用户名: 密码: 验证码:
功能材料结构与性能的同步辐射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类社会的进步过程即是不断使用新型材料满足自身需求的过程。半导体材料、光伏材料、催化剂、热电材料等功能材料在当代人类的经济生活和科学研究中都具有重要的价值。为使种类日益增长的新型材料能够物尽其用,我们首先需要深入了解这些材料的基本结构。随着同步辐射实验技术的快速发展,材料科学家获得了在原子尺度上研究物质精细结构的有力工具。X射线吸收精细结构谱学(XAFS)使精确确定物质中的原子结构成为可能。在本文中,我们利用基于同步辐射的XAFS技术并结合X射线衍射(XRD)和紫外可见吸收光谱(UV-Vis)等多种常规技术,重点采用同步辐射原位XAFS方法,从原子结构出发,更为深入地研究各种功能材料的构效关系。对半导体材料(Se纳米管)、热电材料(Ag2Se纳米颗粒)、光电极材料(TiO2)和光电极反应催化剂(CoxO)的原子结构进行了详细的研究:在原子尺度上,给出了Se纳米管生长过程的精确描述;确定了超晶格Ag2Se的原子局域结构和相变机理;详细研究了高性能光降解催化剂Mo掺杂TiO2的原子结构;证实了CoxO系列光电极催化剂具有活性中间体:为上述功能材料的理论研究和实际应用提供了参考信息。
     本论文的主要研究内容如下:
     1. Se纳米管液相生长过程的原位XAFS研究
     Se是一种被广泛研究的非本征半导体材料,其间接带隙为1.6eV。除了Ge和Si之外,Se是另一种在半导体工业中获得广泛应用的材料。常见的Se单质具有特殊的晶体结构六方晶系(三方硒,t-Se),是一种理想的产生一维纳米结构的前驱物。在已报道的关于一维Se纳米结构生长过程的研究中,研究者大多是基于中间产物的阶段性形貌变化来推断Se纳米结构的生长机理,并不能在原子尺度上精确描述Se纳米管或纳米线的生长机理。为了明确一维Se纳米结构生长过程中的结构变化信息,尤其是初期成核阶段的机理,我们利用具有原子尺度结构敏感性的XAFS技术,原位研究了一维硒纳米管的生长过程,并使用多重散射理论模拟进一步分析发现Se纳米颗粒前驱物和Se纳米管的基本组成单元都是Se单原子链。在Se纳米颗粒中,Se单原子链无规排布形成无定型结构;经超声处理,Se单原子链分散后按照六棱柱形组装为Se纳米管。本项研究从原子尺度给出了Se纳米管的成核和生长机理,为一维Se纳米材料的生长机理和可控制备研究提供了重要的参考信息。
     2. Ag2Se超晶格结构的XAFS研究及相变动力学模拟
     β-Ag2Se具有低的热导率、高的Seebeck系数和低的电阻率,是一种有着重要应用前景的热电材料。近年来,很多研究报道了非计量比的超晶格β-Ag2Se且有特殊的优良性能。然而对超晶格β-Ag2Se性质的深入研究受限于其原子结构仍不明确。为了在原子尺度上探测超晶格β-Ag2Se的结构信息,我们采用了同步辐射XAFS实验技术。示差量热法(DSC)研究表明样品显示出了除常规正交-立方相变之外的新相变过程。我们采用模拟退火方法来辅助拟合Se K边的扩展X射线吸收精细结构谱(EXAFS)的x(k)函数,获得超晶格β-Ag2Se的精确结构参数。拟合结果显示在超晶格β-Ag2Se中存在一个间隙位Ag原子。根据这一结构模型进行的第一性原理分子动力学研究发现,新的相变过程来自于间隙位Ag原子周围的结构扭曲。这些结果为超晶格β-Ag2Se的相变机理研究提供了理论基础。
     3.光电材料Mo掺杂Ti02的结构解析及其性能研究
     二氧化钛是半导体中最具有应用前景的光电催化剂之一,具有高催化活性、长载流子寿命、高化学稳定性和无毒等优点。但由于带隙宽度的限制,二氧化钛只能够吸收太阳光光谱中的紫外区(<380nm),因此增大二氧化钛的可见光利用率对提高其光催化性能有着非常重要的意义。我们研究了用凝胶溶胶方法制备的高性能Mo掺杂二氧化钛光催化剂的局域结构和性能。EXAFS分析结果表明正六价的Mo原子替代了Ti原子的位置掺入锐钛矿相中,并且存在Mo-O键长收缩现象。结合第一性原理计算,我们发现键长收缩来源于Mo原子周围的高电子密度从而导致Mo-O键共价性增强。光催化降解亚甲基蓝实验证实了Mo掺杂提高了二氧化钛的光催化性能。这些结果为提高光电材料性能的研究提供了实验基础。
     4.产氧催化剂构效关系的原位XAFS和UV-Vis研究
     太阳光驱动电化学水分解反应产生氢气和氧气是一种有效的生产清洁能源的手段。目前广泛使用的半导体光电极(如Ti02)的能量转化率普遍受到电极产氧反应的高过电势影响。而过渡金属氧化物(TMO,如CoOx)产氧催化剂可以有效降低产氧反应过电势,提高能量转化效率。我们通过在电解质中引入适当的质子受体,实现了COOx产氧催化剂在较宽pH范围内的反应活性。我们还利用电化学方法结合原位紫外可见光谱和原位XAFS技术研究了TMO催化剂的活性起源以及催化剂活性与工作电解质之间的关系。
In the developing process of the human society, exploiting functional material plays a crucial role. Various functional materials such as semiconductors, photovoltaic materials, catalysts, and thermoelectric materials, are of vital importance in the industrial and scientific fields. To optimize this utilization, deep understanding in the atomic structures of functional materials is required. As the advanced synchrotron radiation technique, X-ray absorption fine structure spectroscopy (XAFS) has become a powerful tool to precisely determine atomic structure of samples, by which the properties of maters could be reviewed from a basic aspect. In the thesis, we detected the atomic structures of semiconductors (Se nanotubes), thermoelectric materials (Ag2Se nanoparticles), photoelectrode catalyst (CoxO) and photoelectrochemical materials (TiO2). Based on the obtained structure information, we discovered their growth mechanism, phase-transition process and activities. The main contents in this thesis are as follow:
     (1) Growth mechanism of Se nanotube revealed by in situ XAFS technique
     As a kind of extrinsic semiconductor with an indirect gap of1.6eV, Se is extensively studied and widely used in semiconductor industry. The common Se, t-Se with a hexagonal crystal structure, is an ideal precursor for1-dimension nanostructures. The previous study on the growth mechanism of1-dimension Se nanostructures based on morphology could not provide precise growth process of Se nanotubes or nanowires, especially in the initial stage. We adopted XAFS with high sensitivity of local atomic structure to explore the growth mechanism of Se nanotubes. The Se K-edge XANES spectra reveal that both of the basic units for the precursors (Se nanoparticles) and Se nanotubes are Se monatomic chains. In Se nanoparticles, monatomic chains are irregularly packed whereas they are regularly packed in a hexagonal prism pattern in Se nanotubes. This study provided important information about growth mechanism of Se nanotube in atomic scale.
     (2) Superlattice structure of Ag2Se investigated by XAFS and dynamic simulation
     P-Ag2Se is a promising thermoelectric material due to its low thermal conductivity, high Seebeck factor and low resistivity. Recently, non-stoichiometric (3-Ag2Se with superlattice structure was reported to be with excellent performance. However, deep understanding of non-stoichiometric β-Ag2Se is hindered by its unclear atomic structure. We prepared β-Ag2Se with superlattice structure, which exhibits a new phase-transition. We fitted the XAFS results with simulated annealing method to obtain the structure of P-Ag2Se, which reveals that an interstitial Ag atom is in the lattice of β-Ag2Se. We also performed the first-principle molecular dynamic simulation based on the obtained structure parameters. The results demonstrate that the new phase-transition arise form local distortion around the interstitial Ag atom.
     (3) Investigation on the local structure and degradation property of Mo-doped TiO2photocatalysts
     TiO2is a promising semiconductor for photochemical catalyst due to its high activity, long carrier lifetime, high chemical stability and biosafty. However, visible light cannot be effectively absorbed by TiO2because of its wide band gap. Using XAFS technique, we studied the Mo-doped TiO2with enhanced photochemical activity. The detailed XANES and EXAFS analysis reveal that all of the Mo atoms substitute Ti atoms in the anatase lattice with shrinkage of Mo-O bond length. Density functional theory (DFT) calculation reveals that such shrinkage arises from higher co-valency of Mo-O bond than that of Ti-O bond, which is also the origin of decrease of band gap. The results in degradation of methylene blue experiments confirm the enhanced photochemical activity of Mo-doped TiO2.
     (4) Local structure and optical characteristic of water oxidation catalysts studied by in-situ XAFS and UV-Vis Spectroscopy
     Solar-powered water splitting for generating oxygen and hydrogen is a promising way to store clean energy. The energy conversion efficiency of semiconductor oxides (for instance, TiO2) suffers from the high overpotential of water oxidation in the surface of photoelectrodes. Transition metal oxide (for instance, CoxO) is an efficient catalyst to reduce the overpotential. We introduced proton acceptor in the electrolyte to realize high activity of CoxO catalyst in a wide pH range. We also explored the active sites of CoxO catalyst with in-situ XAFS and UV-Vis spectroscopy to investigate the origin of catalyst activity and the relationship between catalyst activity and electrolyte.
引文
Abbott, D. (2010). "Keeping the Energy Debate Clean:How Do We Supply the World's Energy Needs?" Proceedings of the IEEE 98(1):42-66.
    Barber, J. (2009). "Photosynthetic energy conversion:natural and artificial." Chemical Society Reviews 38(1):185-196.
    Bediako, D. K., B. Lassalle-Kaiser, et al. (2012). "Structure-Activity Correlations in a Nickel-Borate Oxygen Evolution Catalyst." Journal of the American Chemical Society 134(15): 6801-6809.
    Betley, T. A., Y. Surendranath, et al. (2008). "A ligand field chemistry of oxygen generation by the oxygen-evolving complex and synthetic active sites." Philosophical Transactions of the Royal Society B:Biological Sciences 363(1494):1293-1303.
    Betley, T. A., Q. Wu, et al. (2008). "Electronic Design Criteria for O-O Bond Formation via Metal-Oxo Complexes." Inorganic Chemistry 47(6):1849-1861.
    Bian, T.-b., X.-f. Yin, et al. (2010). "Study on the effect of surfactants on morphologies of trigonal selenium in microfluidic reactor." Materials Research Bulletin 45(2):113-117.
    Brimblecombe, R., A. Koo, et al. (2010). "Solar Driven Water Oxidation by a Bioinspired Manganese Molecular Catalyst." Journal of the American Chemical Society 132(9): 2892-2894.
    Chang, C. J., M. C. Y. Chang, et al. (2004). "Proton-coupled electron transfer:a unifying mechanism for biological charge transport, amino acid radical initiation and propagation, and bond making/breaking reactions of water and oxygen." Biochimica et Biophysica Acta (BBA)-Bioenergetics 1655(0):13-28.
    Chigane, M. and M. Ishikawa (1992). "Characterization of electrochromic nickel oxide thin films prepared by anodic deposition." Journal of the Chemical Society, Faraday Transactions 88(15):2203-2205.
    Chigane, M., M. Ishikawa, et al. (2000). "Further XRD characterization of electrochromic nickel oxide thin films prepared by anodic deposition." Solar Energy Materials and Solar Cells 64(1):65-72.
    Concepcion, J. J., J. W. Jurss, et al. (2009). "Making Oxygen with Ruthenium Complexes." Accounts of Chemical Research 42(12):1954-1965.
    Cook, T. R., D. K. Dogutan, et al. (2010). "Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds." Chemical Reviews 110(11):6474-6502.
    Cukier, R. I. and D. G. Nocera (1998). "Proton-coupled electron transfer." Annual Review of Physical Chemistry 49(1):337-369.
    Dau, H. and M. Haumann (2008). "The manganese complex of photosystem Ⅱ in its reaction cycle-Basic framework and possible realization at the atomic level." Coordination Chemistry Reviews 252(3-4):273-295.
    Dempsey, J. L., A. J. Esswein, et al. (2005). "Molecular Chemistry of Consequence to Renewable Energy." Inorganic Chemistry 44(20):6879-6892.
    Dinca, M., Y. Surendranath, et al. (2010). "Nickel-borate oxygen-evolving catalyst that functions under benign conditions." Proceedings of the National Academy of Sciences 107(23): 10337-10341.
    Duan, L., L. Tong, et al. (2011). "Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells." Energy & Environmental Science 4(9):3296-3313.
    Eisenberg, R. and H. B. Gray (2008). "Preface on Making Oxygen." Inorganic Chemistry 47(6): 1697-1699.
    El-Deab, M. S., M. I. Awad, et al. (2007). "Enhanced water electrolysis:Electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes." Electrochemistry Communications 9(8):2082-2087.
    Gates, B., B. Mayers, et al. (2002). "Synthesis and characterization of uniform nanowires of trigonal selenium." Advanced Functional Materials 12(3):219-227.
    Gerken, J. B., J. G. McAlpin, et al. (2011). "Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14:The Thermodynamic Basis for Catalyst Structure, Stability, and Activity." Journal of the American Chemical Society 133(36):14431-14442.
    Gorlin, Y. and T. F. Jaramillo (2010). "A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation." Journal of the American Chemical Society 132(39): 13612-13614.
    Hammes-Schiffer, S. (2009). "Theory of Proton-Coupled Electron Transfer in Energy Conversion Processes." Accounts of Chemical Research 42(12):1881-1889.
    Huynh, M. H. V. and T. J. Meyer (2007). "Proton-Coupled Electron Transfer." Chemical Reviews 107(11):5004-5064.
    Jiao, F. and H. Frei (2010). "Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts." Chemical Communications 46(17):2920-2922.
    Jin, T, D. Xu, et al. (2012). "Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2/CoPi Composite Photoanodes." Acta Physico-Chimica Sinica 28(10): 2276-2284.
    Kanan, M. W. and D. G. Nocera (2008). "In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Coz+." Science 321(5892):1072-1075.
    Kanan, M. W., J. Yano, et al. (2010). "Structure and Valency of a Cobalt-Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy." Journal of the American Chemical Society 132(39):13692-13701.
    Klahr, B., S. Gimenez, et al. (2012). "Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with "Co-Pi"-Coated Hematite Electrodes." Journal of the American Chemical Society 134(40):16693-16700.
    Lewis, N. S. and D. G. Nocera (2006). "Powering the planet:Chemical challenges in solar energy utilization." Proceedings of the National Academy of Sciences 103(43):15729-15735.
    Li, X., Y. Li, et al. (2005). "Single Crystalline Trigonal Selenium Nanotubes and Nanowires Synthesized by Sonochemical Process." Crystal Growth & Design 5(3):911-916.
    Limburg, J., J. S. Vrettos, et al. (1999). "A Functional Model for O-O Bond Formation by the O2-Evolving Complex in Photosystem II." Science 283(5407):1524-1527.
    Link, S. and M. A. El-Sayed (2003). "Optical properties and ultrafast dynamics of metallic nanocrystals." Annual Review of Physical Chemistry 54(1):331-366.
    Liu, P., Y. Ma, et al. (2007). "Photoconductivity of single-crystalline selenium nanotubes." Nanotechnology 18(20):205704.
    Ma, Y, L. Qi, et al. (2004). "Micelle-Mediated Synthesis of Single-Crystalline Selenium Nanotubes." Advanced Materials 16(12):1023-1026.
    Ma, Y, L. Qi, et al. (2005). "Selective Synthesis of Single-Crystalline Selenium Nanobelts and Nanowires in Micellar Solutions of Nonionic Surfactants." Langmuir 21(14):6161-6164.
    Maeda, K. and K. Domen (2010). "Photocatalytic Water Splitting:Recent Progress and Future Challenges." The Journal of Physical Chemistry Letters 1(18):2655-2661.
    McEvoy, J. P. and G. W. Brudvig (2006). "Water-Splitting Chemistry of Photosystem II." Chemical Reviews 106(11):4455-4483.
    Najafpour, M. M., T. Ehrenberg, et al. (2010). "Calcium Manganese(III) Oxides (CaMn2O4-xH2O) as Biomimetic Oxygen-Evolving Catalysts." Angewandte Chemie International Edition 49(12):2233-2237.
    Najafpour, M. M., S. Nayeri, et al. (2011). "Nano-size amorphous calcium-manganese oxide as an efficient and biomimetic water oxidizing catalyst for artificial photosynthesis:back to manganese." Dalton Transactions 40(37):9374-9378.
    Nocera, D. G. (2009). "Chemistry of Personalized Solar Energy." Inorganic Chemistry 48(21): 10001-10017.
    Pinaud, B. A., Z. Chen, et al. (2011). "Thin Films of Sodium Birnessite-Type MnO2:Optical Properties, Electronic Band Structure, and Solar Photoelectrochemistry." The Journal of Physical Chemistry C 115(23):11830-11838.
    Pletcher, D. and X. Li (2011). "Prospects for alkaline zero gap water electrolysers for hydrogen production." International Journal of Hydrogen Energy 36(23):15089-15104.
    Rajh, T., J. M. Nedeljkovic, et al. (1999). "Improving Optical and Charge Separation Properties of Nanocrystalline TiO2 by Surface Modification with Vitamin C." The Journal of Physical Chemistry B 103(18):3515-3519.
    Risch, M., V. Khare, et al. (2009). "Cobalt-Oxo Core of a Water-Oxidizing Catalyst Film." Journal of the American Chemical Society 131(20):6936-6937.
    Risch, M., K. Klingan, et al. (2011). "Nickel-oxido structure of a water-oxidizing catalyst film." Chemical Communications 47(43):11912-11914.
    Risch, M., K. Klingan, et al. (2012). "Water Oxidation by Electrodeposited Cobalt Oxides-Role of Anions and Redox-Inert Cations in Structure and Function of the Amorphous Catalyst." ChemSusChem 5(3):542-549.
    Shafirovich, V. Y., N. K. Khannanov, et al. (1981). "Inorganic models of photosystem Ⅱ of plant photosynthesis. Catalytic and photocatalytic oxidation of water with participation of manganese compounds." Journal of Inorganic Biochemistry 15(2):113-129.
    Siegbahn, P. E. M. (2009). "An Energetic Comparison of Different Models for the Oxygen Evolving Complex of Photosystem Ⅱ." Journal of the American Chemical Society 131(51): 18238-18239.
    Smith, R. D. L., M. S. Prevot, et al. (2013). "Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis." Science 340(6128):60-63.
    Surendranath, Y., M. Dinca, et al. (2009). "Electrolyte-Dependent Electrosynthesis and Activity of Cobalt-Based Water Oxidation Catalysts." Journal of the American Chemical Society 131(7): 2615-2620.
    Surendranath, Y. and D. G. Nocera (2011). Oxygen Evolution Reaction Chemistry of Oxide-Based Electrodes. Progress in Inorganic Chemistry, John Wiley & Sons, Inc.:505-560.
    Yagi, M. and K. Narita (2004). "Catalytic O2 Evolution from Water Induced by Adsorption of [(OH2)(Terpy)Mn(μ-O)2Mn(Terpy)(OH2)]3+Complex onto Clay Compounds." Journal of the American Chemical Society 126(26):8084-8085.
    Zaharieva, I., P. Chernev, et al. (2012). "Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide." Energy & Environmental Science 5(5):7081-7089.
    Zhang, H., D. Yang, et al. (2004). "Selenium Nanotubes Synthesized by a Novel Solution Phase Approach." The Journal of Physical Chemistry B 108(4):1179-1182.
    Zhang, S.-Y., Y. Liu, et al. (2006). "Rapid, Large-Scale Synthesis and Electrochemical Behavior of Faceted Single-Crystalline Selenium Nanotubes." The Journal of Physical Chemistry B 110(18):9041-9047.
    马礼敦,杨福家(2001).同步辐射概论.上海,复旦大学出版社.
    王其武,刘文汉(1994).X射线吸收精细结构及其应用.北京,科学出版社.
    韦世强,孙治湖等(2007)"XAFS在凝聚态物质研究中的应用.”中国科技大学学报37(4-5):426-440.
    钟文杰,贺博等(2001)"USTCXAFS 2.0软件包.”中国科技大学学报31(3):328-333.
    Bediako, D. K., B. Lassalle-Kaiser, et al. (2012). "Structure-Activity Correlations in a Nickel-Borate Oxygen Evolution Catalyst." Journal of the American Chemical Society 134(15): 6801-6809.
    Clausen, B. S., G. Steffensen, et al. (1991). "In situ cell for combined XRD and on-line catalysis tests:Studies of Cu-based water gas shift and methanol catalysts." Journal of Catalysis 132(2):524-535.
    Dalla Betta, R. A., M. Boudart, et al. (1984). "Cell fitted with thin beryllium windows for X-ray absorption under pressures up to 14 MPa and temperatures up to 700 K." Review of Scientific Instruments 55(12):1910-1913.
    Grunwaldt, J. D., M. Caravati, et al. (2004). "X-ray absorption spectroscopy under reaction conditions:suitability of different reaction cells for combined catalyst characterization and time-resolved studies." Physical Chemistry Chemical Physics 6(11):3037-3047.
    Iwasawa, Y. (1996). Characterization and chemical design of oxide surfaces. Studies in Surface Science and Catalysis. W. N. D. E. I. Joe W. Hightower and T. B. Alexis, Elsevier. Volume 101:21-34.
    Jentoft, R. E., S. E. Deutsch, et al. (1996). "Low-cost, heated, and/or cooled flow-through cell for transmission x-ray absorption spectroscopy." Review of Scientific Instruments 67(6): 2111-2112.
    Kampers, F. W. H., T. M. J. Maas, et al. (1989). "An in situ cell for transmission EXAFS measurements on catalytic samples." Review of Scientific Instruments 60(8):2635-2638.
    Kanan, M. W., J. Yano, et al. (2010). "Structure and Valency of a Cobalt-Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy." Journal of the American Chemical Society 132(39):13692-13701.
    Lima, F. H. B., M. L. Calegaro, et al. (2006). "Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media." Journal of Electroanalytical Chemistry 590(2):152-160.
    Meitzner, G., S. R. Bare, et al. (1998). "An in situ x-ray absorption spectroscopic cell for high temperature gas-flow measurements." Review of Scientific Instruments 69(7):2618-2621.
    Mukerjee, S., S. Srinivasan, et al. (1995). "Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction:An In Situ XANES and EXAFS Investigation." Journal of the Electrochemical Society 142(5):1409-1422.
    Murakami, M., D. Hong, et al. (2011). "Catalytic Mechanism of Water Oxidation with Single-Site Ruthenium-Heteropolytungstate Complexes." Journal of the American Chemical Society 133(30):11605-11613.
    Odzak, J. F., A. M. Argo, et al. (2001). "A flow-through x-ray absorption spectroscopy cell for characterization of powder catalysts in the working state." Review of Scientific Instruments 72(10):3943-3945.
    Peuckert, M., T. Yoneda, et al. (1986). "Oxygen reduction on small supported platinum particles." Journal of the Electrochemical Society 113(5):944-947.
    Sankar, G., J. M. Thomas, et al. (1995). "Probing the onset of crystallization of a microporous catalyst by combined X-ray absorption spectroscopy and X-ray diffraction." Journal of the Chemical Society, Chemical Communications(24):2549-2550.
    Somorjai, G. A., K. R. McCrea, et al. (2002). "Active Sites in Heterogeneous Catalysis: Development of Molecular Concepts and Future Challenges." Topics in Catalysis 18(3-4): 157-166.
    Tops(?)e, H. (2003). "Developments in operando studies and in situ characterization of heterogeneous catalysts." Journal of Catalysis 216(1-2):155-164.
    Yao, T., Z. H. Sun, et al. (2010). "Insights into Initial Kinetic Nucleation of Gold Nanocrustals." Journal of the American Chemical Society 132(22):7696-7701.
    Bian, T.-b., X.-f. Yin, et al. (2010). "Study on the effect of surfactants on morphologies of trigonal selenium in microfluidic reactor." Materials Research Bulletin 45(2):113-117.
    Chancolon, J., F. Archaimbault, et al. (2006). "Confinement of selenium inside carbon nanotubes. Structural characterization by X-ray diffraction and X-ray absorption spectroscopy." Journal of Non-Crystalline Solids 352(2):99-108.
    Cui, Y. and C. M. Lieber (2001). "Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks." Science 291(5505):851-853.
    Dalba, G., P. Fornasini, et al. (1995). "Anharmonicity effects on the extended x-ray-absorption fine structure:The case of P-Agl." Physical Review B 52(1):149-157.
    Filippo, E., D. Manno, et al. (2010). "Characterization and Growth Mechanism of Selenium Microtubes Synthesized by a Vapor Phase Deposition Route." Crystal Growth& Design 10(11):4890-4897.
    Frank, S., P. Poncharal, et al. (1998). "Carbon Nanotube Quantum Resistors." Science 280(5370): 1744-1746.
    Gates, B., B. Mayers, et al. (2002). "Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium." Advanced Functional Materials 12(3):219-227.
    Gates, B., B. Mayers, et al. (2002). "A Sonochemical Approach to the Synthesis of Crystalline Selenium Nanowires in Solutions and on Solid Supports." Advanced Materials 14(23): 1749-1752.
    Gates, B., Y. Yin, et al. (2000). "A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm." Journal of the American Chemical Society 122(50):12582-12583.
    Li, X., Y. Li, et al. (2005). "Single Crystalline Trigonal Selenium Nanotubes and Nanowires Synthesized by Sonochemical Process." Crystal Growth & Design 5(3):911-916.
    Liu, P., Y. Ma, et al. (2007). "Photoconductivity of single-crystalline selenium nanotubes." Nanotechnology 18(20):205704.
    Ma, Y., L. Qi, et al. (2004). "Micelle-Mediated Synthesis of Single-Crystalline Selenium Nanotubes." Advanced Materials 16(12):1023-1026.
    Rao, C. N. R., A. Govindaraj, et al. (2001). "Surfactant-assisted synthesis of semiconductor nanotubes and nanowires." Applied Physics Letters 78(13):1853-1855.
    Rao, C. N. R., G. Gundiah, et al. (2004). "Carbon-assisted synthesis of inorganic nanowires." Journal of Materials Chemistry 14(4):440-450.
    Stern, E. A., M. Newville, et al. (1995). "The UWXAFS analysis package:philosophy and details." Physica B:Condensed Matter 208-209(0):117-120.
    Wang, X., Y. Ding, et al. (2004). "Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts." The Journal of Physical Chemistry B 108(26):8773-8777.
    Wu, L., Y. Wu, et al. (2004). "Synthesis and characteristics of NiO nanowire by a solution method." Materials Letters 58(21):2700-2703.
    Xia, Y. N., P. D. Yang, et al. (2003). "One-dimensional nanostructures:Synthesis, characterization, and applications." Advanced Materials 15(5):353-389.
    Yu, D., T. Jiang, et al. (2009). "Controlled growth of multi-morphology hexagonal t-Se microcrystals:tubes, wires, and flowers by a convenient Lewis acid-assisted solvothermal method." CrystEngComm 11(7):1270-1274.
    Zhang, B., W. Dai, et al. (2005). "Solution-Phase Synthesis and Electrochemical Hydrogen Storage of Ultra-Long Single-Crystal Selenium Submicrotubes." The Journal of Physical Chemistry B 109(48):22830-22835.
    Zhang, H., D. Yang, et al. (2004). "Selenium Nanotubes Synthesized by a Novel Solution Phase Approach." The Journal of Physical Chemistry B 108(4):1179-1182.
    Zhang, S.-Y., Y. Liu, et al. (2006). "Rapid, Large-Scale Synthesis and Electrochemical Behavior of Faceted Single Crystalline Selenium Nanotubes." The Journal of Physical Chemistry B 110(18):9041-9047.
    韦世强,孙治湖,等(2007).'XAFS在凝聚态物质研究中的应用.”中国科技大学学报37(4-5):426-440.
    Andreev, Y. G., P. Lightfoot, et al. (1997). "A General Monte Carlo Approach to Structure Solution from Powder Diffraction Data:Application to Poly(ethylene oxide)3:LiN(S03CF3)2-" Journal of Applied Crystallography 30(3):294-305.
    Brenner, S., L. B. McCusker, et al. (1997). "Using a structure envelope to facilitate structure solution from powder diffraction data." Journal of Applied Crystallography 30(6):1167-1172.
    Cao, H. Q., Y. J. Xiao, et al. (2010). "Ag2Se complex nanostructures with photocatalytic activity and superhydrophobicity." Nano Research 3(12):863-873.
    Conn, J. B. and R. C. Taylor (1960). "Thermoelectric and crystallographis properties of Ag2Se." Journal of the Electrochemical Society 107(12):977-982.
    David, W. I. F. (2004). "On the equivalence of the Rietveld method and the correlated integrated intensities method in powder diffraction." Journal of Applied Crystallography 37:621-628.
    Engel, G. E., S. Wilke, et al. (1999). "PowderSolve a complete package for crystal structure solution from powder diffraction patterns." Journal of Applied Crystallography 32(6): 1169-1179.
    Favre-Nicolin, V. and R. Cerny (2002). "Fox, free objects for crystallography':a modular approach to ab initio structure determination from powder diffraction." Journal of Applied Crystallography 35(6):734-743.
    G. Andreev, Y. and P. G. Bruce (1998). "Solving crystal structures of molecular solids without single crystals:a simulated annealing approach." Journal of the Chemical Society, Dalton Transactions(24):4071-4080.
    Harris, K. D. M., M. Tremayne, et al. (1994). "Crystal Structure Determination from Powder Diffraction Data by Monte Carlo Methods." Journal of the American Chemical Society 116(8):3543-3547.
    Hirshfeld, F. (1968). "Symmetry in the generation of trial structures." Acta Crystallographica Section A 24(2):301-311.
    I. F. David, W., K. Shankland, et al. (1998). "Routine determination of molecular crystal structures from powder diffraction data." Chemical Communications(8):931-932.
    Imai, S., T. Ohachi, et al. (1989). "Coulometric titration curves of alpha-Ag2Se containing Ag atom traps." Solid State Ionics 35(3-4):343-347.
    Johnston, J. C., W. I. F. David, et al. (2002). "A hybrid Monte Carlo method for crystal structure determination from powder diffraction data." Acta Crystallographica Section A 58(5): 441-447.
    Kariuki, B. M., H. Serrano-Gonzalez, et al. (1997). "The application of a genetic algorithm for solving crystal structures from powder diffraction data." Chemical Physics Letters 280(3-4): 189-195.
    Kirkpatrick, S. (1984). "Optimization by simulated annealing:Quantitative studies." Journal of Statistical Physics 34(5-6):975-986.
    Kumashiro, Y, T. Ohachi, et al. (1996). "Phase transition and cluster formation in silver selenide." Solid State Ionics 86-8:761-766.
    Lee, C, Y. H. Park, et al. (2007). "Effect of nonstoichiometry on the thermoelectric properties of a Ag2Se alloy prepared by a mechanical alloying process." Journal of Applied Physics 101(2).
    Leon, V., Y. Ren, et al. (2008). "A Effect of nanoscale confinement on the beta-alpha phase transition in Ag2Se." Journal of Applied Physics 103(1).
    McCusker, L. B., R. B. Von Dreele, et al. (1999). "Rietveld refinement guidelines." Journal of Applied Crystallography 32:36-50.
    Miki, H. (1991). "Superlattice formation and phase-transition in silver selenide." Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 30(8):1765-1769.
    Ohachi, T., M. Hiramoto, et al. (1992). "Silver atomic trap measurement in Ag2Se by coulometric titration method." Solid State Ionics 51(3-4):191-196.
    Putz, H., J. C. Schon, et al. (1999). "Combined method for ab initio structure solution from powder diffraction data." Journal of Applied Crystallography 32(5):864-870.
    Shankland, K., W. I. F. David, et al. (1997). "Crystal structure determination from powder diffraction data by the application of a genetic algorithm." Zeitschrift Fur Kristallographie 212(8):550-552.
    Stern, E. A., M. Newville, et al. (1995). "The uwxafs analysis package philosophy and details." Physica B 208(1-4):117-120.
    Toby, B. H. (2006). "R factors in Rietveld analysis:How good is good enough?" Powder Diffraction 21(01):67-70.
    Tremayne, M., B. M. Kariuki, et al. (1997). "Crystal Structure Solution from Neutron Powder Diffraction Data by a new Monte Carlo Approach Incorporating Restrained Relaxation of the Molecular Geometry." Journal of Applied Crystallography 30(6):968-974.
    Xiao, C., Xu. J., et al. (2012). "Superionic Phase Transition in Silver Chalcogenide Nanocrystals Realizing Optimized Thermoelectric Performance." Journal of the American Chemical Society 134(7):4287-4293.
    Anpo, M. (1997). "Photocatalysis on titanium oxide catalysts:Approaches in achieving highly efficient reactions and realizing the use of visible light." Catalysis Surveys from Japan 1(2): 169-179.
    Asahi, R., T. Morikawa, et al. (2001). "Visible-light photocatalysis in nitrogen-doped titanium oxides." Science 293(5528):269-271.
    Chen, X. B. and C. Burda (2008). "The electronic origin of the visible-light absorption properties of C, N and S doped TiO2 nanomaterials." Journal of the American Chemical Society 130(15): 5018-5026.
    Choi, W. Y., A. Termin, et al. (1994). "The role of metal-ion dopants in quantum-sized tio2 correlation between photoreactivity and charge-carrier recombination dynamics." Journal of Physical Chemistry 98(51):13669-13679.
    Degroot, F. M. F. (1994). "X-ray absorption and dichroism of transition-metals and their compounds." Journal of Electron Spectroscopy and Related Phenomena 67(4):529-622.
    Degroot, F. M. F., J. C. Fuggle, et al. (1990). "L2,3 X-ray-absorption edges of d0 compounds K+, Ca2+, Sc3+and Ti4+ in Oh (octahedral) symmetry." Physical Review B 41(2):928-937.
    Devi, L. G. and B. N. Murthy (2008). "Characterization of Mo doped TiO2 and its enhanced photo catalytic activity under visible light." Catalysis Letters 125(3-4):320-330.
    Devi, L. G., B. N. Murthy, et al. (2009). "Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with Mo6+ ions under solar light:Correlation of dye structure and its adsorptive tendency on the degradation rate." Chemosphere 76(8): 1163-1166.
    Fujishima, A. and K. Honda (1972). "Electrochemical photolysis of water at a semiconductor electrode." Nature 238(5358):37-38.
    Gratzel, M. (2001). "Photoelectrochemical cells." Nature 414(6861):338-344.
    Jeon, M. S., W. S. Yoon, et al. (2000). "Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst." Applied Surface Science 165(2-3):209-216.
    Khan, S. U. M., M. Al-Shahry, et al. (2002). "Efficient photochemical water splitting by a chemically modified n-TiO2." Science 297(5590):2243-2245.
    Nakano, Y., T. Morikawa, et al. (2007). "Origin of visible-light sensitivity in N-doped TiO2 films." Chemical Physics 339(1-3):20-26.
    Pan, Z. Y., Z. H. Sun, et al. (2006). "Interfacial intermixing of TiN/Si3N4 super-hard multilayer films studied by fluorescence x-ray absorption fine structure." Journal of Physics D-Applied Physics 39(13):2796-2802.
    Serpone, N. (2006). "Is the band gap of pristine TiO2 narrowed by anion-and cation-doping of titanium dioxide in second-generation photocatalysts?" Journal of Physical Chemistry B 110(48):24287-24293.
    Stengl, V. and S. Bakardjieva (2010). "Molybdenum-Doped Anatase and Its Extraordinary Photocatalytic Activity in the Degradation of Orange II in the UV and Vis Regions." Journal of Physical Chemistry C 114(45):19308-19317.
    Stern, E. A., M. Newville, et al. (1995). "The uwxafs analysis package-philosophy and details." Physica B 208(1-4):117-120.
    Wang, D. H., L. Jia, et al. (2012). "One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity." Nanoscale 4(2):576-584.
    Yu, X. H., T. J. Hou, et al. (2012). "The Influence of Defects on Mo-Doped TiO2 by First-Principles Studies." Chemphyschem 13(6):1514-1521.
    Ama, T., M. M. Rashid, et al. (2000). "Cobalt(Ⅲ) complexes containing incomplete Co3O4 or complete Co4O4 cubane core." Coordination Chemistry Reviews 198(1):101-116.
    Barreca, D., C. Massignan, et al. (2001). "Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(Ⅱ) Precursor by Chemical Vapor Deposition." Chemistry of Materials 13(2):588-593.
    Bediako, D. K., B. Lassalle-Kaiser, et al. (2012). "Structure-Activity Correlations in a Nickel-Borate Oxygen Evolution Catalyst." Journal of the American Chemical Society 134(15): 6801-6809.
    Brillet, J., M. Cornuz, et al. (2010). "Examining architectures of photoanode-photovoltaic tandem cells for solar water splitting." Journal of Materials Research 25(01):17-24.
    Chen, J. and A. Selloni (2013). "First Principles Study of Cobalt (Hydr)oxides under Electrochemical Conditions." The Journal of Physical Chemistry C 117(39):20002-20006.
    Chigane, M. and M. Ishikawa (1992). "Characterization of electrochromic nickel oxide thin films prepared by anodic deposition." Journal of the Chemical Society, Faraday Transactions 88(15):2203-2205.
    Chigane, M., M. Ishikawa, et al. (2000). "Further XRD characterization of electrochromic nickel oxide thin films prepared by anodic deposition." Solar Energy Materials and Solar Cells 64(1):65-72.
    Dinca, M., Y. Surendranath, et al. (2010). "Nickel-borate oxygen-evolving catalyst that functions under benign conditions." Proceedings of the National Academy of Sciences 107(23): 10337-10341.
    Dong, Z., Y. Fu, et al. (2007). "Synthesis and Physical Properties of Co3O4 Nanowires." The Journal of Physical Chemistry C 111(50):18475-18478.
    Du, J., L. Chai, et al. (2008). "Controlled Synthesis of One-Dimensional Single-Crystal Co3O4 Nanowires." Australian Journal of Chemistry 61(2):153-158.
    Gerken, J. B., J. G. McAlpin, et al. (2011). "Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0-14:The Thermodynamic Basis for Catalyst Structure, Stability, and Activity." Journal of the American Chemical Society 133(36):14431-14442.
    Gorlin, Y. and T. F. Jaramillo (2010). "A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation." Journal of the American Chemical Society 132(39): 13612-13614.
    Gulino, A., G. Fiorito, et al. (2003). "Deposition of thin films of cobalt oxides by MOCVD." Journal of Materials Chemistry 13(4):861-865.
    Gulino, A. and I. Fragala (2005). "Cobalt hexafluoroacetylacetonate polyether adducts for thin films of cobalt oxides." Inorganica Chimica Acta 358(15):4466-4472.
    Jaramillo, T. F., K. P. Jorgensen, et al. (2007). "Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts." Science 317(5834):100-102.
    Jin, T., D. Xu, et al. (2012). "Preparation and Photoelectrocatalytic Water Oxidation Properties of FeO(OH)-TiO2-CoPi Composite Photoanodes." Acta Physico-Chimica Sinica 28(10): 2276-2284.
    Kanan, M. W. and D. G. Nocera (2008). "In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+." Science 321(5892):1072-1075.
    Kanan, M. W., J. Yano, et al. (2010). "Structure and Valency of a Cobalt-Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy." Journal of the American Chemical Society 132(39):13692-13701.
    Klahr, B., S. Gimenez, et al. (2012). "Photoelectrochemical and Impedance Spectroscopic Investigation of Water Oxidation with "Co-Pi"-Coated Hematite Electrodes." Journal of the American Chemical Society 134(40):16693-16700.
    Lewis, N. S. and D. G. Nocera (2006). "Powering the planet:Chemical challenges in solar energy utilization." Proceedings of the National Academy of Sciences 103(43):15729-15735.
    Licht, S., B. Wang, et al. (2001). "Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting." International Journal of Hydrogen Energy 26(7):653-659.
    Nocera, D. G. (2009). "Chemistry of Personalized Solar Energy." Inorganic Chemistry 48(21): 10001-10017.
    Smith, R. D. L., M. S. Prevot, et al. (2013). "Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis." Science 340(6128):60-63.
    Surendranath, Y., M. Dinca, et al. (2009). "Electrolyte-Dependent Electrosynthesis and Activity of Cobalt-Based Water Oxidation Catalysts." Journal of the American Chemical Society 131(7): 2615-2620.
    Takashima, T., K. Hashimoto, et al. (2011). "Mechanisms of pH-Dependent Activity for Water Oxidation to Molecular Oxygen by MnO2 Electrocatalysts." Journal of the American Chemical Society 134(3):1519-1527.
    Turner, J., G. Sverdrup, et al. (2008). "Renewable hydrogen production." International Journal of Energy Research 32(5):379-407.
    Varkey, A. J. and A. F. Fort (1993). "A chemical method for preparation of cobalt oxide thin films." Solar Energy Materials and Solar Cells 31(2):277-282.
    Zaharieva, I., P. Chernev, et al. (2012). "Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide." Energy & Environmental Science 5(5):7081-7089.
    Zambelli, T., J. Wintterlin, et al. (1996). "Identification of the "Active Sites" of a Surface-Catalyzed Reaction." Science 273(5282):1688-1690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700