用户名: 密码: 验证码:
先驱体转化法制备连续SiBN陶瓷纤维基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续透波纤维增强陶瓷基复合材料已成为耐高温透波材料的重点研究方向。硅硼氮(SiBN)纤维具有强度高、耐高温、抗氧化和介电性能好等优点,是陶瓷基透波复合材料理想的增强体。本文开展了先驱体转化法制备连续SiBN陶瓷纤维的基础研究。
     针对聚硼硅氮烷(PBSZ)合成过程易交联、软化点低及组成难以调节等不足,重点研究BCl3、HMeSiCl2和HMDZ合成PBSZ的反应机理,合成出具有不同组成和高软化点的PBSZ,研究不同组成PBSZ的理化性能,由不同组成的PBSZ出发制备了SiBN陶瓷纤维,找到了适合制备连续SiBN陶瓷纤维的PBSZ,并探索了连续SiBN陶瓷纤维的制备工艺。
     在采用GC-MS对BCl3和HMDZ的反应过程及HMeSiCl2和HMDZ的反应过程进行分析的基础上,对BCl3、HMeSiCl2和HMDZ合成PBSZ的反应过程进行研究,发现BCl3、HMeSiCl2和HMDZ合成PBSZ的反应过程分为两个阶段:反应温度在室温到150℃为第一阶段,BCl3和HMeSiCl2分别与HMDZ发生胺解反应,反应产物主要是BCl3和HMDZ及HMeSiCl2和HMDZ150℃反应产物的混合物,以及少量含BNSi结构的产物。反应温度在150℃到240℃为第二阶段,BCl3的胺解产物通过脱除HMDZ或Me3SiNH2进行缩合,使得分子链长大或生成BN六元环结构,HMeSiCl2的胺解产物通过脱除HMDZ或Me3SiNH2进行缩合,使得链增长或生成SiN六元环结构,BNSi链亦通过脱除HMDZ或Me3SiNH2进行缩合,使得链增长或缩合成BNSi杂环结构,形成的BN六元环、SiN六元环及BNSi杂环通过脱除HMDZ或Me3SiNH2进一步聚合。BCl3、HMeSiCl2和HMDZ合成PBSZ的反应为缩聚合反应。
     基于缩聚合反应凝胶点的理论,建立BCl3、HMeSiCl2和HMDZ的摩尔比与其凝胶点的关系,找到BCl3、HMeSiCl2和HMDZ反应交联的原因,提出合成高软化点PBSZ的方法,即控制BCl3、HMeSiCl2和HMDZ平均官能度小于2,并适度提高反应体系的温度。研究表明,在摩尔比为1:0:6、1:0.5:6、1:1:6和0.5:2:6,提高反应温度至300℃,保温10h的条件下,BCl3、HMeSiCl2和HMDZ反应得到PBSZ的软化点均在100℃以上的,反应产物不交联。
     采用EA、FT-IR、1H-NMR、11B-NMR和29Si-NMR对PBSZ-1:0:6、PBSZ-1:0.5:6、PBSZ-1:1:6及PBSZ-0.5:2:6的组成结构进行分析,结果表明:随着MeHSiCl2摩尔比的增加,PBSZ的B元素含量逐渐降低,N元素含量逐渐升高,Si元素含量也逐渐升高;当MeHSiCl2摩尔比小于1时,随着MeHSiCl2摩尔比的减少,PBSZ结构中BN环状结构逐渐增多,SiN环状结构和BNSi结构逐渐减少;当MeHSiCl2摩尔比大于1时,PBSZ以SiN环状结构为主,BN环状结构和BNSi结构较少。
     对不同组成PBSZ的流变性能、水解稳定性、热分解及热解产物的高温结晶性进行研究,发现:(1) PBSZ-1:0.5:6和PBSZ-1:1:6的可纺性优于PBSZ-1:0:6,PBSZ-0.5:2:6的可纺性最差。对PBSZ-1:0:6、 PBSZ-1:0.5:6、 PBSZ-1:1:6及PBSZ-0.5:2:6的熔融纺丝工艺进行优化,制备了四种PBSZ纤维。(2)四种PBSZ纤维在室温和相对湿度为75%条件下,放置18h后水解率分别为0.6%、1.9%、3.0%及5.2%,PBSZ纤维表现出较好的抗水解特性。PBSZ中Si-NH-Si结构较BN环状结构易水解,随着PBSZ中Si-NH-Si结构含量的增加,在室温和相对湿度为75%条件下,PBSZ水解速率逐渐增大。(3) PBSZ-1:0:6、PBSZ-1:0.5:6及PBSZ-1:1:6在1000℃氮气气氛下的质量保留率分别为35wt%、47wt%及60wt%,Si-NH-Si的引入提高了PBSZ在1000℃氮气气氛下的质量保留率。(4) PBSZ-1:0:6在1400℃氩气气氛下的热解产物开始形成h-BN相,PBSZ-0.5:2:6在1600℃氩气气氛下的热解产物开始形成SiC和Si3N4微晶,而PBSZ-1:0.5:6和PBSZ-1:1:6在1600℃氩气气氛下的热解产物仍不结晶。
     PBSZ-1:0:6、PBSZ-1:0.5:6和PBSZ-1:1:6纤维以MeHSiCl2为不熔化气氛,经不熔化工艺优化,在典型脱碳热解条件下制备了三种不同组成的定长SiBN陶瓷纤维。由PBSZ-1:0:6纤维制备的定长SiBN陶瓷纤维是中空纤维,其组成为Si0.3BN1.4,强度为1.0GPa,模量为103GPa;PBSZ-1:0.5:6纤维制备的定长SiBN陶瓷纤维是实心纤维,其组成为Si0.55BN1.8,强度为1.2GPa,模量为125GPa;PBSZ-1:1:6纤维制备的定长SiBN陶瓷纤维也是实心纤维,其组成为Si0.95BN2.2,强度为1.5GPa,模量为150GPa。随着PBSZ原纤维中Si-N-Si结构含量的增加,PBSZ-1:0:6、PBSZ-1:0.5:6和PBSZ-1:1:6纤维制备的定长SiBN陶瓷纤维从中空到密实,纤维强度逐渐提高,表明PBSZ中Si-N-Si含量的增加对提高SiBN陶瓷纤维的性能有促进作用。
     采用Materials Studio模拟计算PBSZ-1:1:6的Hildebrand溶解度参数为9.0-9.8(cal0.5/cm1.5)。与75种常用溶剂比较发现,PBSZ-1:1:6的不良溶剂主要是极性大的水、醇、腈及酰胺等。采用HSPiP软件计算PBSZ-1:1:6的Hansen溶解度参数为δD=19.09MPa1/2、δP=19.47MPa1/2、δH=0.69MPa1/2,溶解度球半径R为19.9MPa1/2。与1258种溶剂相比较发现,沸点在25-100℃之间的PBSZ-1:1:6的不良溶剂主要包括醇、氟代烷烃、水及乙腈等,这与基于Hildebrand溶度公式筛选的不良溶剂类别基本一致。经PBSZ-1:1:6纤维与乙腈的溶解性实验和集束实验,验证了乙腈能够实现PBSZ-1:1:6纤维的集束。
     以乙腈为集束剂,在纺丝温度为210℃、纺丝压力为0.4MPa、收丝筒转速为300m min-1的工艺条件下,实现了PBSZ-1:1:6的多孔连续熔融纺丝,纤维的连续长度大于1000m。以MeHSiCl2为不熔化反应气氛,不熔化温度为95℃,保温时间为4h的条件下进行不熔化,在NH3浓度为50%,10℃/min升至1000℃,并在600℃保温2h的热解条件下,初步制备了连续SiBN陶瓷纤维,其组成为Si0.91BN2.1,纤维直径约为10μm,强度为0.6GPa。
Silicon boronitride (SiBN) ceramic fibers, with high mechanical strength, excellenthigh-temperature resistance, good stability against oxidation, and good dielectricproperties, are promising candidates as reinforcements in ceramic matrix composites forhigh temperature microwave-transparent applications. Hence, present work focuses onthe basic research of continuous SiBN ceramic fibers via the polymer-derived ceramics(PDCs) method.
     The synthesis of polyborosilazane (PBSZ) usually gives preceramic polymers withlow softening point and single composition, which are not suitable to be used asprecursors for continuous SiBN ceramic fibers as they can readily get crosslinked.Therefore, the mechanism of the synthesis of PBSZ using BCl3, HMeSiCl2and HMDZwas investigated, and polyborosilazanes of high softening point and variouscompositions were prepared. The properties of PBSZ with various compositions werestudied so as to synthesize the most suitable precursor for continuous SiBN ceramicfibers. The preparation process of continuous SiBN ceramic fibers was also studied.
     The reaction of BCl3, HMeSiCl2and HMDZ was investigated by GC-MS based onthe analysis of the reactions between BCl3and HMDZ, HMeSiCl2and HMDZ,respectively. The results suggested that the process of the condensation polymerizationof BCl3, HMeSiCl2and HMDZ could be divided into two stages. At the first stage(RT-150℃), the main reaction was the condensation reaction of Si-Cl and B-Cl withHMDZ, and the products were composed of the products of reaction between BCl3andHMDZ at150℃, the products of reaction of HMeSiCl2and HMDZ at150℃,and someBNSi structures. At the second stage (150-240℃), the mixture formed at the first stagewas condensed to form ring structures with loss of HMDZ or SiMe3Cl.
     Based on the understanding of the reaction of BCl3, HMeSiCl2and HMDZ, therelationship between the molar ratio of BCl3, HMeSiCl2and HMDZ and the gelationpoint was conformed. The reason why the crosslinking of PBSZ happened was studied.The softening point of PBSZ could be enhanced by increasing the reaction temperatureon the condition that the suitable molar ratio of BCl3, HMeSiCl2and HMDZ was used tomake the average function number of the reactants less than two. The results showedthat the softening point of PBSZ was enhanced to above100℃by increasing thereaction temperature to300℃with the molar ratio of BCl3, HMeSiCl2and HMDZ as1:0:6,1:0.5:6,1:1:6and0.5:2:6, respectively.
     The composites and structures of preceramic polymer PBSZ-1:0:6, PBSZ-1:0.5:6,PBSZ-1:1:6and PBSZ-0.5:2:6were studied by EA, FT-IR,1H-NMR,11B-NMR and29Si-NMR. The results showed that with the increase of the HMeSiCl2molar ratio, thecontent of B decreased and the contents of Si and N increased. When the HMeSiCl2 molar ratio was less than1, with the decrease of the HMeSiCl2molar ratio, the BN ringswere the main structure in PBSZ and the content of SiN and BNSi structures decreased.While the HMeSiCl2molar ratio was more than1, the SiN rings were the main structureand the content of BN and BNSi structures decreased.
     The properties of PBSZ precursors with various compositions were studied.(1)The melt-spinning ability of PBSZ-1:0.5:6and PBSZ-1:1:6was better than PBSZ-1:0:6.The melt-spinning ability of PBSZ-0.5:2:6was the worst among the four kinds of PBSZprecursors. Four kinds of PBSZ fibers were fabricated by melt-spinning of PBSZ-1:0:6,PBSZ-1:0.5:6, PBSZ-1:1:6and PBSZ-0.5:2:6.(2) Precursor fibers of PBSZ-1:0:6,PBSZ-1:0.5:6, PBSZ-1:1:6and PBSZ-0.5:2:6hydrolyzed0.6%,1.9%,3.0%and5.2%respectively after being exposed for18h under ambient conditions with the relativehumidity of75%. The hydrolytic experiments of PBSZ-1:0:6, PBSZ-1:0.5:6,PBSZ-1:1:6and PBSZ-0.5:2:6fibers indicated that the PBSZ polymers only with BNrings had better hydrolytic stability than that of preceramic polymers with the mixtureof BN and Si-N-Si groups as the Si-N-Si groups hydrolyzed faster than the BN groupsin polyborosilazane.(3) The ceramic yield of PBSZ-1:0:6, PBSZ-1:0.5:6andPBSZ-1:1:6in N2atmospheres under1000℃is35wt%,47wt%and60wt%,respectively. The ceramic yield of PBSZ was enhanced by increasing Si-N-Si structuresin the PBSZ polymers.(4) The pyrolysis of PBSZ-1:0:6started to form BN crystals at1400℃and that of PBSZ-0.5:2:6started to produce SiC/Si3N4crystals at1600℃,while there had no crystals appeared during the pyrolysis of PBSZ-1:0.5:6andPBSZ-1:1:6at1600℃because of the BNSi structures in the PBSZ.
     The tensile strength and Young’s modulus of Si0.3BN1.4hollow fiber derived fromPBSZ-1:0:6is1.0GPa and103GPa, respectively. The tensile strength and Young’smodulus of Si0.55BN1.8dense fiber derived from PBSZ-1:0.5:6is1.2GPa and125GPa,respectively. The tensile strength and Young’s modulus of Si0.95BN2.2dense fiberderived from PBSZ-1:1:6is1.5GPa and150GPa, respectively. The results indicated thatthe increase of Si-N-Si structures in the PBSZ was beneficial to enhance the mechanicalstrength of the obtained SiBN ceramic fibers.
     The Hildebrand solubility parameter of PBSZ-1:1:6was9.0-9.8cal0.5/cm1.5, whichwas calculated by Materials Studio. Based on the Hildebrand solubility parameter, theselected bad solvents for PBSZ-1:1:6were polar solvents such as water, alcohols,imides and cyanides. The Hansen solubility parameter (HSP) of PBSZ-1:1:6wasδD=19.09MPa1/2, δP=19.47MPa1/2, δH=0.69MPa1/2and the radius of HSP sphere is19.9MPa1/2. Based on the Hansen solubility parameter, the selected bad solvents with boilingpoint between25℃and100℃for PBSZ-1:1:6were water, alcohols, alkyl fluoridesand cyanides. Especially, the acetonitrile didn’t dissolve the PBSZ-1:1:6fibers, whichcould be used as sizing finishes for PBSZ-1:1:6fibers.
     The multifilamental continuous melt-spinning of PBSZ-1:1:6was realized at210 ℃with pressure of0.4MPa, and the continuous PBSZ-1:1:6fibers were sized byacetonitrile and stretched by the spool at a rotation rate of ca.400m min-1to produceflexible endless fibres with lengh of>1000m. The continuous PBSZ-1:1:6fibers werecured at95℃for4h under HMeSiCl2. The continuous cured PBSZ-1:1:6fibers werepyrolyzed to1000℃(10℃min-1, at600℃holding for2h) under NH3atmospheres.Continuous SiBN ceramic fibers with a near-stoichiometric composition of Si0.91BN2.1were obtained with ca.0.6GPa in tensile strength and ca.10μm in diameter.
引文
[1]张佳明,章桥新,张建红,杨丽宁.透波多功能复合材料的研究[J].材料导报,2006,20:37-39.
    [2]黎义,张大海,陈英,高文.航天透波多功能材料研究进展[J].宇航材料工艺,2001,5:1-3.
    [3]齐共金,张长瑞,胡海峰.陶瓷基复合材料天线罩制备工艺进展[J].硅酸盐学报,2005,33:632-638.
    [4]闫联生,李贺军,崔红.高温陶瓷透波材料研究进展[J].宇航材料工艺,2004,2:14-16.
    [5]齐共金.先驱体合成及其转化制备石英织物增强氮化硅基天线罩材料研究
    [D].长沙:国防科技大学,2006.
    [6]李斌.耐烧蚀、透波氮化物陶瓷基复合材料及其天线罩的制备与性能研究[D].长沙:国防科技大学,2007.
    [7]邢建申,王树彬,张跃.石英纤维析晶行为[J].复合材料学报,2006,23:75-79.
    [8]李超,刘建超,陈青.航天透波复合材料的研究进展[J].高科技纤维与应用,2003,28:34-39.
    [9]高树理,柴梦贤,张明习.透波复合材料的研究进展[J].工程塑料应用,2000,28:31-35.
    [10]高冬云,王树海,潘伟,赵浩.高速导弹天线罩用无机透波材料[J].现代技术陶瓷,2003,6:33-36.
    [11]黄新松,李文钦,简科.耐高温陶瓷透波纤维研究进展[J].安全与电磁兼容,2010,2:53-56.
    [12]孙银宝,张宇民,韩杰才.耐高温透波材料及其性能研究进展[J].宇航材料与工艺,2008,3:11-14.
    [13] Paeiorek K. J. L.. Boron nitride and its precursors[R]. AD233538,199l.
    [14] Paciorek K. J. L., Kratzer R. H., Harris D. H., Smythe M. E., Kimble P. F..Boron nitride preceramic polymers[P]. US Patent4581468,1986.
    [15] Paciorek K. J. L., Kratzer R. H.. Boron nitride preceramic polymer studies[J].European Journal of Solid State Inorganic Chemistry,1992,29:101-112.
    [16] Paciorek K. J. L., Harris D. H., Kratzer R. H.. Boron-nitrogen polymer. I.Mechanistic studies of borazine pyrolyses[J]. Journal of Polymer Science PartA-polymer Chemistry,1986,24:173-176.
    [17] Wideman T., Sneddon L. G.. Dipentylamine-Modified Polyborazylene: A New,Melt-Spinnable Polymeric Precursor to Boron Nitride Ceramic Fibers[J]. Chemistry ofMaterials,1996,8:3.
    [18] Thomas Wideman, Edward E. Remsen, Enriqueta Cortez, Vicki L. Chlanda,Larry G. Sneddon. Amine-Modified Polyborazylenes: Second-Generation Precursors toBoron Nitride[J]. Chemistry of Materials,1998,10:412-421.
    [19] Kimura Y., Kubo Y., Hayashi N.. High-performance boron-nitride fibers frompoly(borazine) preceramics[J]. Composite Science and Technology,1994,51:173-179.
    [20] Kimura Y, Kubo Y, Hayashi N.. Boron nitride preceramics based onB,B,B-triaminoborazine[J]. Journal of Inorganic and Organometallic Polymers,1992,2:231-242.
    [21] Okano Y,Yamashita H.Boron nitride fiber and process for productionthereof[P]. US Patent5780l54,1998.
    [22]蒙西尔,格拉德,米格南尼.硼氮基的聚合物、其制备方法和其制造氮化硼基的陶瓷产品和制品的用途[P].中国专利,1031846A,1986.
    [23] B. Toury, D. Cornu, F. Chassagneux, P. Miele. Complete characterization ofBN fibres obtained from a new polyborylborazine[J]. Journal of the European CeramicSociety,2005,25:137-141.
    [24] Toury B., Bernard S., Cornu D., Chassagneux F., Letoffe J.M., Miele P..High-performance boron nitride fibers obtained from asymmetric alkylaminoborazine[J].Journal of Materials Chemistry,2003,13:274-279.
    [25] Toury B., Miele P.. A new polyborazine-based route to boron nitride fibres[J].Journal of Materials Chemistry,2004,14:2609-2611.
    [26] Toury B., Miele P., Cornu D., Vincent H., Bouix J.. Boron Nitride FibersPrepared from Symmetric and Asymmetric Alkylaminoborazines[J]. AdvancedFunctional Materials,2002,12:228-234.
    [27] Toutois P., Miele P., Jacques S., Cornu D., Bernard S.. Structural andmechanical behavior of boron nitride fibers derived from poly[(methylamino)borazine]precursors: optimization of the curing and pyrolysis procedures[J]. Journal of theAmerican Ceramic Society,2006,89:42-49.
    [28]曾竟成,陈朝辉,向阳春.氮化硼纤维先驱体的合成及其热解研究[J].高分子材料科学与工程,1999,15:53-55.
    [29]张光友.先驱体法制备氮化硼陶瓷纤维[D].长沙:国防科技大学,1995.
    [30]张光友,陈朝辉.氮化硼纤维的研制[J].高分子材料科学与工程,1998,14:94-96.
    [31]邓橙.氮化硼纤维先驱体——聚硼氮烷的合成及热解特性研究[D].长沙:国防科技大学,2009.
    [32] Yongpeng Lei, Yingde Wang, Yongcai Song, Yihe Li, Cheng Deng, Hao Wang,Zhengfang Xie. Nearly stoichiometric BN fiber with low dielectric constant derivedfrom poly[(alkylamino)borazine][J]. Materials Letters,2011,65:157-159.
    [33]雷永鹏.先驱体转化法制备氮化硼纤维研究[D].长沙:国防科技大学,2011.
    [34] Yongpeng Lei, Yingde Wang, Yongcai Song, Cheng Deng, Hao Wang. Nearlystoichiometric BN fiber by curing and thermolysis of a novelpoly[(alkylamino)borazine][J]. Ceramics International,2011,37:1795-1800.
    [35] Xie W W, Han K Q, Li S T. Synthesis and characterization of monomer and itspolymer as a precursor to boron nitride fiber[C]. Proceedings of2007InternationalConference. China: Shanghai,2007,72-74.
    [36] Shutong Li, Yimiao Cao, Keqing Han, Xi Zhao, Muhuo Yu. Precursor Basedon Polyborylborazine for BN Fiber: Preparation and Rheology Properties[J]. Journal ofMacromolecular Science, Part B,2009,48:1132-1142
    [37] Economy J., R. Anderson. Boron nitrlde fiber manufacture[P]. US Patent3620780,1971.
    [38] Economy J, Erson R. A new route to boron nitride[J]. Inorganic Chemistry,1966,5:989-992.
    [39]Economy J. Exploratory development on formation of high strength, highmodulus boron nitride continuous filament yarns [P]. AD,901949,1972.
    [40]高学绪,任卫,高庆文.有机硼聚合物前驱体合成BN纤维的初步探索[J].工业陶瓷,1992,2:5-7.
    [41]高庆文,张清文,童申勇.氮化硼纤维制备工艺及其设备[P].中国专利,1059507A,1992.
    [42] Legrow G. E., Lim T. F., Lipowitz J., Reaoch R. S. Ceramics fromhydridopolysilazane [J]. American Ceramic Society Bulletin,1987,66:363-367.
    [43] Legrow G. E., Lim T. F., Lipowitz J., Reaoch R. S. Ceramic fromHydridopolysilazane[M]. Palo Alto, CA, USA, Materials Research Soc, Pittsburgh, PA,USA,1986.
    [44] N. P. Bansal. Tensile strength and microstructural characterization of HPZceramic fibers[J]. Materials Science and Engineering,1997,222:149-157.
    [45] Arai M, Funayama O, Nishii H. High-purity silicon nitride fibers[P]. USPatent4818611,1986.
    [46] Yokoyama Y., Nanba T., Yasui I., Kaya H., Maeshima T., Isoda T. X-raydiffraction study of the structure of silicon nitride fiber made fromperhydropolysilazane[J]. Journal of the American Ceramic Society,1991,74:654-657.
    [47] Mocaer D., Pailler R., Naslain R. SiCN ceramics with a high microstructuralstability elaborated from pyrolysis of new polycarbosilazane precursors[J]. Journal ofMaterial Science,1993,28:2615-2631.
    [48] Okamura. High purity and high strength inorganic silicon nitride continuousfiber and a method of producing the same[P]. US Patent5093096,1980.
    [49] S. Kamimura. Development of silicon nitride fiber from Si-containingpolymer by radiation curing and its application[J]. Radiation Physics and Chemistry,1999,6:575-581.
    [50] C. G. Papakonstantihou. Comparative study of high temperature composites[J].Composites: Part B,2001,32:637-649.
    [51]王岭等.含乙烯基的聚硅氮烷先驱体纤维的制备[J].高分子材料科学与工程,2000,5:109-112.
    [52]楚增勇等.聚硅氮烷纤维的合成及其辐射交联反应[J].高分子材料科学与工程,.2001,4:37-40.
    [53]江会平等. Si3N4-SiC纤维先驱体——低分子量聚硅氮烷的合成与分析[J].宇航材料工艺,1995,3:42-47.
    [54]宋永才,李永强,王得印等.一种由聚碳硅烷(PCS)纤维制备连续Si-B-N-O纤维的方法[P].中国专利,201010185378.5.
    [55]唐云.先驱体转化法制备SiBN陶瓷纤维研究[D].长沙:国防科技大学,2009.
    [56] Yun Tang, Jun Wang, Xiaodong Li, Zhengfang Xie, Hao Wang, Wenhua Li,Xiaozhou Wang. Polymer-derived SiBN fibers for high temperaturestructural/functional application[J], Chemistry-A European Journal,2010,16:6458-6462.
    [57]唐云,王军,李效东,李文华,王小宙,王浩.先驱体转化法制备高性能SiBN透波陶瓷纤维[J].化学学报,2009,67:2750-2754.
    [58] Riedel R., Mera G., Hauser R., Klonczynski A. Silicon-based polymer-derivedceramics: Synthesis properties and applications-A review[J]. Journal of the CeramicSociety of Japan,2006,114:425-444.
    [59] Ralf Riedel, Joachim Billt, Andreas Kienzle. Boron-modified InorganicPolymers-Precursors for the Synthesis of Multicomponent Ceramics[J]. AppliedOrganometallic Chemistry,1996,10:241-256.
    [60] M. Jansen, T. Jaeschke, B. Jaeschke. In High-performance Non-OxideCeramics I[M]. Verlag Berlin Heidelberg: Springer,2002.
    [61] M. Takamizawa, A. Hayashida, T. Kobayashi, Y. Takeda. Method for thepreparation of an inorganic fiber containing silicon, carbon, boron and nitrogen[P]. USpatent,4550151,1985.
    [62] M. Takamizawa, A. Hayashida, T. Kobayashi, Y. Takeda. Method for thepreparation of an inorganic fiber containing silicon, carbon, boron and nitrogen[P]. USpatent4604367,1986.
    [63] K. Su, E. E. Remsen, A. Z. Gregg, L G. Sneddon. Synthesis,characterization,and ceramic conversion reactions of borazine modified Hydridopolysilazanes: newpolymeric precursors to SiNCB Ceramic Composites[J]. Chemical Materials,1993,5:547-556.
    [64] T. Wideman, E. Cortez, E. E. Remsen. Reactions of monofunctional boraneswith hydridopolysilazane: synthesis, characterization, and ceramic conversion reactionsof new prozessible precursors to SiNCB ceramic materials[J]. Chem. Mater.,1997,9:2218-2230.
    [65] Wideman T., K. Su, E. E. Remsen. Synthesis,characterization, and ceramicconversion reactions of borazine/silazane copolymer: new polymeric precursors toSiNCB ceramics[J]. Chem. Mater.,1995,7:2203.
    [66] Wideman T., Su K., Remsen E. E., Zank G. A., Sneddon L. G. New polymerprecursors to SiNCB materials[M]. Boston: Materials Research Society,1996.
    [67] P. Gerstel, A. Müller, J. Bill, F. Aldinger. Synthesis and high-temperatureBehavior of Si/B/C/N Precursor-Derived Ceramics without “Free Carbon”[J]. ChemicalMaterials,2003,15:4980-4986.
    [68] Muller U. PhD thesis[D]. Bonn: University of Bonn,2000.
    [69] A. Müller, P. Gerstel, M. Weinmann, J. Bill, F. Aldinger. SiBCN ceramicprecursors Derived from Dichlorodivinylsilane and Chlorotrivinylsilane precursorssynthesis[J]. Chemical Materials,2002,14:3398-3405.
    [70] Anita Müller, Jiangqiang Peng, Hans Jürgen Seifert, Joachim Bill, FritzAldinger. Si-B-C-N Ceramic Precursors Derived from Dichlorodivinylsilane andChlorotrivinylsilane.2.Ceramization of Polymers and High-Temperature Behavior ofCeramic Materials[J]. Chem. Mater.,2002,14,3406-3412.
    [71] A. Müller, A. Zern, P. Gerstel, J. Bill, F. Aldinger. Boron-modifiedpoly(propenylsilazane)-derived SiBCN ceramic: preparation and high emperatureproperties[J]. Journal of the European Ceramic Society,2002,22:1631-1643.
    [72] Muller A., Gerstel P., Weinmann M., Bill J., Aldinger F. Correlation of boroncontent and high temperature stability in Si-B-C-N ceramics[J]. Journal of the EuropeanCeramic Society,2000,20:2655-2659.
    [73] Muller A., Geratel P., Weinmann M., Bill J., Aldinger F. Correlation of boroncontent and high temperature stability in Si-B-C-N ceramics II[J]. Journal of theEuropean Ceramic Society,2001,21:2171-2177.
    [74] M. Weinmann, R. Haug, J. Bill. Boron-containing polysilylcarbodiimides: anew class of molecular precursors for SiBCN ceramics[J]. Journal of OrganometallicChemistry,1997,541:345-353.
    [75] Weinmann M., Aldinger F. In Precursor-Derived Ceramics. Synthesis,Structures and High Temperature Mechanical Properties[M]. Bill, J., Wakai, F., Aldinger,F., Eds. Wiley-VCH:1999.
    [76] Funayama O., Kato T., Tashiro Y., Isoda T. Synthesis of a polyborosilazaneand its conversion into inorganic compounds[J]. Journal of the American CeramicSociety,1993,76:717-723.
    [77] Funayama O., M. Arai, Y. Tashiro. Polyborosilazane and prosess forproducing same[P]. US patent5030744,1989.
    [78] Funayama O., Nakahara H., Okoda M., Okumura M., Isoda T.. Conversionmechanism of polyborosilazane into silicon nitride-based ceramics[J]. Journal ofMaterials Science,1995,30:410-416.
    [79]曹峰.耐超高温碳化硅纤维新型先驱体研究及纤维制备[D].长沙:国防科技大学,2002.
    [80]楚增勇.先驱体法碳化硅纤维缺陷形成机理与性能提高研究[D].长沙:国防科技大学,2003.
    [81] Chu Z.-Y., Feng C.-X., Song Y.-C., Li X.-D., Xiao J.-Y. Synthesis ofpolyborosilazane and its utilization as a precursor to boron nitride[J]. Journal of AppliedPolymer Science,2004,94:105-109.
    [82] R. Riedel, A. Kienzle, W. Dressler. A silicoboron carbonitride ceramic stableto2000℃[J]. Nature,1996,382:796-798.
    [83] Z. C. Wang, F. Aldinger, R. Riedel. Novel Silicon-Boron-Carbon-NitrogenMaterials Thermally Stable up to2200℃[J]. Journal of the American Ceramic Society,2001,84:2179-2183.
    [84] R. Riedel, L. M. Ruswisch, A. Linan. Amorphous Silicoboron CarbonitrideCeramic with very high Viscosity at Temperatures above1500℃[J]. Journal of theAmerican Ceramic Society,1998,81:3341-3344.
    [85] Riedel R., Kienzle A., Szabo V., Mayer J.. Hydroboration ofpolymethylvinylsilane-a novel route to silicon boron carbide ceramics[J]. Journal ofMaterials Science,1993,28:3931-3938.
    [86] Ruwisch L. M., Durichen P., Riedel R.. Synthesis of silyl substitutedorganoboranes by hydroboration of vinylsilanes[J]. Polyhedron,2000,19:323-330.
    [87] Weinmann M., Sabine Nast, F. Berger. Dehydrocoupling oftris(hydridosilylethyl)boranes with ammonia or amines: a novel route toboron-containing polysilylcabodiimides[J]. Applied Organometallic Chemistry,2001,15:867-878.
    [88] M. Weinmann, M. H rz, F. Berger. Dehydrocoupling oftris(hydridosilylethyl)boranes and cyanamide: a novel access to boron-containingpolysilylcabodiimides[J]. Journal of Organometallic Chemistry,2002,659:29-42.
    [89] Weinmann M., Schuhmacher J., Kummer H., Prinz S., Peng J., Seifert H. J.,Christ M., Muller K., Bill J., Aldinger F. Synthesis and thermal behavior of novelSi-B-C-N ceramic precursors[J]. Chemistry of Materials,2000,12:623-632.
    [90] S. Bernard, M. Weinmann, D. Cornu. Preparation of high-temperature stableSiBCN fibers from tailored single source polyborosilazanes[J]. Journal of the EuropeanCeramic Society,2005,25:251-256.
    [91] Miele P., Bernard S., Cornu D., Toury B.. Recent developments inpolymer-derived ceramic fibers (PDCFs): Preparation, properties and applications-Areview[J]. Soft Materials,2006,4:249-286.
    [92] S. Bernard, M. Weinmann, P. Gerstel. Boron-modified polysilazane as a novelsingle-source precursor for SiBCN ceramic fibers: synthesis, melt-spinning, curing andceramic conversion[J]. Journal of Materials Chemistry,2005,15:289-299.
    [93] Bernard S., Cornu D., Miele P., Weinmann M., Aldinger F.Polyborosilazane-derived ceramic fibers in the Si-B-C-N quaternary system forhigh-temperature applications[M]. Cocoa Beach, FL, United States, American CeramicSociety, Westerville, OH43086-6136, United States,2005.
    [94] J. Haberecht, F. Krumeich, H. Grützmacher. High-Yield Molecular BorazinePrecursors for SiBCN Ceramics[J]. Chemical Materials,2004,16:418-423.
    [95] J. Haberecht, R. Nesper, H. Grützmacher. A construction Kit for SiBCNCeramic Materials Based on Borazine Precursors[J]. Chemical Materials,2005,17:2640-2347.
    [96] J rg Haberecht, Anja Krummland, Frank Breher, Bj rn Gebhardt, HeinzRüegger, Reinhard Nesper, Hansj rg Grützmacher. Functionalized borazines asprecursors for new silica gels[J]. Dalton Trans.,2003,2126-2132.
    [97] W. R. Schmidt, H. D. M. Narsavage, D. M. Jones. Polyborosilazaneprecursors to ceramic nanocomposites[J]. Chemical Materials,1999,11:1455.
    [98] Seyferth D., Plenio H. Preceramic organosilicon-boron polymers[P]. USPatent5171736,1992.
    [99] D. Seyferth, H. Plenio. Borasilazane Polymeric Precursors for BorosiliconNitride[J]. Journal of the American Ceramic Society,1990,73:2131-2133.
    [100] N. D. Nghiem, J. K. Jeon, L.Y. Hong. Polymer derived Si-C-B-N ceramic viahydroboration from borazine derivatives and trivinylcyclotrisilazane[J]. Journal ofOrganometallic Chemistry,2003,688:27-35.
    [101] Nghiem Q. D., Perumal J., Kim D.-P. Moisture-resistantborazine-carbosilane polymers from triethynylborazine and carbosilane derivativesusing Pt-catalyzed hydrosilylation polymerization[J]. Soft Materials,2006,4:237-247.
    [102] Nghiem Q. D., Kim D.-P. Highly-resistant SiCBN films prepared by a simplespin-coating process with poly(borosilazane)[J]. Journal of Materials Chemistry,2005,15:2188-2192.
    [103] M. A. Schiavon, G. D. Sorarǜ, I. V. P. Yoshida. Poly(borosilazane) asprecursors of SiBCN glasses: synthesis and high temperature properties[J]. Journal ofNon-Crystallin Solids,2004,348:156-161.
    [104] Wideman T., Sneddon L. G. Convenient procedures for the laboratorypreparation of borazine[J]. Inorganic Chemistry,1995,34:1002-1004.
    [105] Sneddon L. G., Mirabelli M. G. L., Lynch A. T., Fazen P. J., Su K., Beck J. S.Polymeric precursors to boron based ceramics[J]. Pure&Applied Chemistry,1991,63:407-410.
    [106] E. Kroke, Y. l. li, C. Konetschny, et al. Silazane derived ceramics and relatedmaterials[J]. Materials Science and Engineering,2000,56:97-199.
    [107] Lofelholz J., Jansen M. Novel access to polyboro-and polyalumosilazanessuitable as precursors for ternary nitride ceramics[J]. Advanced Materials,1995,7:289-292.
    [108] P. Baldus, M. Jansen, D.Sporn. Ceramic fibers for matrix composites inhigh-temperature engine application[J]. Science,1999,285:699-703.
    [109] Jansen M., Muller U., Clade J., Sporn D. Silicoboroncarbonitrogen ceramicsand precurosr compounds, method for the production and use thereof[P]. US patent7297649B2,2007.
    [110] Jansen M., Baldus H.-P., Wagner O. Siliconboronitride ceramic andprecursors, process for their preparation as well as their use [P]. EP0502399A2,1992.
    [111] M. Jansen, Highly stable ceramics through single source precursors[J]. SolidState Ionics,1997,101-103:1-7.
    [112] Baldus H.-P., Jansen M., Wagner O. New materials in the system Si-(N, C)-Band their characterization[J]. Key Engineering Materials,1994,89-91:75-80.
    [113] Baldus H.-P., Jansen M. Novel high-performance peramics-amorphousinorganic networks from molecular precursors[J]. Angewandte Chemie InternationalEdition,1997,36:328-343.
    [114] M. Jansen, H. P. Baldus, O. Wagner. Silicon Boron Nitride ceramic andprecursor compounds, A process for their preparation and their use[P]. US patent5233066,1995.
    [115] Sehlleier Y. H., Verhoeven A., Jansen M. NMR studies of short andintermediate range ordering of amorphous Si-B-N-C-H pre-ceramic at the pyrolysisstage of600℃[J]. Journal of Materials Chemistry,2007,17:4316-4319.
    [116] Jansen M., Jaschke B., Jaschke T. Amorphous multinary ceramics in theSi-B-N-C system[J]. Structure and Bonding,2002,101:137-191.
    [117] Wullen L. V., Jansen M. Random inorganic networks: a novel class ofhigh-performance ceramics[J]. Journal of Materials Chemistry,2001,11:223-229.
    [118] H. Jüngermann, M. Jansen. Synthesis of an extremely stable ceramic in thesystem Si/B/C/N using1-(trichlorosiyl)-1-(dichloroboryl)ethane as a single-sourceprecursor[J]. Mat. Res. Innovat.,1999,2:200-206.
    [119] Jungermann H., Jansen M. Quaternary ceramics in the systems Si/B/N/Cfrom polymeric carbamid acid derivatives[J]. Materials Science and Engineering,1998,29:573-587.
    [120] M. Jansen, H. Jüngermann. Silyalkylboranes, oligo orpolyborocarbosilazanes and silicon carbonitride ceramic[P]. US patent6093840,1999.
    [121] J. Clade, D. Sporn, U. Müller, M. Jansen. New Fiber Precursors in theSystem Si-B-N-C. in: High Temperature Ceramic Matrix Composites[M].(Eds.: W.Krenkel, R. Naslain, H. Schneider), Wiley-VCH Verlag GmbH,2001.
    [122] Jaschke T., Jansen M. Improved durability of Si/B/N/C random inorganicnetworks[J]. Journal of the European Ceramic Society,2005,25:211-220.
    [123] Jaschke T., Jansen M. High temperature stable siliconboroncarbonitrideceramics from silylalkylborazine, process for their manufacture and their use[P]. DEPatent10108069A1,2002.
    [124] Jaschke T., Jansen M. Synthesis and characterization of new amorphousSi/B/N/C ceramics with increased carbon content through single-source precursors[J]. C.R. Chimie,2004,7:471-482.
    [125] Jansen M., Jaschke T. Rich carbon siliconboron carbonitride ceramics andprecursor compounds, process for their manufacture and their use[P]. DE10045050A1,2002.
    [126] Jaschke T., Jansen M. High temperature stable siliconboroncarbonitrideceramics from silylalkylborazine, process for their manufacture and their use[P]. DE10108069A1,2002.
    [127] Jaschke T., Jansen M. A new borazine-type single source precursor forSi/B/N/C ceramics[J]. Journal of Materials Chemistry,2006,16:2792-2799.
    [128] Weinmann M., Kroschel M., Jaschke T., Nuss J., Jansen M., Kolios G.,Morillo A., Tellaecheb C., Nieken U. Towards continuous processes for the synthesis ofprecursors of amorphous Si/B/N/C ceramics[J]. Journal of Materials Chemistry,2008,18:1810-1818.
    [129] J.Lee, P. B. Darryl, H. B. Ronald, R. B. Clifford, S. T. James. Synthesis andpyrolysis of novel polysilazane to SiBCN ceramic[J]. Journal of Non-Crystalline Solids,2005,351:2995-3005.
    [130]王军,唐云,李效东,王浩.一种聚硼硅氮烷先驱体的制备方法[P].中国专利, ZL200710035733.9,2007.
    [131]王军,唐云,李效东,王浩.一种耐高温陶瓷纤维的制备方法[P].中国专利, ZL200710035734.3,2007.
    [132] Yun Tang, Jun Wang, Xiao-dong Li, Hao Wang, Wen-hua Li, Xiao-zhouWang. Preceramic polymer for Si–B–N–C fiber via one-step condensation of silane,BCl3and silazane[J]. Journal of Applied Polymer Science,2008,110:921-928.
    [133]唐云,王军,李效东,李文华,王浩,谢征芳.新型SiBNC陶瓷先驱体—聚硼硅氮烷的合成与表征[J].化学学报,2008,66:1371-1376.
    [134]唐云,王军,李效东,李文华,王浩,王小宙.先驱体转化法制备Si-B-N-C陶瓷纤维[J].高等学校化学学报,2008,29:1515-1518.
    [135]王小宙,王军,唐云,李文华,王浩.聚硼硅氮烷的表征及其流变性能[J].应用化学,2009,26:1211-1215.
    [136]王小宙. SiBN透波陶瓷纤维的制备[D].长沙:国防科技大学,2008.
    [137] Xi Zhao, Keqing Han, Yuqing Peng, Jia Yuan, Shutong Li, Muhuo Yu. Anovel precursor route for the production of Si-B-N ceramic fibers[J]. Mater. Lett.,2011,65:2717-2720.
    [138]余木火,毕红艳,李书同,等.硅-硼-氮陶瓷纤维先驱体的制备方法[P].中国专利,101182213A,2008.
    [139]余木火,袁佳,韩克清,等.一种硅硼氮陶瓷纤维先驱体的制备方法[P].中国专利,101913877A,2010.
    [140] Shaohua Dong, Tong Zhao, Caihong Xu. Synthesis and Thermal Behavior ofPolymeric Precursors for SiBCN Ceramic[J]. Journal of Applied Polymer Science,2008,118:3400-3406.
    [141] Zongbo Zhang, Fan zeng, Juanjuan Han, Yongming Luo, Caihong Xu.Synthesis and characterization of a new liquid polymer precursor for Si-B-C-Nceramics[J]. Journal of Materials Sciences,2011,46:5940-5947.
    [142] Roland Wengenmayr. A Material That Keeps Its Cool When Hot, MaxPlanckResearch[J].2012,10:17-23.
    [143] J. Clade. Technology development for SiBNC reinforcing fibers of thesecond generation[R]. Würzburg: Fraunhofer-Institutfür Silicatforschung,2004:32-33.
    [144] J. Clade. Technology development for non-oxide reinforcement fibers in thesystem Si-B-N-C (project stage2a)[R]. Würzburg: Fraunhofer-InstitutfürSilicatforschung,2005:35-39.
    [145] J. Clade. Milestones in the development of Si-B-N-C fibers[R]. Würzburg:Fraunhofer-Institutfür Silicatforschung,2006:52-55.
    [146] H. Spaniol. SiBNC fibers: Ceramic reinforcement fibers for high-techapplications[R]. Würzburg: Fraunhofer-Institutfür Silicatforschung,2007:30-31.
    [147] H. Spaniol. Novel SiBNC ceramic fibers for production, energy and traffictechnology[R]. Würzburg: Fraunhofer-Institutfür Silicatforschung,2009:68-71.
    [148] Shriver D. F., Drezdz M. A.. The manipulation of Air-SensitiveCompounds[M]. New York: Wiley,1986.
    [149]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2001.
    [150]王宗明,何欣翔,孙殿卿.实用红外光谱学[M].北京:石油工业出版社,1978.
    [151]马礼敦.高等结构分析[M].上海:复旦大学出版社,2002.
    [152]胡天娇.聚铝碳硅烷溶液及其沉淀的研究与应用[D].长沙:国防科技大学,2006.
    [153]盛龙生,苏焕华,郭丹滨.色谱质谱联用技术[M].北京:化学工业出版社,2006.
    [154] Richard L. W., Alva L. C.. Dehydrohalogenation and Cleavage Reactions inSilicon-Nitrogen-Boron Systems[J]. Inorganic Chemistry.1966,5:1327-1328.
    [155] Richard L. W., Alva L. C.. The Preparation of an unsymmetricaltrisaminoborane containing a primary amino group[J]. Inorganic Nuclear Chemistryletters,1966,2:201-204.
    [156] Richard L. W., Alva L. C.. Dehydrohalogenation and Cleavage Reactions inSilicon-Nitrogen-Boron Systems. Reactions of Bis(trimethylsily)aminotrimethylsilylaminochloro borane[J]. Inorganic Chemistry,1968,7:419-422.
    [157] K. J. L. Paciorek, R. H. Kratzer, P. F. Kimble, J. H. Nakahara, K. J. Wynne,C. S. Days. Boron-Nitrogen Polymers.3. Nitrogen-and Oxygen-Bridged Compounds[J].Inorganic Chemistry,1988,27:2432-2436.
    [158] K. J. L. Paciorek, R. H. Kratzer, J. H. Nakahara, W. Krone-Schmidt.Reactions of Hydrogen Chloride and Boron Trichloride with (Trimethylsi1yl)aminoGroups[J]. Inorganic Chemistry,1989,28:2896-2898.
    [159] K. J. L. Paciorek, S. R. Masuda, L. A. Hoferkamp, J. H. Nakahara, R. ti.Kratzer. Novel Trimethylsilyl-Substituted Aminoboranes[J]. Inorganic Chemistry,1991,30:577-579.
    [160] Jerzy Fr. Janik, Chaitanya K. Narula, Eric G. Gulliver, E. N. Duesler, RobertT. Paine. Reaction Chemistry of Tris(trimethylsilyl)amine with Monohaloboranes[J].Inorganic Chemistry,1988,27:1222-1227.
    [161] Eric Bacque, Jean-Paul Pillot, M. Birot, J. Dunogues. Synthesis and chemicalproperties of1,3-dichloro-1,3-dihydridodisilazanes[J]. Journal of OrganometallicChemistry,1994,481:161-172.
    [162] J.P. Cannady. Silicon nitride-containing ceramics[P]. US Patent4535007,1985.
    [163] Ulrich Wannagat, Joachim lterzig, Peter Schmidt und Manfred Schulze.Si-methyl-und-chlorsubstituierte Disilazane[J]. Monatshefte ffir Chemic,1971,102:1817-1824.
    [164] J. Silibiger, J. Fuchs. The Preparation of Chlorodisilazanes and Some ofTheir Derivatives[J]. Inorganic Chemistry,1965,4:1371-1372.
    [165]潘祖仁.高分子化学[M].北京:化学工业出版社,2007.
    [166] Marc, B.; Pillot, J. P.. Comprehensive chemistry of polycarbosilane,polysilazane and polycarbosilazane as precursors of ceramics[J]. Chemical Reviews,1995,95,1443.
    [167] Paolo Colombo, Gabriela Mera, Ralf Riedel, Gian Domenico Soraru.Polymer-Derived Ceramics:40Years of Research and Innovation in AdvancedCeramics[J]. J. Am. Ceram. Soc.,2010,93:1805-1837.
    [168]楚增勇,冯春祥,宋永才.先驱体法SiC纤维国内外研究与开发现状[J].无机材料学报,2002,17:193-201.
    [169] R. Richter, G. Roewer, U. Bohme, K. Busch. Organosiliconpolymers-synthesis, architecture, reactivity and applications[J].Appl.Organometal.Chem.,1997,11:71-106.
    [170] K. Okamura. Ceramic fibers from polymer precursors[J]. Composites PartA-applied Science and Manufacturing,1987,18:107-120.
    [171] Lipowitz, J.. Polymer-derived ceramic fibers[J]. American Ceramic Bulletin1991,70:1888.
    [172]郑春满,李效东,余煜玺,曹峰. SiC陶瓷纤维先驱体设计原则及合成研究进展[J].高分子材料科学与工程,2005,21:6-10.
    [173] R. Beyreuther, R. Vogel. Intern. Polym. Proc. XI[M]. Miinchen: HanserPublishers,1996.
    [174] Duperrier S., Chiriac R., Sigala C., Gervais C., Bernard S., Cornu D., MieleP.. Thermal behaviour of a series of poly[B-(methylamino)borazine] for the preparationof boron nitride fibers[J]. Journal of the European Ceramic Society,2009,29:851-855.
    [175] Sylvain Duperrier, Samuel Bernard, Andreea Calin, Catherine Sigala, RodicaChiriac, Philippe Miele, Corneliu Balan. Design of a Series of PreceramicB-Tri(methylamino)borazine-Based Polymers as Fiber Precursors: Architecture,Thermal Behavior, and Melt-Spinnability[J]. Macromolecules,2007,40:1018-1027.
    [176] Marin, G.. In Oscillatory Rheometry in Rheological Measurements[M].Collyer, A. A., Clegg, D. W., Eds.,1998.
    [177] Sylvain Duperrier, Samuel Bernard, Andreea Calin, Catherine Sigala, RodicaChiriac, Philippe Miele, Corneliu Balan. Design of a Series of PreceramicB-Tri(methylamino)borazine-Based Polymers as Fiber Precursors: Shear RheologyInvestigations[J]. Macromolecules,2007,40:1028-1034.
    [178] Sylvain Duperrier, Andreea Calin, Samuel Bernard, Corneliu Balan, PhilippeMiele. Rheological Behavior of poly[B-(methylamino)borazine] in a fiber spinningprocess[J]. Soft Materials,2007,4:123-142.
    [179] Wynne K. J., Rice R. W.. Ceramics via polymer pyrolysis[J]. Annual reviewof materials science,1984,14:297-334.
    [180] R. J. Brotherton, A. L. Mcloskey. Hydrolyses of Some Boron-NitrogenDerivatives In Boron-Nitrogen Chemistry[J]. Advances in Chemistry; AmericanChemical Society: Washington, DC,1964.14131-138.
    [181] Tamotsu Yoshizaki, Haruyuki Watnbe, Toshio Nakigawa. The Kinetics andMechanisms of Hydrolysis of Borazine Derivatives in Aqueous Dioxane[J]. InorganicChemistry,1968,7:422-429.
    [182] Kijima K., Shirasaki S.i.. Nitrogen self-diffusion in silicon nitride[J]. Journalof Chemical Physics,1976,65:2688.
    [183] Kunz K. P., Sarin V. K., Davis R. F., Bryan S. R.. Self-diffusion of silicon-30and nitrogen-15in a phase silicon nitride[J]. Material Science and Engineering A,1988,105-106:47-51.
    [184] Yun Tang, Jun Wang, Xiaodong Li, Wenhua Li, Hao Wang, Xiaozhou Wang.Thermal stability of polymer derived SiBNC ceramics[J]. Ceramics International,2009,35:2871-2876.
    [185]唐云,王军,李效东,李文华,王浩.聚硼硅氮烷的合成及其烧成产物的组成和结构[J].无机材料学报,2008,23:525-530.
    [186]唐云,王军,李效东,王浩,商遥.聚硼硅氮烷先驱体的合成及其目标陶瓷SiBNC的性能[J].材料研究学报,2008,22:291-296.
    [187]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1988.
    [188]江朝强.有机溶剂中毒预防指南[M].北京:化学工业出版社,2006.
    [189] Charles M. Hansen. Hansen Solubility Parameters A Users Handbook[M].London: CRC Press,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700