dai, Angew. Chem. Int. Ed.2006,118,591-595.
    [116]Y. Liu, D.-C. Wu, W.-D. Zhang, X. Jiang, C.-B. He, T. S. Chung, S. H. Goh, K. W. Leong, Angew. Chem. Int. Ed.2005,117,4860-4863.
    [117]Z. Liu, S. Tabakman, K. Welsher, H. Dai, Nano Res.2009,2,85-120.
    [118]Z. Liu, S. M. Tabakman, Z. Chen, H. Dai, Nat. Protocols.2009,4,1372-1381.
    [119]M. L. Schipper, N. Nakayama-Ratchford, C. R. Davis, N. W. S. Kam, P. Chu, Z. Liu, X. Sun, H. Dai, S. S. Gambhir, Nat. Nanotechnol.2008,3,216-221.
    [120]H. Ali-Boucetta, K. T. Al-Jamal, D. McCarthy, M. Prato, A. Bianco, K. Kostarelos, Chem. Commun.2008,459-461.
    [121]Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater.2010,22, 3906-3924.
    [122]Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011,332, 1537-1541.
    [123]Z. Liu, J. T. Robinson, X. M. Sun, H. J. Dai, J. Am. Chem. Soc.2008,130,10876-10877.
    [124]X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res.2008,1, 203-212.
    [125]L. Zhang, J. Xia, Q. Zhao, L. Liu, Z. Zhang, Small 2010,6,537-544.
    [126]K. Yang, S. A. Zhang, G. X. Zhang, X. M. Sun, S. T. Lee, Z. A. Liu, Nano Lett.2010,10, 3318-3323.
    [127]L. Z. Feng, S. A. Zhang, Z. A. Liu, Nanoscale 2011,3,1252-1257.
    [128]C. J. Brinker, G. W. Scherer, Academic Press, Boston 1990.
    [129]L. T. Zhuravlev, Langmuir 1987,3,316-318.
    [130]P. Chan, M. Kurisawa, J. E. Chung, Y.-Y. Yang, Biomaterials 2007,28,540-549.
    [131]Y. Chen, Z. Xue, D. Zheng, K. Xia, Y. Zhao, T. Liu, Z. Long, J. Xia, Curr. Gene Ther. 2003,3,273-279.
    [132]M. J. Akhtar, M. Ahamed, S. Kumar, H. Siddiqui, G Patil, M. Ashquin, I. Ahmad, Toxicology 2010,276,95-102.
    [133]D. Luo, W. M. Saltzman, Nat. Biotechnol.2000,18,893-895.
    [134]D. Luo, E. Han, N. Belcheva, W. M. Saltzman, J. Control. Release 2004,95,333-341.
    [135]W. Stober, A. Fink, E. Bohn, J. Colloid Interf. Sci.1968,26,62-&.
    [136]S. Q. Liu, L. C. Luc, Z. X. Yang, P. Cool, E. F. Vansant, Mater. Chem. Phys.2006,97, 203-206.
    [137]S. L. Gai, P. P. Yang, C. X. Li, W. X. Wang, Y. L. Dai, N. Niu, J. Lin, Adv. Funct. Mater. 2010,20,1166-1172.
    [138]J. L. Vivero-Escoto, Slowing, Ⅱ, C. W. Wu, V. S. Y. Lin, J. Am. Chem. Soc.2009,131, 3462-+.
    [139]P. J. Chen, S. H. Hu, C. S. Hsiao, Y. Y. Chen, D. M. Liu, S. Y. Chen, J. Mater. Chem.2011, 21,2535-2543.
    [140]E. Climent, R. Martinez-Manez, F. Sancenon, M. D. Marcos, J. Soto, A. Maquieira, P. Amoros, Angew. Chem. Int. Ed.2010,49,7281-7283.
    [141]L. S. Wang, L. C. Wu, S. Y. Lu, L. L. Chang, I. T. Teng, C. M. Yang, J. A. A. Ho, ACS Nano 2010,4,4371-4379.
    [142]Y. T. Chang, P. Y. Liao, H. S. Sheu, Y. J. Tseng, F. Y. Cheng, C. S. Yeh, Adv. Mater.2012, 24,3309-3314.
    [143]D. R. Radu, C. Y. Lai, K. Jeftinija, E. W. Rowe, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc.2004,126,13216-13217.
    [144]F. Torney, B. G. Trewyn, V. S. Y. Lin, K. Wang, Nat. Nanotechnol.2007,2,295-300.
    [145]T. Y. Cheang, B. Tang, A. W. Xu, G. Q. Chang, Z. J. Hu, W. L. He, Z. H. Xing, J. B. Xu, M. Wang, S. M. Wang, Inter. J.Nanomed.2012,7,1061-1067.
    [146]A. del Campo, T. Sen, J. P. Lellouche, I. J. Bruce, J. Magn. Magn. Mater.2005,293, 33-40.
    [147]K. Kamei, Y. Mukai, H. Kojima, T. Yoshikawa, M. Yoshikawa, G Kiyohara, T. A. Yamamoto, Y. Yoshioka, N. Okada, S. Seino, S. Nakagawa, Biomaterials 2009,30, 1809-1814.
    [148]F. M. Kievit, O. Veiseh, N. Bhattarai, C. Fang, J. W. Gunn, D. Lee, R. G. Ellenbogen, J. M. Olson, M. Q. Zhang, Adv. Funct. Mater.2009,19,2244-2251.
    [149]A. Senyei, K. Widder, G. Czerlinski, J. Appl. Phys.1978,49,3578-3583.
    [150]B. Samanta, H. Yan, N. O. Fischer, J. Shi, D. J. Jerry, V. M. Rotello, J. Mater. Chem.2008, 18,1204-1208.
    [151]H. B. Na, I. C. Song, T. Hyeon, Adv. Mater.2009,21,2133-2148.
    [152]Z. M. Saiyed, C. Bochiwal, H. Gorasia, S. D. Telang, C. N. Ramchand, Anal. Biochem. 2006,356,306-308.
    [153]Z. M. Saiyed, M. Parasramka, S. D. Telang, C. N. Ramchand, Anal. Biochem.2007,363, 288-290.
    [154]N. Morishita, H. Nakagami, R. Morishita, S. Takeda, F. Mishima, B. Terazono, S. Nishijima, Y. Kaneda, N. Tanaka, Biochem. Bioph. Res. Co.2005,334,1121-1126.
    [155]V. Sokolova, M. Epple, Angew. Chem. Int. Ed.2008,47,1382-1395.
    [156]X.-J. Kang, Y.-L. Dai, P.-A. Ma, D.-M. Yang, C.-X. Li, Z.-Y. Hou, Z.-Y. Cheng, J. Lin, Chem. Eur. J.2012,18,15676-15682.
    [157]M. Liong, S. Angelos, E. Choi, K. Patel, J. F. Stoddart, J. I. Zink, J. Mater. Chem.2009, 19,6251-6257.
    [158]E. Alison, G. Robert, S. Vanessa, F. Tessa, O. Lisa, C. Janet, P. Russell, M. Andrew, I. Yasuo, F. Jacob, O. Gunter, Environ Health Persp.2006,114,1172-1178.
    [159]K. H. Bae, K. Lee, C. Kim, T. G. Park, Biomaterials 2011,32,176-184.
    [160]D. Cai, J. M. Mataraza, Z.-H. Qin, Z. Huang, J. Huang, T. C. Chiles, D. Camahan, K. Kempa, Z. Ren, Nat. Meth.2005,2,449-454.
    [161]G. M. Erickson, B. A. Krick, M. Hamilton, G. R. Bourne, M. A. Norell, E. Lilleodden, W. G. Sawyer, Science 2012,338,98-101.
    [162]P. M. Helfinan, J. L. Bada, Proc. Natl. Acad. Sci. U. S. A.1975,72,2891-2894.
    [163]F. R. Tay, D. H. Pashley, Biomaterials 2008,29,1127-1137.
    [164]E. L. S. Fong, B. M. Watson, F. K. Kasper, A. G. Mikos, Adv. Mater.2012,24, 4995-5013.
    [165]Y. Wang, T. Azais, M. Robin, A. Vallee, C. Catania, P. Legriel, G Pehau-Arnaudet, F. Babonneau, M. M. Giraud-Guille, N. Nassif, Nat. Mater.2012,11,724-733.
    [166]W. Qi, X. Yan, J. Fei, A. Wang, Y. Cui, J. Li, Biomaterials 2009,30,2799-2806.
    [167]G B. Sukhorukov, D. V. Volodkin, A. M. Gunther, A. I. Petrov, D. B. Shenoy, H. Mohwald, J. Mater. Chem.2004,14,2073-2081.
    [168]D. V. Volodkin, R. von Klitzing, H. Mohwald, Angew. Chem. Int. Ed.2010,49, 9258-9261.
    [169]C. Schiller, M. Epple, Biomaterials 2003,24,2037-2043.
    [170]Y. Ueno, H. Futagawa, Y. Takagi, A. Ueno, Y. Mizushima, J. Control. Release 2005,103, 93-98.
    [171]X. w. He, T. Liu, Y. x. Chen, D. j. Cheng, X. r. Li, Y. Xiao, Y.1. Feng, Cancer Gene Ther. 2008,15,193-202.
    [172]A. W. Xu, Q. Yu, W. F. Dong, M. Antonietti, H. Colfen, Adv. Mater.2005,17,2217-2221.
    [173]X. Yan, J. Li, H. Mohwald, Adv. Mater.2012,24,2663-2667.
    [174]N. Qiu, H. Tin, B. Ji, N. Klauke, A. Glidle, Y. Zhang, H. Song, L. Cai, L. Ma, G Wang, L. Chen, W. Wang, Mater. Sci. Eng. C 2012,32,2634-2640.
    [175]T. Y. Cheang, S. M. Wang, Z. J. Hu, Z. H. Xing, G Q. Chang, C. Yao, Y. Liu, H. Zhang, A. W. Xu, J. Mater. Chem.2010,20,8050-8055.
    [176]J. Wei, T. Cheang, B. Tang, H. Xia, Z. Xing, Z. Chen, Y. Fang, W. Chen, A. Xu, S. Wang, J. Luo, Biomaterials 2012,1-9
    [177]G Ferey, Chem. Soc. Rev.2008,37,191-214.
    [178]P. Horcajada, C. Serre, G Maurin, N. A. Ramsahye, F. Balas, M. Vallet-Regi, M. Sebban, F. Taulelle, G Ferey, J. Am. Chem. Soc.2008,130,6774-6780.
    [179]J. Y. An, S. J. Geib, N. L. Rosi, J. Am. Chem. Soc.2009,131,8376-+.
    [180]R. C. Huxford, J. Della Rocca, W. Lin, Curr. Opin. Chem. Biol.2010,14,262-268.
    [181]R. Ananthoji, J. F. Eubank, F. Nouar, H. Mouttaki, M. Eddaoudi, J. P. Harmon, J. Mater. Chem.2011,21,9587-9594.
    [182]M. I. H. Mohideen, B. Xiao, P. S. Wheatley, A. C. McKinlay, Y. Li, A. M. Z. Slawin, D. W. Aldous, N. F. Cessford, T. Dueren, X. Zhao, R. Gill, K. M. Thomas, J. M. Griffin, S. E. Ashbrook, R. E. Morris, Nat. Chem.2011,3,304-310.
    [183]G Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X. Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma, S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, F. Huo, Nat. Chem.2012,4,310-316.
    [184]C.-Y. Sun, C. Qin, X.-L. Wang, G-S. Yang, K.-Z. Shao, Y.-Q. Lan, Z.-M. Su, P. Huang, C.-G. Wang, E.-B. Wang, Dalton T.2012,41,6906-6909.
    [185]I. B. Vasconcelos, T. G d. Silva, G. C. G Militao, T. A. Soares, N. M. Rodrigues, M. O. Rodrigues, N. B. d. Costa, R. O. Freire, S. A. Junior, RSC Adv.2012,2,9437-9442.
    [186]P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Ferey, P. Couvreur, R. Gref, Nat. Mater.2010,9,172-178.
    [187]S. R. Miller, D. Heurtaux, T. Baati, P. Horcajada, J. M. Greneche, C. Serre, Chem. Commun.2010,46,4526-4528.
    [188]S. V. Dorozhkin, M. Epple, Angew. Chem. Int. Ed.2002,41,3130-3146.
    [189]P. Fratzl, H. Gupta, E. Paschalis, P. Roschger, J. Mater. Chem.2004,14,2115-2123.
    [190]S. Weiner, H. D. Wagner, Annu. Rev. Mater. Sci.1998,28,271-298.
    [191]F. Graham, A. Van der Eb, Virology 1973,52,456-467.
    [192]E. Orrantia, P. L. Chang, Exp. Cell Res.1990,190,170-174.
    [193]A. Maitra, Expert Rev. Mol. Diagn.2005,5,893-905.
    [194]T. Liu, A. Tang, G Zhang, Y. Chen, J. Zhang, S. Peng, Z. Cai, Cancer Biother. Radio. 2005,20,141-149.
    [195]Y. Kakizawa, S. Furukawa, A. Ishii, K. Kataoka, J. Control. Release 2006,111,368-370.
    [196]Y. Kakizawa, K. Kataoka, Langmuir 2002,18,4539-4543.
    [197]Y. Kakizawa, K. Miyata, S. Furukawa, K. Kataoka, Adv. Mater.2004,16,699-702.
    [198]D. Olton, J. Li, M. E. Wilson, T. Rogers, J. Close, L. Huang, P. N. Kumta, C. Sfeir, Biomaterials 2007,28,1267-1279.
    [199]G Bhakta, S. Mitra, A. Maitra, Biomaterials 2005,26,2157-2163.
    [200]D. E. Brash, R. Reddel, M. Quanrud, K. Yang, M. Farrell, C. Harris, Mol. Cell. Biol.1987, 7,2031-2034.
    [201]Z.-S. Liu, S.-L. Tang, Z.-L. Ai, World J. Gastroentero.2003,9,1968-1971.
    [202]A. Doat, M. Fanjul, F. Pelle, E. Hollande, A. Lebugle, Biomaterials 2003,24,3365-3371.
    [203]A. Doat, F. Pelle, N. Gardant, A. Lebugle, J. Solid State Chem.2004,177,1179-1187.
    [204]A. Lebugle, F. Pelle, C. Charvillat, I. Rousselot, J. Y. Chane-Ching, Chem. Commun. 2006,606-608.
    [205]S. P. Mondejar, A. Kovtun, M. Epple, J. Mater. Chem.2007,17,4153-4159.
    [206]V. Sokolova, A. Kovtun, R. Heumann, M. Epple, Journal of Biological Inorg. Chem.2007, 12,174-179.
    [207]T. Welzel, I. Radtke, W. Meyer-Zaika, R. Heumann, M. Epple, J. Mater. Chem.2004,14, 2213-2217.
    [208]V. Sokolova, A. Kovtun, O. Prymak, W. Meyer-Zaika, E. A. Kubareva, E. A. Romanova, T. S. Oretskaya, R. Heumann, M. Epple, J. Mater. Chem.2007,17,721-727.
    [209]A. H. W. A. J. Strain, Biochem. J.1984,218,475-482.
    [210]V. Sokolova, O. Prymak, W. Meyer-Zaika, H. Colfen, H. Rehage, A. Shukla, M. Epple, Materialwissenschaft Und Werkstoffiechnik 2006,37,441-445.
    [211]C.M. Wijmans, P. Linse, Langmuir 1995,11,3748-3756.
    [212]F. Cavani, F. Trifiro, A. Vaccari, Catal. Today 1991,11,173-301.
    [213]V. R. L. Constantino, T. J. Pinnavaia, Inorg. Chem.1995,34,883-892.
    [214]M. Meyn, K. Beneke, G. Lagaly, Inorg. Chem.1993,32,1209-1215.
    [215]J. H. Choy, J. S. Park, S. Y. Kwak, Y. J. Jeong, Y. S. Han, Mol. Cryst. Liq. Cryst.2000, 341,1229-1233.
    [216]J. H. Choy, S. Y. Kwak, J. S. Park, Y. J. Jeong, J. Portier, J. Am. Chem. Soc.1999,121, 1399-1400.
    [217]J. H. Choy, S. Y. Kwak, Y. J. Jeong, J. S. Park, Angew. Chem. Int. Ed.2000,39, 4042-4045.
    [218]A. I. Khan, L. X. Lei, A. J. Norquist, D. O"Hare, Chem. Commun.2001,2342-2343.
    [219]S. H. Hwang, Y. S. Han, J. H. Choy., Bull. Korean Chem. Soc.2001,22,1019-1022.
    [220]R. R. Sinden, Academic Press:New York,1994.
    [221]J. O. Radler, I. Koltover, T. Salditt, C. R. Safinya, Science 1997,275,810-814.
    [222]Tunissch.Mj, M. F. Maestre, J. Mol. Biol.1970,52,521-541.
    [223]S. B. Zimmerman, B. H. Pheiffer, J. Mol. Biol.1980,142,315-330.
    [224]J.-H. Choy, S.-Y. Kwak, J.-S. Park, Y.-J. Jeong, J. Mater. Chem.2001,11,1671-1674.
    [225]S. J. Collins, F. W. Ruscetti, R. E. Gallagher, R. C. Gallo, Proc. Natl. Acad. Sci. U. S. A. 1978,75,2458-2462.
    [226]R Gallagher, S. Collins, J. Trujillo, K. McCredie, M. Ahearn, S. Tsai, R. Metzgar, G. Aulakh, R. Ting, F. Ruscetti, R. Gallo, Blood 1979,54,713-733.
    [227]E. L. Wickstrom, T. A. Bacon, A. Gonzalez, D. L. Freeman, G. H. Lyman, E. Wickstrom, Proc. Natl. Acad. Sci. U. S. A.1988,85,1028-1032.
    [228]P. P. Edwards, J. M. Thomas, Angew. Chem. Inter. Ed.2007,46,5480-5486.
    [229]J. Aaseth, M. Haugen, O. Forre, Analyst 1998,123,3-6.
    [230]M. Ferrari, Nat. Rev. Cancer 2005,5,161-171.
    [231]P. S. Xu, E. A. Van Kirk, Y. H. Zhan, W. J. Murdoch, M. Radosz, Y. Q. Shen, Angew. Chem. Int. Ed.2007,46,4999-5002.
    [232]R. Langer, D. A. Tirrell, Nature 2004,428,487-492.
    [233]T. M. Allen, P. R. Cullis, Science 2004,303,1818-1822.
    [234]A. Chompoosor, G. Han, V. M. Rotello, Bioconjug. Chem.2008,19,1342-1345.
    [235]C. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev.2005,105,1025-1102.
    [236]C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, S. C. Baxter, Acc. Chem. Res.2008,41,1721-1730.
    [237]M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 1998,281, 2013-2016.
    [238]W. C. W. Chan, S. M. Nie, Science 1998,281,2016-2018.
    [239]H. T. Uyeda, I. L. Medintz, J. K. Jaiswal, S. M. Simon, H. Mattoussi, J. Am. Chem. Soc. 2005,127,3870-3878.
    [240]N. O. Fischer, C. M. Mclntosh, J. M. Simard, V. M. Rotello, Proc. Natl. Acad. Sci. U. S. A. 2002,99,5018-5023.
    [241]R. Hong, N. O. Fischer, A. Verma, C. M. Goodman, T. Emrick, V. M. Rotello, J. Am. Chem. Soc.2004,126,739-743.
    [242]B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, A. Libchaber, Science 2002,298,1759-1762.
    [243]X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie, Nat. Biotechnol.2004, 22,969-976.
    [244]H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, M. G Bawendi, J. Am. Chem. Soc.2000,122,12142-12150.
    [245]M. A. Hayat, Colloidal gold:principles, methods, and applications, Elsevier,2012.
    [246]P. CooperaStevenson, Discuss. Faraday Soc.1951,11,55-75.
    [247]G Frens, Nature 1973,241,20-22.
    [248]M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun.1994,801-802.
    [249]D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007,2,751-760.
    [250]R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, W. J. Parak, Chem. Soc. Rev.2008,37, 1896-1908.
    [251]B. D. Chithrani, A. A. Ghazani, W. C. Chan, Nano Lett.2006,6,662-668.
    [252]S. S. Agasti, A. Chompoosor, C.-C. You, P. Ghosh, C. K. Kim, V. M. Rotello, J. Am. Chem. Soc.2009,131,5728-5729.
    [253]C. K. Kim, P. Ghosh, C. Pagliuca, Z.-J. Zhu, S. Menichetti, V. M. Rotello, J. Am. Chem. Soc.2009,131,1360-1361.
    [254]C. M. Goodman, C. D. McCusker, T. Yilmaz, V. M. Rotello, Bioconjug. Chem.2004,15, 897-900.
    [255]A. Verma, F. Stellacci, Small 2010,6,12-21.
    [256]J. F. Hillyer, R. M. Albrecht, J. Pharm. Sci.2001,90,1927-1936.
    [257]J. Kreuter, J. Anat.1996,189,503-505.
    [258]A. T. Florence, Pharm. Res.1997,14,259-266.
    [259]G.D. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, L. Li, D. Liang, C. Li, Biomaterials 2009,30,1928-1936.
    [260]G. Sonavane, K. Tomoda, A. Sano, H. Ohshima, H. Terada, K. Makino, Colloid. Surface. B.2008,65,1-10.
    [261]G. Sonavane, K. Tomoda, K. Makino, Colloid. Surface. B.2008,66,274-280.
    [262]W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. Sips, R. E. Geertsma, Biomaterials 2008,29,1912-1919.
    [263]F. Liu, L. M. Shollenberger, L. Huang, Faseb J.2004,18,1779-+.
    [264]Y. Wang, S. Gao, W.-H. Ye, H. S. Yoon, Y.-Y. Yang, Nat. Mater.2006,5,791-796.
    [265]K. Osada, R. J. Christie, K. Kataoka, J. R. Soc. Interface 2009,6, S325-S339.
    [266]H. Wang, P. Zhao, W. Su, S. Wang, Z. Liao, R. Niu, J. Chang, Biomaterials 2010,31, 8741-8748.
    [267]H. Wang, Y. Zhao, Y. Wu, Y.-1. Hu, K. Nan, G Nie, H. Chen, Biomaterials 2011,32, 8281-8290.
    [268]A. M. Chen, M. Zhang, D. Wei, D. Stueber, O. Taratula, T. Minko, H. He, Small 2009,5, 2673-2677.
    [269]S. Chen, D. Zhao, F. Li, R.-X. Zhuo, S.-X. Cheng, RSC Adv.2012,2,1820-1826.
    [270]D. R. Radu, C.-Y. Lai, K. Jeftinija, E. W. Rowe, S. Jeftinija, V. S.-Y. Lin, J. Am. Chem. Soc.2004,126,13216-13217.
    [271]M. Thomas, A. M. Klibanov, Proc. Natl. Acad. Sci. U. S. A.2003,100,9138-9143.
    [272]Z. Liu, M. Winters, M. Holodniy, H. Dai, Angew. Chem. Int. Ed.2007,46,2023-2027.
    [273]D. Putnam, Nat. Mater.2006,5,439-451.
    [274]Z.-H. Xing, J.-H. Wei, T.-Y. Cheang, Z.-R. Wang, X. Zhou, S.-S. Wang, W. Chen, S.-M. Wang, J.-H. Luo, A.-W. Xu, J. Mater. Chem. B 2014,2,2714-2724.
    [1]S.-M. Lee, T. V. O'Halloran, S. T. Nguyen, J. Am. Chem. Soc.2010,132,17130-17138.
    [2]H. J. Mauceri, N. N. Hanna, M. A. Beckett, D. H. Gorski, M.-J. Staba, K. A. Stellato, K. Bigelow, R. Heimann, S. Gately, M. Dhanabal, G A. Soff, V. P. Sukhatme, D. W. Kufe, R. R. Weichselbaum, Nature 1998,394,287-291.
    [3]H. Meng, W. X. Mai, H. Y. Zhang, M. Xue, T. Xia, S. J. Lin, X. Wang, Y. Zhao, Z. X. Ji, J. I. Zink, A. E. Nel, ACS Nano 2013,7,994-1005.
    [4]M. E. Muroski, J. M. Kogot, G. F. Strouse, J. Am. Chem. Soc.2012,134,19722-19730.
    [5]B. Rubinfeld, A. Upadhyay, S. L. Clark, S. E. Fong, V. Smith, H. Koeppen, S. Ross, P. Polakis, Nat. Biotech.2006,24,205-209.
    [6]S. Sengupta, D. Eavarone, I. Capila, G. Zhao, N. Watson, T. Kiziltepe, R. Sasisekharan, Nature 2005,436,568-572.
    [7]M. V. Yezhelyev, L. Qi, R. M. O'Regan, S. Nie, X. Gao, J. Am. Chem. Soc.2008,130, 9006-9012.
    [8]Y. Zhao, B. G. Trewyn,I.I. Slowing, V. S. Y. Lin, J. Am. Chem. Soc.2009,131,8398-8400.
    [9]M. Aouadi, G J. Tesz, S. M. Nicoloro, M. Wang, M. Chouinard, E. Soto, G R. Ostroff, M. P. Czech, Nature 2009,458,1180-1184.
    [10]J. C. Burnett, J. J. Rossi, Chem & Biol 2012,19,60-71.
    [11]B. L. Davidson, P. B. McCray, Nat. Rev. Genet.2011,12,329-340.
    [12]J. H. Jeong, S. H. Kim, M. Lee, W. J. Kim, T. G Park, K. S. Ko, S. W. Kim, J. Control. Release 2010,143,88-94.
    [13]T. S. Zimmermann, A. C. H. Lee, A. Akinc, B. Bramlage, D. Bumcrot, M. N. Fedoruk, J. Harborth, J. A. Heyes, L. B. Jeffs, M. John, A. D. Judge, K. Lam, K. McClintock, L. V. Nechev, L. R. Palmer, T. Racie, I. R6hl, S. Seiffert, S. Shanmugam, V. Sood, J. Soutschek, I. Toudjarska, A. J. Wheat, E. Yaworski, W. Zedalis, V. Koteliansky, M. Manoharan, H.-P. Vornlocher, I. MacLachlan, Nature 2006,441,111-114.
    [14]D. Putnam, Nat. Mater.2006,5,439-451.
    [15]T. M. Sun, J. Z. Du, Y. D. Yao, C. Q. Mao, S. Dou, S. Y. Huang, P. Z. Zhang, K. W. Leong, E. W. Song, J. Wang, ACS Nano 2011,5,1483-1494.
    [16]N. Juliane, F. C. Szoka, Ace. Chem. Res.2012,45,1153-1162.
    [17]D. Luo, W. M. Saltzman, Nat. Biotech.2000,18,33-37.
    [18]S. C. Gupta, S. Prasad, J. H. Kim, S. Patchva, L. J. Webb, I. K. Priyadarsini, B. B. Aggarwal, Nat. Prod. Rep.2011,28,1937-1955.
    [19]K. Singletary, C. MacDonald, M. Iovinelli, C. Fisher, M. Wallig, Carcinogenesis 1998,19, 1039-1043.
    [20]P. Sanphui, N. R. Goud, U. B. R. Khandavilli, S. Bhanoth, A. Nangia, Chem. Comm.2011, 47,5013-5015.
    [21]J. I. Hong, M. Bose, J. Y. Ju, J. H. Ryu, X. X. Chen, S. M. Sang, M. J. Lee, C. S. Yang, Carcinogenesis 2004,25,1671-1679.
    [22]T. L. Chiu, C. C. Su, Int. J. Mol. Med.2009,23,469-475.
    [23]Y. Cheng, T. Xu, Eur. J. Med. Chem.2005,40,1188-1192.
    [24]C. J. H. Porter, N. L. Trevaskis, W. N. Charman, Nat. Rev. Drug. Discov.2007,6,231-248.
    [25]S. Wan, Y. Sun, X. Qi, F. Tan, AAPS. PharmSciTech.2012,13,159-166.
    [26]X. Z. Zhao, T. Jiang, L. Wang, H. Yang, S. Zhang, P. Zhou, J. Mol. Struct.2010,984, 316-325.
    [27]M. Thomas, A. M. Klibanov, Pro. Natl. Acad. Sci. U.S.A.2003,100,9138-9143.
    [28]Z. Liu, M. Winters, M. Holodniy, H. Dai, Angew. Chem., Int. Ed.2007,46,2023-2027.
    [29]D. R. Radu, C.-Y. Lai, K. Jeftinija, E. W. Rowe, S. Jeftinija, V. S. Y. Lin, J. Am. Chem. Soc. 2004,126,13216-13217.
    [30]K. A. Woodrow, Y. Cu, C. J. Booth, J. K. Saucier-Sawyer, M. J. Wood, W. M. Saltzman, Nat. Mater.2009,8,526-533.
    [31]W. Chen, J.-H. Luo, W.-F. Hua, F.-J. Zhou, M. C. Lin, H.-F. Kung, Y.-X. Zeng, X.-Y. Guan, D. Xie, Cancer. Epidem. Biomar.2009,18,400-408.
    [32]N. Sanoj Rejinold, M. Muthunarayanan, V. Divyarani, P. Sreerekha, K. Chennazhi, S. Nair, H. Tamura, R. Jayakumar, J. Colloid Interf. Sci.2011,360,39-51.
    [33]T.-Y. Cheang, S.-M. Wang, Z.-J. Hu, Z.-H. Xing, G.-Q. Chang, C. Yao, Y. Liu, H. Zhang, A.-W. Xu, J. Mater. Chem.2010,20,8050-8055.
    [34]J. Wei, T. Cheang, B. Tang, H. Xia, Z. Xing, Z. Chen, Y. Fang, W. Chen, A. Xu, S. Wang, J. Luo, Biomaterials 2013,34,1246-1254.
    [35]D. T. Limmer, A. P. Willard, P. Madden, D. Chandler, Pro. Natl. Acad. Sci. U.S.A.2013,110, 4200-4205.
    [36]T. M. Kolev, E. A. Velcheva, B. A. Stamboliyska, M. Spiteller, Int. J. Quantum. Chem.2005, 102,1069-1079.
    [37]K.-i. Kiyomiya, S. Matsuo, M. Kurebe, Life Sci.1998,62,1853-1860.
    [38]J.-Z. Du, X.-J. Du, C.-Q. Mao, J. Wang, J. Am. Chem. Soc.2011,133,17560-17563.
    [39]X.-Z. Yang, J.-Z. Du, S. Dou, C.-Q. Mao, H.-Y. Long, J. Wang, ACS Nano 2011,6,771-781.
    [40]Y. Zhang, C. Wang, C. Xu, C. Yang, Z. Zhang, H. Yan, K. Liu, Chem. Comm.2013,49, 7286-7288.
    [41]S. Asayama, S. Nishinohara, H. Kawakami, Metallomics 2011,3,680-682.
    [42]J.-M. Li, M.-X. Zhao, H. Su, Y.-Y. Wang, C.-P. Tan, L.-N. Ji, Z.-W. Mao, Biomaterials 2011, 32,7978-7987.
    [43]S. T. Tharakan, T. Inamoto, B. Sung, B. B. Aggarwal, A. M. Kamat, Biochem. Pharmacol. 2010,79,218-228.
    [1]M. Ploeg, K. K. Aben, L. A. Kiemeney, World J. Urol.2009,27,289-293.
    [2]L. Dogliotti, G Carteni, S. Siena, O. Bertetto, A. Martoni, A. Bono, D. Amadori, H. Onat, L. Marini, Eur. Urol.2007,52,134-141.
    [3]H. N. Graham, Prev. Med.1992,21,334-350.
    [4]P. Moongkamdi, N. Kosem, O. Luanratana, S. Jongsomboonkusol, N. Pongpan, Fitoterapia 2004,75,375-377.
    [5]K. Boehm, F. Borrelli, E. Ernst, G Habacher, S. K. Hung, S. Milazzo, M. Horneber, Cochrane Db. Syst. Rev.2009.
    [6]H. Fritz, D. Seely, D. A. Kennedy, R. Fernandes, K. Cooley, D. Fergusson, Integr. Cancer Ther.2013,12,7-24.
    [7]D. Trudel, D. P. Labbe, I. Bairati, V. Fradet, L. Bazinet, B. Tetu, Gynecol. Oncol.2012, 126,491-498.
    [8]J. M. Yuan, C. L. Sun, L. M. Butler, Pharm. Res.2011,64,123-135.
    [9]Y. Tang, A. R. Simoneau, J. Xie, B. Shahandeh, X. Zi, Cancer Prev. Res.2008,1, 439-451.
    [10]H. J. Cho, J. K. Kim, K. D. Kim, H. K. Yoon, M.-Y. Cho, Y. P. Park, J. H. Jeon, E. S. Lee, S.-S. Byun, H. M. Lim, Cancer Lett.2006,237,56-66.
    [11]W. Chen, J.-H. Luo, W.-F. Hua, F.-J. Zhou, M. C. Lin, H.-F. Kung, Y.-X. Zeng, X.-Y. Guan, D. Xie, Cancer Epidem. Biomar.2009,18,400-408.
    [12]J. Wei, T. Cheang, B. Tang, H. Xia, Z. Xing, Z. Chen, Y. Fang, W. Chen, A. Xu, S. Wang, Biomaterials 2012.
    [13]T.-M. Sun, J.-Z. Du, Y.-D. Yao, C.-Q. Mao, S. Dou, S.-Y. Huang, P.-Z. Zhang, K. W. Leong, E.-W. Song, J. Wang, ACS nano 2011,5,1483-1494.
    [14]Y. Wang, S. Gao, W.-H. Ye, H. S. Yoon, Y.-Y. Yang, Nat. Mater.2006,5,791-796.
    [15]N. Wiradharma, Y. W. Tong, Y.-Y. Yang, Biomaterials 2009,30,3100-3109.
    [16]C. Zhu, S. Jung, S. Luo, F. Meng, X. Zhu, T. G. Park, Z. Zhong, Biomaterials 2010,31, 2408-2416.
    [17]H. Bao, Y. Pan, Y. Ping, N. G Sahoo, T. Wu, L. Li, J. Li, L. H. Gan, Small 2011,7, 1569-1578.
    [18]L. Feng, S. Zhang, Z. Liu, Nanoscale 2011,3,1252-1257.
    [19]Y. Lu, Y. Zhao, L. Yu, L. Dong, C. Shi, M. J. Hu, Y. J. Xu, L. P. Wen, S. H. Yu, Adv. Mater.2010,22,1407-1411.
    [20]A. K. Salem, P. C. Searson, K. W. Leong, Nat. Mater.2003,2,668-671.
    [21]S. B. Hartono, W. Gu, F. Kleitz, J. Liu, L. He, A. P. Middelberg, C. Yu, G. Q. Lu, S. Z. Qiao, ACS nano 2012,6,2104-2117.
    [22]M.-H. Kim, H.-K. Na, Y.-K. Kim, S.-R. Ryoo, H. S. Cho, K. E. Lee, H. Jeon, R. Ryoo, D.-H. Min, ACS nano 2011,5,3568-3576.
    [23]K. A. Woodrow, Y. Cu, C. J. Booth, J. K. Saucier-Sawyer, M. J. Wood, W. M. Saltzman, Nat. Mater.2009,8,526-533.
    [24]R. Duncan, Nat. Rev. Cancer 2006,6,688-701.
    [25]R. B. Greenwald, Y. H. Choe, J. McGuire, C. D. Conover, Adv. Drug Deliv. Rev.2003,55, 217-250.
    [26]Y. Shen, E. Jin, B. Zhang, C. J. Murphy, M. Sui, J. Zhao, J. Wang, J. Tang, M. Fan, E. Van Kirk, W. J. Murdoch, J. Am. Chem. Soc.2010,132,4259-4265.
    [27]Z.-H. Xing, J.-H. Wei, T.-Y. Cheang, Z.-R. Wang, X. Zhou, S.-S. Wang, W. Chen, S.-M. Wang, J.-H. Luo, A.-W. Xu, J. Mater. Chem. B 2014,2,2714-2724.
    [28]M. Mattioli, B. Barboni, P. Lucidi, E. Seren, Theriogenology 1996,45,373-381.
    [29]M. E. Bodini, M. Del Valle, R. Tapia, F. Leighton, P. Berrios, Polyhedron 2001,20, 1005-1009.
    [30]T. De-song, S. Sheng-rong, C. Xun, Z. Yu-yan, X. Chong-yang, J Zhejiang Univ. Sci. 2004,5,668-675.
    [31]I. Morel, G. Lescoat, P. Cogrel, O. Sergent, N. Pasdeloup, P. Brissot, P. Cillard, J. Cillard, Biochem. Pharmacol.1993,45,13-19.
    [32]J. Ferraro, W. Walker, Inorg. Chem.1965,4,1382-1386.
    [33]K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Wiley Online Library,1978.
    [34]A. A. Ansari, R. K. Sharma, Spectrosc. Lett.2009,42,178-185.
    [35]C. E. Tschirhart, A. Nagpurkar, C. M. Whyne, J. Biomec.2004,37,653-660.
    [36]V. McKelvey-Martin, N. Melia, I. Walsh, S. Johnston, C. Hughes, S. Lewis, W. Thompson, Mutat. Res-Fund. Mol. M.1997,375,93-104.
    [1]R. P. Cowburn and M. E. Welland, Science,2000,287,1466.
    [2]J. H. Lee, J.-T. Jang, J.-S. Choi, S. H. Moon, S.-H. Noh, J.-W. Kim, J. G. Kim, I. S. Kim, K. I. Park and J. Cheon, Nat. Nanotechnol.,2011,6,418.
    [3]Y. Piao, J. Kim, H. B. Na, D. Kim, J. S. Baek, M. K. Ko, J. H. Lee, M. Shokouhimehr and T. Hyeon, Nat. Mater.,2008,7,242.
    [4]Y. W. Jun, J. H. Lee and J. Cheon, Angew. Chem. Int. Ed.,2008,47,5122.
    [5]N. A. Frey, S. Peng, K. Cheng and S. H. Sun, Chem. Soc. Rev.,2009,38,2532.
    [6]C. M. Niemeyer, Angew. Chem. Int. Ed.,2001,40,4128.
    [7]Z. W. Pan, Z. R. Dai and Z. L. Wang, Science,2001,291,1947.
    [8]B. Koo, H. Xiong, M. D. Slater, V. B. Prakapenka, M. Baasubramanian, P. Podsiadlo, C. S. Johnson, T. Rajh and E. V. Shevchenko, Nano Lett.,2012,12,2429.
    [9]L. L. Cui, H. C. Gu, H. Xu and D. L. Shi, Mater. Lett.,2006,60,2929.
    [10]C. J. Jia, L. D. Sun, F. Luo, X. D. Han, L. J. Heyderman, Z. G. Yan, C. H. Yan, K. Zheng, Z. Zhang, M. Takano, N. Hayashi, M. Eltschka, M. Klaeui, U. Ruediger, T. Kasama, L. Cervera Gontard, R. E. Dunin Borkowski, G. Tzvetkov and J. Raabe, J. Am. Chem. Soc, 2008,130,16968.
    [11]Y. Lu, L. Dong, L.-C. Zhang, Y.-D. Su and S.-H. Yu, Nano Today,2012,7,297.
    [12]J. Rothman, M. Klaui, L. Lopez-Diaz, C. A. F. Vaz, A. Bleloch, J. A. C. Bland, Z. Cui and R. Speaks, Phys. Rev. Lett.,2001,86,1098.
    [13]F. Q. Zhu, G. W. Chern, O. Tchemyshyov, X. C. Zhu, J. G. Zhu and C. L. Chien, Phys. Rev. Lett.,2006,96,027205.
    [14]M. D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, Nano Lett.,2008,8,3498.
    [15]T. N. Narayanan, B. K. Gupta, S. A. Vithayathil, R. R. Aburto, S. A. Mani, J. Taha-Tijerina, B. Xie, B. A. Kaipparettu, S. V. Torti and P. M. Ajayan, Adv. Mater.,2012,24,2992.
    [16]S. Yang, X. Feng, L. Wang, K. Tang, J. Maier and K. Mullen, Angew. Chem. Int. Ed.,2010, 49,4795.
    [17]S. Yang, X. Feng and K. Mullen, Adv. Mater.,2011,23,3575.
    [18]H. He and C. Gao, ACS Appl. Mater. Interfaces,2010,2,3201.
    [19]J. S. Chen, Z. Y. Wang, X. C. Dong, P. Chen and X. W. Lou, Nanoscale,2011,3,2158.
    [20]J. S. Lee, K. H. You and C. B. Park, Adv. Mater.,2012,24,1084.
    [21]H. L. Wang, Y. Yang, Y. Y. Liang, J. T. Robinson, Y. G. Li, A. Jackson, Y. Cui and H. J. Dai, Nano Lett.,2011,11,2644.
    [22]G. M. Zhou, D. W. Wang, F. Li, L. L. Zhang, N. Li, Z. S. Wu, L. Wen, G. Q. Lu and H. M. Cheng, Chem. Mater.,2010,22,5306.
    [23]V. F. Puntes, K. M. Krishnan and A. P. Alivisatos, Science,2001,291,2115.
    [24]A. W. Xu, Q. Yu, W. F. Dong, M. Antonietti and H. Colfen, Adv. Mater.,2005,17,2217; (c) G.-T. Zhou, X. Wang and J. C. Yu, Cryst. Growth. Des.,2004,5,969.
    [25]X. L. Hu, J. C. Yu, J. M. Gong, Q. Li and G. S. Li, Adv. Mater.,2007,19,2324.
    [26]P. K. Santra, S. Mukherjee and D. D. Sarma, J. Phys. Chem. C,2010,114,22113.
    [27]Y. C. Chang and D. H. Chen, J. Colloid Interf. Sci.,2005,283,446.
    [28]I. Iwasaki, S. R. B. Cooke and Y. S. Kim, Trans. AIME,1962,223,113.
    [29]W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc,1958,80,1339.
    [30]Q. Liu, J. B. Shi, J. T. Sun, W. Thanh, L. X. Zeng and G. B. Jiang, Angew. Chem. Int. Ed., 2011,50,5913.
    [31]Y. X. Xu, H. Bai, G. W. Lu, C. Li and G. Q. Shi, J. Am. Chem. Soc.,2008,130,5856.
    [32]T. Fujii, F. M. F. de Groot, G. A. Sawatzky, F. C. Voogt, T. Hibma and K. Okada, Phys. Rev. B,1999,59,3195.
    [33]Z.-S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng and K. Mullen, J. Am. Chem. Soc.,2012, 134,9082.
    [34]N. N. Guan, D. J. Sun and J. Xu, Mater. Lett.,2009,63,1272
    [35]J. S. Chen, T. Zhu, C. M. Li and X. W. Lou, Angew. Chem., Int. Ed.,2011,50,650
    [36]W.-S. Wang, D.-H. Wang, W.-G. Qu, L.-Q. Lu and A.-W. Xu, J. Phys. Chem. C,2012,116, 19893.
    [37]M. J. Hu, Y. Lu, S. Zhang, S. R. Guo, B. Lin, M. Zhang and S. H. Yu, J. Am. Chem. Soc., 2008,130,11606
    [38]N. N. Fan, Y. Yang, W. F. Wang, L. J. Zhang, W. Chen, C. Zou and S. M. Huang, Acs Nano,2012,6,4072.
    [39]Y. J. Li, C. Y. Wang, M. Y. Lu, K. M. Li and L. J. Chen, Cryst. Growth. Des.,2008,8, 2598.
    [40]W. Ahmed, R. P. B. Laarman, C. Hellenthal, E. S. Kooij, A. van Silfhout and B. Poelsema, Chem. Commun.,2010,46,6711.
    [41]J. Sun, S. Zhou, P. Hou, Y. Yang, J. Weng, X. Li and M. Li, J. Biomed. Mater. Res. A, 2007,80A,333.
    [42]L. Li, T. Wang, L. Zhang, Z. Su, C. Wang and R. Wang, Chem. Eur. J.,2012,18,11417.
    [43]S. Peng and S. Sun, Angew. Chem. Int. Ed.,2007,46,4155.
    [44]S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon,2007,45,1558.
    [45]Y. Chen, B. Song, X. Tang, L. Lu and J. Xue, J. Mater. Chem.,2012,22,17656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700