用户名: 密码: 验证码:
聚醚砜(PES)膜改性及抗污染性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济社会的高速发展,环境污染和环境破坏问题日益突出,并制约了整个社会的可持续发展。膜分离技术做为一种先进的水处理技术,在环境保护方面发挥着越来越大的作用。然而在实际应用中,高分子膜会受到污染的问题,对膜进行频繁的清洗,不仅费时耗工,而且还会对膜造成损害,这样会严重影响膜的实际应用,对膜进行改性以提高膜的性能显得非常必要,因此本文针对膜污染这一问题,试图通过对膜进行改性研究,包括共混改性和表面改性,从而达到提高膜的抗污染性的目的。
     在共混改性实验中,通过相转换法制备了ZnO/聚醚砜(PES)复合膜,并与PES膜进行对比研究,考察ZnO/PES膜的热稳定性、亲水性、渗透性能和抗污染能力。结果显示ZnO/PES复合膜的抗污染性提高。随着ZnO添加量增加,膜的水接触角持续降低,而其分解温度逐渐增大。ZnO添加量为0.0500g/g时,水接触角降低到54.86°,而此时膜的热分解温度比PES膜提高了94.4℃。添加了ZnO的复合膜孔隙率增大。添加了ZnO的复合膜水通量提高,而截留率基本无变化。ZnO添加量为0.0250g/g时水通量为最大值125.40kg/m2h,比PES膜的通量提高了254%。连续过滤BSA溶液(1g/L,pH=7.4)90min后,ZnO添加量为0.0375g/g的复合膜通量衰减率为7.8%,而PES膜通量衰减率为27.7%,可见ZnO/PES复合膜具有更高的抗污染性。
     在水表面上,通过LB膜技术研究了成膜过程中Cu2+对磷脂(DPPC、DPPG、DPMC和DMPG)的影响。结果显示,在成膜过程中对不带电的DPPC,DMPC没有影响,而对于带负电的DPPG和DMPG分子有影响。进一步实验显示,Cu2+和DMPG之间存在强烈相互作用,Cu2+改变了成膜过程中DMPG的相变压力。低浓度的Cu2+溶液导致DMPG压缩性膜,而高浓度的Cu2+溶液导致扩张的DMPG膜。在水表面上,由于DMPG分子之间的静电排斥作用,在相变区域形成树枝状微区。而在Cu2+溶液表面上,静电作用被消除,DMPG形成圆片状微区。同样由于静电作用,在水表面上形成的DMPG膜中具有不均一性,而在Cu2+溶液表面上形成的DMPG膜平整均一。
     在LB膜技术的基础上,采用层层(LBL)自组装技术对膜表面进行涂覆改性,制备了聚电解质/PES复合膜,并研究了其性能。通过在PES膜表面修饰亲水且带电的聚电解质,以达到提高膜的抗污染性的目的。
     通过层层(LBL)自组装技术对聚醚砜(PES)微滤膜进行表面涂覆改性。以29.2g/L NaCl做为支撑电解质,在膜表面涂覆一层聚二烯丙基二甲基氯化铵(PDADMAC)-聚苯乙烯磺酸钠(PSS)得到聚电解质/PES复合膜。结果显示聚电解质/PES复合膜表面负电性增加,由PES膜的-4.13mV变为-35.02mV,水接触角降低,由PES膜的59.86°降低到37.99°;膜的表面形貌表征显示,改性后的聚电解质/PES复合膜表面更加平整,孔径尺寸分布更加均一;过滤0.02g/L腐殖酸溶液120min后,PES膜的通量下降了39.4%,而改性后的聚电解质/PES复合膜通量下降了15.5%,可见聚电解质/PES复合膜具有更高的抗污染性。
As the fast developing of economic society, environment was being polluted anddamaged terribly. This phenomena slacks the continuable development of the wholesociety. Membrane separation technology as an advanced water treatment technology,is playing a more and more important role in environmental protection. However, inpractical application, the polymer membranes are easy to be polluted, which seriouslyaffects the membrane performance. As to this problem, in this paper, the PESmembrane was modified by blending and surface coating methods.
     In the experiment process, ZnO/PES composite membrane was prepared byphase inversion method. By comparing with the PES membrane, the properties ofZnO/PES composite membrane were investigated. The Langmuir-Blodgett (LB)technique was learnt. The phospholipid membranes were prepared by LB technique.The effects of Cu2+on phospholipid membranes were investigated. Layer-by-layerself-assembly (LBL) developed from LB technique was used to modify PESmembrane. The properties of prepared polyelectrolyte/PES composite membraneswere investigated.
     With ZnO as an additive, a series of ZnO/PES composite membranes wereprepared by a phase-inversion method. Experimental results show that, with theincreasing of addition weight of ZnO the contact angle decreases and the thermodecomposition temperature increases. When the addition of ZnO is0.0500g/g, thewater contact angle is54.86°and the thermal decomposition tempureture is improvedby94.4℃.The porosity of ZnO/PES hybrid membrane is improved by adding ZnO.The flux of ZnO/PES composite membrane reached to125.40kg/m2h, which exhibitsan improvement of254%relative to that of the PES membrane, whereas the rejectionchanges little. After90min of continuous filtrating of BSA solution (1g/L, pH=7.4), the decreased flux ratio of the ZnO/PES membrane (0.0375g/g ZnO added) is only7.8%, which implies the antifouling property is significantly improved relative to theantifouling property of the PES membrane.
     The effects of Cu2+on phospholipid (DPPC, DPPG, DMPC and DMPG) at theair/water interface were studied by a Langmuir film balance. The results show thatCu2+ions interact strongly with the negatively charged DMPG. This interactionchanges the phase transition pressure from the LE (liquid-expanded) to the LC(liquid-condensed) state. The introduction of low concentration Cu2+leads to largelyincreased ionic strength, which causes to an expansion of the DMPG membrane.However, high concentration of Cu2+tends to lower pH. The decreased pH and thedirect binding between Cu2+and DMPG together induced a condensed effect onDMPG membrane. The phase transition pressure decreases with the increasingconcentration of Cu2+. The electrostatic repulsion drives DMPG to plant-branch shapedomains. While on the Cu2+solution, the electrostatic repulsion is largely weakened,and circular shape domains appear. Because of strong electrostatic repulsion, the finalmembrane on water subphase is less uniform than that on Cu2+solution subphase.
     The PES microfiltration membrane was modified by the layer by layerself-assembly (LBL) method. To obtain polyelectrolyte/PES composite membrane,29.2g/L NaCl as a support electrolyte solution, one layer ofdiallyldimethylammonium chloride (PDADMAC)/polystyrene sulfonate (PSS) wascoated onto the PES surface. The result shows that the surface of compositemembrane charges more negatively. The charge value is-35.02mV. The water contactangle decreased from59.86°for PES membrane to37.99°for the compositemembrane. The surface morphology shows that the surface of composite membrane issmoother, and the pore size distribution is more uniform. Filtrating of0.02g/L humicacid in120min, the decreased flux rate of PES membrane is39.4%, while thedecreased flux rate for the composite membrane is15.5%. The composite membraneshow higher antifouling ability.
引文
[1] JUDA W, MCRAE WA. Coherent ion-exchange gels and membranes [J]. Journalof American chemistry society,1950,72:1044.
    [2] MARCEL MULDER,李琳译.膜技术基本原理[M].北京:清华大学出版社,1999.
    [3]徐又一,徐志康.高分子膜材料[M].北京:化学工业出版社,2005.
    [4]顾觉生.团结起来为振兴民族膜工业而努力奋斗[J].膜科学与技术.1996,16(1):1-4.
    [5]邵刚.膜法水处理技术(第二版)[M].北京:冶金工业出版社,2000.
    [6]刘茉娥,陈欢林.新型分离技术基础[M].浙江:浙江大学出版社,1999.
    [7] KOROS WJ, MA YH, SHIMIDZU T. Terminology for membranes andmembrane processes (IUPAC Recommendation1996)[J]. Journal of MembraneScience,1996,120:149-159.
    [8] OSADA Y, NAKAGAWA T. Membrane Science and Technology[M]. New York:Marcel Dekker Inc.,1992.
    [9]董亚玲顾平,陈卫文刘耀璘.混凝-微滤膜工艺处理含铬废水[J].膜科学与技术,2004,4(24):17-20.
    [10] BROOM G P, SQUIR ES R C. The treatment of heavy metal effluents bycrossflow microfiltration[J]. Journal of Membrane Science,1994,87:219~230.
    [11]袁其明.膜分离技术处理大豆乳清废水[J].水处理技术,2001,27(3):161-163.
    [12] BRIK M., SCHOEBERL P., CHAMAM B et al. Advanced treatment of textilewastewater towards reuse using a membrane bioreactor[J]. ProcessBiochemistry,2006,41:1751–1757.
    [13]许振良,徐惠敏,翟晓东.胶束强化超滤处理含镉和铅离子废水的研究[J].膜科学与技术,2002,22(3):15-20.
    [14] CHEN GH,CHAI XJ,YUE POLOCK et al. Treatment of texitile desizing wasterwater by pilot scale nanofiltration membrane separation [J]. Journal ofMembrane Science,1997,127(1):93-99.
    [15]钟丽端张显球管翀.纳滤回收染料废水中染料的实验研究[J].南京师范大学学报,2009,9(1):49-52
    [16]刘玉荣陈东升洪勇琦于品早陈华陈一鸣.化工装备技术,200021(6):9-12
    [17] MOHSEN-NIA M, MONTAZERI P, MODARRESS H. Removal of Cu2+andNi2+from wastewater with a chelating agent and reverse osmosis processes[J].Desalination2007,217:276-281.
    [18] QDAIS HA, MOUSSA H. Removal of heavy metals from wastewater bymembrane processes: a comparative study[J]. Desalination,2004,164(2):105-110.
    [19] IPEK U. Removal of Ni(II) and Zn(II) from an aqueous solution by reverseosmosis[J]. Desalination2005,174:161-169.
    [20] KATAYON S, NOOR MJMM, AHMAD J et al. Effects of mixed liquorsuspended solid concentrations on membrane bioreactor effciency for treatmentof food industry wastewater[J]. Desalination2004,167:153–158.
    [21]王春梅谷和平王义刚徐南平.陶瓷微滤膜处理含油废水的工艺研究[J].南京化工大学学报,2000,22(5):38-42.
    [22] HUANG JH, ZENG GM, ZHOU CF et al. Adsorption of surfactant micelles andCd2+,Zn2+in micellar-enhanced ultrafltration[J]. J. Hazard. Mater.2010,183:287-293.
    [23] BARAKAT MA, SCHMIDT E. Polymer-enhanced ultrafltration process forheavy metals removal from industrial wastewater[J]. Desalination,2010,256:90-93.
    [24] MUTHUKRISHNAN M, GUHA BK. Effect of pH on rejection of hexavalentchromium by nanofltration[J]. Desalination,2008,219:171-178.
    [25] JIRARATANAOON R, SUNGEPET A, LUANSOWAN P. Performanceevaluation of nanofiltration membrane for treatment of efflusents containingreactive dye and salt [J].Desalination,2000,130:177-183.
    [26]刘梅红,姜坪.膜法染料废水处理工艺研究[J].膜科学与技术,2001,21(3):50-52.
    [27]罗惠波.膜过滤技术在白酒除浊中的应用研究[J].酿酒科技2004.31(5):38-40.
    [28]谢广发周建弟孟中法等.错流膜过滤提高黄酒非生物稳定性的研究[J].酿酒科技,2003(4):80-81.
    [29]刘达玉钟世荣.管式膜超滤生黄酒的研究[J].食品科学,2004,25(3):110-112.
    [30]史红文,李晓湘,唐东秀等.无机膜超过滤技术在白酒除浊中的应用[J].过滤与分离,2002,12(1):32-33.
    [31]冯凌蕾,陆健,顾国贤.膜分离法脱醇对啤酒风味影响的初步研究[J].酿酒科技,2005(5):73-76.
    [32]寿洪志,谢广发,凌志勇等.膜分离技术在酿酒业的应用探讨[J].中国酿造,2007(3):58-60.
    [33]崔伟中,刘晨.松花江和沱江等重大水污染事件的反思[J].水资源保护,2006,22(1):1-4
    [34]韩晓刚黄延林.我国突发性水污染事件统计分析[J].水资源保护,2010,26(1):84-88
    [35]彭祺,胡春华,郑金秀等.突发性水污染事故预警应急系统的建立[J].环境科学与技术.2006,29(11):58-62.
    [36]陈红书.浅析我国水资源与水污染治理现状[J].云南环境科学,2003,22:66-69
    [37]王守中,张统.我国农村的水污染特征及防治对策[J].中国给水排水2008,24(18):1-4.
    [38]周爱萍.我国农村水污染现状及防治措施[J].安徽农业科学,2009,37(9)4345-4346.
    [39]朱亮张文妍.农村水污染成因及治理对策研究[J].水资源保护,2002,2:17-20
    [40]张爱平,杨世琦,张庆忠等.宁夏灌区农田退水污染形成原因及防治对策[J].中国生态农业学报,2008,16(4):1037-1042
    [41]李锦秀廖文根陈敏建王浩.我国水污染经济损失估算[J].中国水利2003:63-66.
    [42]夏军黄浩.海河流域水污染及水资源短缺对经济发展的影响[J].资源科学,2006,28(2):2-7.
    [43]洪滨,崔广柏,张润润等.我国水污染经济损失计量方法综述[J].水电能源科学2007,25(5):15-18.
    [44]朱发庆高冠民.东湖水污染经济损失研究[J].环境科学学报,199313(2):214-222
    [45]王国建,王德海,邱军等.功能高分子材料[M].上海:华东理工大学出版社,2006.
    [46] MARCEL MULDER.膜技术基本原理[M].北京:清华大学出版社,1999.
    [47] VAN DE WITTE P, DIJKSTRA PJ, VAN DEN BERG JWA et al. Phaseseparation processes in polymer solutions in relation to membrane formation[J].Journal of Membrane Science,1996,117:1-31.
    [48]程宝家,周持兴.利用聚合物共混物的浊点数据计算Flory-Huggins相互作用参数[J].合成橡胶工业,2000,23:115-115.
    [49]魏永明,杨晓天,许振良.相转化法聚合物/溶剂/非溶剂铸膜体系的热力学计算[J].南京工业大学学报,200527:1-4.
    [50]徐铜文.膜化学与技术教程[M].合肥:中国科学技术大学出版社,2003.
    [51] KESTING R E, MENEFEE A. The role of formamide in the preparation ofcellulose acetate membranes by the phase inversion process[J]. Kolloid Z. Z.Polym.,1969,230:341.
    [52] KESTING RE, FRITZSCHE AK. Polymeric Gas Separation Membranes[J].Wiley, New York,1993:77-91.
    [53] STRATHMANN H, SCHEIBLE P, BAKER RW. A rationale for the preparationof Loeb-Sourirajan-type cellulose acetate membranes[J]. Journal of AppliedPolymer Science,1971,15(4):811-828.
    [54] ALTENA FW, SMOLDERS CA. Calculation of liquid-liquid phase separation ina ternary system of a polymer in a mixture of a solvent and a nonsolvent[J].Macromolecules,1982,15:1491-1497.
    [55] YILMAZ L, MCHUGH AJ. Analysis of nonsolvent-solvent-polymer phasediagrams and their relevance to membrane formation modeling[J]. Journal ofapplied polymer science,1986,31(4):997-1018.
    [56] REUVERS AJ, SMOLDERS CA. Formation of membranes by means ofimmersion precipitation Part II. The mechanism of formation of membranesprepared from the system cellulose acetate-acetone-water[J]. Journal ofMembrane Science.1987,34(1):67-86.
    [57] REUVERS AJ, VAN DEN BERG JWA, SMOLDERS CA. Formation ofmembranes by means of immersion precipitation Part I. A model to describemass transfer during immersion precipitation[J]. Journal of Membrane Science,1987,34(1):45-65.
    [58] SMOLDERS CA, REUVERS AJ, BOOM RM. Microstructures inphase-inversion membranes Part1. Formation of macrovoids[J]. Journal ofMembrane Science,1992,73:259-275.
    [59] BEERLAGE MAM. Polyimide ultrafiltration membranes for non-aqeoussystems. PhD thesis University of Twente, Enschede,1994.
    [60] NILSSON JL. Protein fouling of UF membranes: Causes and Consequences[J].Journal of Membrane Science,1990,52:121-142.
    [61] MATTHIASSON E.The role of macromolecular adsorption in fouling ofultrafiltration membranes[J]. Journal of Membrane Science,1983,16:23-26.
    [62]刘玲,王晔.超滤过程中膜的吸附现象是造成膜污染的关键[J].过滤与分离,1997,4:13-17.
    [63] XU TW,FU RQ, YAN LF. A new insight into the adsorption of bovine serumalbumin onto porous polyethylene membrane by zeta potential measurements,FTIR analysis and AFM observations[J]. Journal of Colloid and InterfaceScience,2003,262(2):342-350
    [64] XU TW. Aggregation of the Adsorbed Proteins—in Solution or on the Surface?[J]. Chinese chemical Letter,2002,13(3):262-265
    [65] KENJIROU K. Study on the correlation of protein with porous polymericsurface[J], Master Dissertation,1991, The University of Tokyo.
    [66] SUREWICZ WK, MANTSCH HH. Determination of protein secondary structureby Fourier transform infrared spectroscopy: A critical assessment[J].Biochemistry,1993,32(2):389–394.
    [67] KONTTURI K, VUORISTO M. Adsorption of globular proteins on polymeric.Microfiltration membranes[J]. Desalination,1996,104:99-105.
    [68] BAJPAI AK. Adsorption of bovine serum albumin onto glass powder surfacescoated with polyvinyl alcohol[J].Journal of Applied Polymer Science,2000,78:933-940
    [69] ERIC D. Protein in solution and at interface[M]. London,CRC press,1993.
    [70]刘忠州,续曙光,李锁定,微滤、超滤过程中的膜污染与清洗[J].水处理技术,1997,23(4):187-193.
    [71] MARCEL MULDER.膜技术基本原理[M],北京:清华大学出版社,1999.
    [72] SINGH S, MATSUURA T, RAMAMURTHY P. Treatment of excesswhite-water and coating plant effluent by modified polyethersulfoneultrafiltration membrane[M]. Atlanta, GA: TAPPI Press,1997.
    [73] MA XL, SU YL, SUN Q et al. Enhancing the antifouling property ofpolyethersulfone ultrafiltration membranes through surfaceadsorption-crosslinking of poly(vinyl alcohol)[J]. J Membrane Sci,2007,300:71–80.
    [74] REDDY AVR, MO DJ, BHATTACHAR A et al. Surface modification ofultrafiltration membranes by preadsorption of a negatively charg ed polymer (I)Permeation of water soluble polymers and inorg anic salt solutions andfouling resistance properties[J]. J Membr Sci,2003,214(2):211-221.
    [75]LIU LF, ZHANG PH, YANG FL. Adsorptive removal of2,4-DCP from water byfresh or regenerated chitosan/ACF/TiO2membrane[J]. Separation andPurification Technology,2010,70(3):354–361.
    [76] TAE-HYUN BAE, TAE-MOON TAK. Effect of TiO2nanoparticles on foulingmitigation of ultrafiltration membranes for activated sludge filtration[J]. Journalof Membrane Science,2005,249(1-2):1–8.
    [77] MANSOURPANAH Y, MADAENI SS, RAHIMPOUR A et al. Formation ofappropriate sites on nanofiltration membrane surface for binding TiO2photo-catalyst: Performance, characterization and fouling-resistantCapability[J].Journal of Membrane Science,2009,330(1-2):297–306.
    [78]周桂花,肖峰,肖萍,王东升,段晋明,石健,臧莉.两性离子在聚偏氟乙烯(PVDF)膜表面接枝改性的研究[J].环境科学,2013,34(10):3945-3953.
    [79] BELFER S, FAINCHTAIN R, PUR Y et al. Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes—unmodified, modified andprotein fouled[J]. J Membr Sci,2000,172(1-2):113-124.
    [80] WAVHAL DS, FISHER ER. Hydrophilic modification of polyethersulfonemembranes by low temper ature lasmainduced graft polymer ization [J]. JMembr Sci,2002,209(1):255-269.
    [81] MOK S, WORSFOLD D J, FOUDA A et al. Surface mo dification ofpolyethersulfone hollow-fiber membranes by ray irradiation [J]. J Appl PolymSci,1994,51:193-199.
    [82] PIERACCI J, CRIVELLO JV, BELFORT G. Photochemical modification of10kDa polyethersulfone ultrafiltration membranes for reduction of biofouling[J]. JMembrane Sci1999,156:223–40.
    [83] PIERACCI J, WOOD DW, CRIVELLO JV et al. UV-assisted graftpolymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltrationmembranes: comparison of dip versus immersion modification techniques[J].Chem Mater,2000,12:2123–2133.
    [84] PIERACCI J, CRIVELLO JV, BELFORT G. UV-assisted graft polymerizationof vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes usingselective UV wavelengths[J]. Chem Mater2002,14:256–265.
    [85] KILDUFF JE, MATTARAJ S, PIERACCI JP et al. Photochemical modificationof poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes forcontrol of fouling by natural organic matter[J]. Desalination,2000,132:133–42.
    [86] PIERACCI J, CRIVELLO JV, BELFORT G. Increasing membrane permeabilityof UV-modified poly(ether sulfone) ultrafiltration membranes[J]. J MembraneSci,2002,202:1–16.
    [87] TANIGUCHI M, PIERACCI J, SAMSONOFF WA, BELFORT G. UV-Assistedgraft polymerization of synthetic membranes: mechanistic studies[J]. ChemMater,2003,15:3805–3812.
    [88] ULBRICHT M, RIEDEL M, MARX U. Novel photochemical surfacefunctionalization of polysulfone ultrafiltration membranes for covalentimmobilization of biomolecules[J]. J Membrane Sci,1996,120:239–59.
    [89]宋东升,杜启云,王薇.有机-无机杂化膜的研究进展[J].高分子通报,2010,3:12-15.
    [90]崔东胜,杨振生,王志英,等.有机-无机杂化超滤膜的研究进展[J].水处理技术,2008,34(10):1-5.
    [91] GOOSSENS I, VAN HAUTE A. The influence of mineral fillers on themembrane properties of high flux asymmetric cellulose acetate reverse osmosismembranes[J]. Desalination,1976,18(2):203-214.
    [92] GOOSSENS I, VAN HAUTE A. The use of direct osmosis tests ascomplementary experiments to determine the water and salt permeabilities ofreinforced cellulose acetate membranes[J]. Desalination,1978,26(3):299-308.
    [93] WU GP, GAN SY, CUI LZ et al. Preparation and characterization of PES/TiO2composite membranes[J]. Applied Surface Science,2008,254(21):7080–7086.
    [94] OH SU JIN, KIM NOWON, LEE YONG TAEK et al. Preparation andcharacterization of PVDF/TiO2organic–inorganic composite membranes forfouling resistance improvement[J]. Journal of Membrane Science,2009,345(1-2):13–20.
    [95] YANG Y, WANG P. Preparation and characterizations of a new PS/TiO2hybridmembranes by sol–gel process[J].Polymer,2006,47(8):2683–2688.
    [96]湛含辉,曹江,龚兴艳.纳米二氧化钛粒子对乙酸纤维素微滤膜结构和性能的影响[J].膜科学与技术,2010,30(3):76-81.
    [97] YU LYY, XU ZL, SHEN HM et al. Preparation and characterization ofPVDF–SiO2composite hollow fiber UF membrane by sol–gel method[J].Journal of Membrane Science,2009,337(1-2):257–265.
    [98] WU HQ, TANG BB, WU PY et al. Novel ultrafiltration membranes preparedfrom a multi-walled carbon nanotubes/polymer composite[J]. Journal ofMembrane Science,2010,362(1-2):374–383.
    [99] LIU F, MOGHARE MR, LI K. Preparation and characterization ofpoly(vinylidene fluoride)(PVDF) based ultrafiltration membranes usingnanoγ-Al2O3[J]. Journal of Membrane Science,2011,366(1-2):97-103.
    [99] HUANG ZQ, CHEN L, CHEN K et al. A Novel Method for Controlling theSublayer Microstructure of an Ultrafiltration Membrane: The Preparation ofthe PSF–Fe3O4Ultrafiltration Membrane in a Parallel Magnetic Field[J].Journal of Applied Polymer Science,2010,117(14):1960-1968.
    [101] MAXIMOUS N, NAKHLA G, WAN W et al. Performance of a novelZrO2/PES membrane for wastewater filtration[J]. Journal of MembraneScience,2010,352(1-2):222–230.
    [102] OH SU JIN, KIM NOWON, LEE YONG TAEK et al. Preparation andcharacterization of PVDF/TiO2organic–inorganic composite membranes forfouling resistance improvement[J]. Journal of Membrane Science,2009,345(1-2):13–20.
    [103] RAZMJOU A, MANSOURI J, CHEN V. The effects of mechanical andchemical modification of TiO2nanoparticles on the surface chemistry, structureand fouling performance of PES ultrafiltration membranes[J].Journal ofMembrane Science,2010:73-84.
    [104]俞三传,高从锴.多元合金超滤膜的研制[J].膜科学与技术,2001,21(2):10-13.
    [105]吴开芬,李书申,韩式荆.聚醚砜-磺化聚砜共混膜的研究[J].环境化学,1993,12(6):458-462.
    [106]郭睿威,赵书英,马小乐等.两亲梳型嵌段共聚物的合成及其共混改性聚醚砜超滤膜的抗污染性研究[J].膜科学与技术,2008,28(2):27-37.
    [107]施柳青,谢德峰,刘光全等.磺化聚醚砜(SPES)/聚醚砜(PES)合金超滤膜的研究[J].净水处理,2000,19(4):16-19.
    [108]JEAN-PERRRE QUENTIN. Sulphonated polyarylethersulphone[P]. US:3709841,1973-05-08.
    [109]任彦荣;李志强.磺化聚醚砜的研究及其应用进展[J].化学推进剂与高分子材料,2005,3(2):23-27.
    [110]杨旋旋,邓波,虞鸣,于洋,张伯武,李景烨.预辐射接枝丙烯酰胺改性PVDF粉体及亲水性滤膜的制备.辐射研究与辐射工艺学报[J].201129(4):209-213.
    [111] CHEN LF, HOU ZC, LU XF et al. Antifouling microfiltration membranesprepared from poly(vinylidene fluoride)-graft-Poly(N-vinyl pyrrolidone)powders synthesized via pre-irradiation induced graft polymerization[J].Journal of Applied Polymer,2013,128(6):3949-3956.
    [112] YANG Y, WANG P. Preparation and characterizations of a new PS/TiO2hybrid membranes by sol-gel process[J]. Polymer,2006,47:2683–2688.
    [113] MAXIMOUS N, NAKHLA G, WAN W et al. Preparation, characterization andperformance of Al2O3/PES membrane for wastewater filtration[J]. J. Membr.Sci.,2009,341:67-75.
    [114] MAXIMOUS N, NAKHLA G, WAN W et al. Effect of the metal oxide particledistributions on modified PES membranes characteristics and performance [J]. J.Membr. Sci.,2010,361:213-222.
    [115] LIU XJ, PENG YL, JI SL. A new method to prepare organic–inorganic hybridmembranes[J]. Desalination,2008,221:376–382.
    [116] MAXIMOUS N., NAKHLA G., WAN W et al. Performance of a novelZrO2/PES membrane for wastewater filtration[J].J. Membr. Sci.,2010,352:222-230.
    [117] WU G, GAN S, CUI L et al. Preparation and characterization ofPES/TiO2composite membranes[J]. Applied Surface Science,2008,254:7080–7086.
    [118] LI JF, XU ZL, YANG H et al. Effect of TiO2nanoparticles on the surfacemorphology and performance of microporous PES membrane[J]. AppliedSurface Science,2009,255:4725–4732.
    [119] WANG YJ, YANG LR, LUO GS et al. Preparation of cellulose acetatemembrane filled with metal oxide particles for the pervaporation separationofmethanol/methyl tert-butyl ether mixtures[J]. Chemical EngineeringJournal,2009,146:6–10.
    [120] DECHER G, HONG J D, SCHMITT J. Buildup of ultrathin multilayer films byaself-assembly process: III. Consecutively alternating adsorption of anionic andcationic polyelectrolytes on charged surfaces.[J].Thin Solid Films,1992,210:831-835.
    [121] DECHER G. Fuzzy nanoassemblies: toward layered polymeric multicomposites.[J]. Science,1997,277:1232-1237.
    [122] FADHILLAH F, ZAIDI SMJ, KHAN Z et al.Development of polyelectrolytemultilayer thin film composite membrane for water desalination application.[J].Desalination,2013,318:19-24.
    [123] DIAGNE F, MALAISAMY R, BODDIE V et al. Polyelectrolyte and silvernanoparticle modification of microfiltration membranes to mitigate organic andbacterial fouling.[J]. Environmental Science&Technoloty,2012,46:4025-4033.
    [124]王宗文,苏保卫,高学理等.层层自组装PDADMAC/PSS纳滤膜的制备[J].膜科学与技术,2012,32(1):27-32.
    [125] DENG HY, XU YY, ZHU BK et al. Polyelectrolyte membranes prepared bydynamic self-assembly of poly(4-styrenesulfonic acid-co-maleic acid) sodiumsalt(PSS/MA)for nanofiltration(I).[J]. J. Membr. Sci,2008,323:125-133.
    [126] LI JF, XU ZL, YANG H et al. Effect of TiO2nanoparticles on the surfacemorphology and performance of microporous PES membrane[J]. AppliedSurface Science,2009,255:4725–4732
    [127] DENG B, YU M, YANG X et al. Antifouling microfiltration membranesprepared from acrylic acid or methacrylic acid grafted poly(vinylidene fluoride)powder synthesized via pre-irradiation induced graft polymerization[J]. J.Membr. Sci.2010,350:252-258.
    [128] WEI Y, CHU HQ, DONG BZ et al. Effect of TiO2nanowire addition on PVDFultrafiltration membrane performance[J]. Desalination,2011,272:90–97.
    [129] YANG Y, WANG P. Preparation and characterizations of a new PS/TiO2hybrid membranes by sol-gel process[J]. Polymer,2006,47:2683–2688.
    [130] WU G, GAN S, CUI L et al. Preparation and characterization ofPES/TiO2composite membranes[J]. Applied Surface Science,2008,254:7080–7086.
    [131] WU H, TANG B, WU P. Novel ultrafiltration membranes prepared from amulti-walled carbon nanotubes/polymer composite[J]. J. Membr. Sci.2010,362:374-383.
    [132] WU H, TANG B, WU P. Novel ultrafiltration membranes prepared from amulti-walled carbon nanotubes/polymer composite[J]. J. Membr. Sci.2010,362:374-383.
    [133] SIGEL A, SIGEL H, ROLAND KO. Metal Ions in life sciences[M]. John Wileyand Sons, Chichester,2006, Vol.1.
    [134] HOERNKE M, FALENSKI JA, SCHWIEGER C et al. Triggers for β-sheetformation at the hydrophobic–hydrophilic interface: high concentration, in-planeorientational order, and metal ion complexation [J].Langmuir2011,27(23):14218-14231.
    [135] ALBERTS B, JOHNSON A, LEWIS J et al. Molecular Biology of the Cell[M].New York: Garland Science,2002.
    [136] SINGER SJ, GARTH L. Fluid mosaic model of the structure of cell membranes[J]. Science,1972,175:720-731.
    [137] LANGMUIR I. The Constrution and Fundamenatal Properties of Solids andLiquids, II. Liquids[J]. J. Am. Chem. Soc.,1917,39,1848-1906.
    [138] RICHADSON T. Langmuir-Blodgett Films an Introduction to MolecularElectronics[M]. London: Edward Arnold,1995.
    [139] KATHARINE B, BLODGETT. Films Built by Depositing SuccessiveMonomolecular Layers on a Solid Surface[J]. J. Am. Chem.Soc.,1935,57:1007-1022.
    [140]闫红霞.胆固醇/磷脂复合LB膜的微结构.硕士毕业论文,河南大学,开封.
    [141]全国第一届LB膜会议论文集,河南大学,开封,1988.
    [142] CHRISTOFOROU M, LEONTIDIS E, BREZESINSKI G. Effects of SodiumSalts of Lyotropic Anions on Low-Temperature, Ordered Lipid Monolayers[J].J. Phys. Chem. B,2012,116:14602-14612.
    [143] MALTSEVA E, SHAPOVALOV VL, MOEHWALD H et al. Interactionbetween chitosan and bovine lung extract surfactants[J]. J.Phys. Chem. B2006,110:919-926.
    [144]GARIDEL P, BLUME A.1,2-Dimyristoyl-glycero-3-phosphoglycerol (DMPG)monolayers: influence of temperature, pH, ionic strength and binding of alkalineearth cations[J]. Chemistry and Physics of Lipids,2005,138:50-59.
    [145] GARIDEL P, BLUME A, HUEBNER W. A Fourier transform infraredspectroscopic study of the interaction of alkaline earth cations with thenegatively charged phospholipid1,2-dimyristoyl-sn-glycero-3-phosphoglycerol[J].Biochimica et Biophysica Acta,2000,1466(1-2):245-259.
    [146] FRINGELI UP, GUENTHARD HH. Membr. Spectrosc.1981,31,270-332
    [147] TATUR S, BADIA A. Influence of hydrophobic alkylated gold nanoparticleson the phase behavior of monolayers of DPPC and clinical lung surfactant[J].Langmuir2012,28(1):628-639.
    [148] FLOERSHEIMER M, MOEWALD H. Development of equilibrium domainshapes in phospholipid monolayers[J]. Chem. Phys. Lipids1989,49:231-241.
    [149] MCCONNELL HM, KELLER DJ. Finite two-dimensional phospholipidcrystals[J].Proc. Natl. Acad. Sci. USA1987,84:4706-4708.
    [150]KATHARINE B. BLODGETT. Films Built by Depositing SuccessiveMonomolecular Layers on a Solid Surface[J]. J. Am. Chem. Soc.,1935,57:1007-1022.
    [151] DECHER G, HONG JD,SCHMITT J. Thin Solid Film,1992,210:211:832-835.
    [152] FRANK CARUSO, CARUSO RACHEL A, MOEHWALD HELMUTH.Nanoengineering of Inorganic and Hybrid Hollow Spheres by ColloidalTemplating[J]. Science,1998,282(6):1111-1114.
    [153]李建波,许群.层层自组装技术的发展与应用[J].世界科技研究与发展,2007,29(3):31-38.
    [154] DECHER G, HONG JD, SCHMITT J. Buildup of ultrathin multilayer filmsby aself-assembly process: III. Consecutively alternating adsorption of anionicand cationic polyelectrolytes on charged surfaces.[J].Thin Solid Films,1992,210:831-835.
    [155] DECHER G. Fuzzy nanoassemblies: toward layered polymeric multicomposites.[J]. Science,1997,277:1232-1237.
    [156] FADHILLAH F, ZAIDI SMJ,KHAN Z et al.Development of polyelectrolytemultilayer thin film composite membrane for water desalination application.[J].Desalination,2013,318:19-24.
    [157] DIAGNE F, MALAISAMY R, BODDIE V et al. Polyelectrolyte and silvernanoparticle modification of microfiltration membranes to mitigate organic andbacterial fouling.[J]. Environmental Science&Technoloty,2012,46:4025-4033.
    [158]王宗文,苏保卫,高学理等.层层自组装PDADMAC/PSS纳滤膜的制备[J].膜科学与技术,2012,32(1):27-32.
    [159] DENG HY,XU YY, ZHU BK et al. Polyelectrolyte membranes prepared bydynamic self-assembly of poly(4-styrenesulfonic acid-co-maleic acid) sodiumsalt(PSS/MA)for nanofiltration(I).[J]. J. Membr. Sci,2008,323:125-133.
    [160]徐又一,徐志康.高分子膜材料[M].北京:化学工业出版社,2005.
    [161] MALAISAMY R, BRUENING ML. High-flux nanofiltration membranesprepared by adsorption of multilayer polyelectrolyte membranes on polymericsupports[J]. Langmuir,2005,21:10587–10592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700