用户名: 密码: 验证码:
中低温固体氧化物燃料电池双层电解质的脉冲激光制备及电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现固体氧化物燃料电池(SOFCs)商业化发展,最关键的因素是降低SOFCs工作温度至中低温化,而发展高电导率SOFCs电解质材料和电解质薄膜化是解决SOFCs中低温化带来的欧姆损失问题的关键。目前研究较多的SOFCs电解质材料有掺杂的CeO2, LaGaO3及稳定的ZrO2基氧离子导体和掺杂的BaCeO3, BaZrO3基质子导体材料。本论文围绕上述几种电解质材料,在电解质结构设计、电解质薄膜的制备技术以及电化学性能优化方面进行研究。
     第一章主要介绍氧离子导体基SOFCs和质子导体基SOFCs的研究背景、发展状况和工作原理,总结了SOFCs电解质材料以及各自存在的问题,阐述了双层电解质结构的概念,并讨论将这种结构与SOFCs电解质材料相结合并应用的可能性。同时也分析了几种常用的电解质薄膜制备技术。
     第二章采用脉冲激光沉积法(PLD)成功的在阳极支撑的SDC电解质层表面制备出致密的8mol%Y2O3稳定的ZrO2(YSZ)电子阻隔层和Ce0.8Sm0.2O2-δ(SDC)缓冲层。实验结果表明由于PLD镀膜时衬底温度较低,从而可以避免传统化学法在高温烧结下容易引起CeO2和ZrO2层之间的界面反应。当YSZ层引入电解质结构中,相应的燃料电池开路电压(OCV)得到明显提高,表明PLD制备的YSZ层十分致密,能够有效阻隔Ce4+还原所产生的电子电导。通过在SDC/YSZ双层电解质表面沉积一层SDC缓冲层,不仅避免Smo.5Sro.5Co03-6(SSC)阴极和YSZ之间的反应和热膨胀不匹配问题,同时也降低了极化损失,获得较好的电池性能。上述结论表明PLD技术作为一种能在低温下沉积高质量薄膜的镀膜手段,可以广泛应用于SOFCs电解质薄膜的制备与研究。
     第三章通过对阳极衬底的优化,讨论了衬底表面形貌和结构对PLD制备的薄膜质量的影响。实验结果表明若在未优化的阳极上沉积薄膜,由于薄膜厚度相比于孔洞尺寸较小,造成难以完全覆盖阳极缺陷,在经过电池测试还原后阳极/电解质薄膜界面会出现裂纹,影响电池整体结构和电化学性能。经过功能层优化修复了表面尺寸较大的孔洞,在这种衬底上所制备的薄膜平整且未发现裂纹。此外,我们还比较了在两种不同阳极衬底上利用PLD技术制备YSZ/SDC双层电解质薄膜所对应的电池性能。在未优化衬底上制备的单电池性能衰减很快,而在优化的阳极衬底上制备的单电池获得了相当高的最大功率密度,750℃达到1.19Wcm-2,并且保持很好的长期稳定性,开路电压在750℃达到0.959V,远高于SDC单电解质电池性能,结果表明阳极优化对电池的性能和结构稳定性都有很大的帮助。
     第四章探讨了PLD沉积条件对(LSGM)薄膜质量的影响。基于LSGM具有很高的离子电导率,我们设计采用PLD技术在SDC半电池上制备LSGM电子阻隔层,探索沉积过程中氧分压大小以及后续退火温度对LSGM薄膜形貌、组分、粗糙度和相结构性质的影响。综合LSGM薄膜的沉积速度,质量以及化学计量比考虑,得出PLD制备过程中的最佳氧分压值。为了解决LSGM薄膜相结构的问题,我们研究不同退火温度对LSGM成相的影响,发现退火温度越高,LSGM结晶性越好,但高温容易造成Ga流失。最终我们将沉积的LSGM薄膜与阴极采取一步煅烧,既简化工艺流程又保证薄膜结晶度,也防止Ga挥发。此外,我们也研究了不同退火处理对应的SDC/LSGM双层电解质燃料电池的电化学性能,结果表明将LSGM退火与阴极煅烧在一个过程中完成,这样得到的电池性能最佳。SDC/LSGM双层电解质电池结构既起到了阻隔Ce4+产生的电子电导,同时也保护LSGM不与Ni基阳极反应,维持了良好的结构稳定性。
     第五章通过PLD技术在阳极支撑的BaCeo.8Yo.203-δ(BCY)电解质层表面制备BaZr0.8Yo.203-δ(BZY)薄膜,讨论不同厚度的BZY薄膜对BCY的化学稳定性和相应电化学性能的影响。实验结果表明当BZY厚度达到一定大小,对应的BCY/BZY双层电解质膜才能在CO2气氛中获得较好的化学稳定性。然而由于BZY厚度增加造成欧姆电阻增加,此外阴极与BZY匹配性较差,极化损失严重,从而相应的单电池最大功率密度随着BZY厚度增加而降低。通过实验结果得出,具有一定厚度的BZY对应的BCY/BZY双层电解质电池显示出良好的化学稳定性,并具有可观的电导率和电化学性能。
     第六章基于BaZro.7Pro.1Yo.203.6(BZPY)具有比BZY更高的电导率,实验采用PLD技术在BCY电解质表面制备BZPY薄膜,研究BCY/BZPY双层电解质膜的化学稳定性和电化学性能。实验结果表明BCY/BZPY双层电解质结构不仅具有很好的化学稳定性,而且在膜电导率及电池性能方面都比BCY/BZY性能有所提高,在700℃下单电池最大功率密度为250mW cm-2,双层膜电导率为6.02×10-3S cm-1,与传统稀土元素掺杂的BaCeO3基电解质性能也是可比的,表明BZPY层的引入不仅能有效的保护BCY结构不受C02影响,维持化学稳定性,同时也能保证较好的电池性能,作为质子导体基SOFCs电解质材料具有可观的发展前途。
     第七章对本论文的工作进行总结,并对双层电解质SOFCs以后的研究工作进行展望。
The key factor to achieve the commercialization development of solid oxide fuel cells (SOFCs) is to decrease the operating temperarute of SOFCs down to intermediate-low range. To solve the ohmic loss caused by decreasing operating temperature, it is urgent to find SOFCs electrolytes with high ionic conductivity and reducing electrolyte thickness. Ionic-conducting materials such as doped CeO2, LaGaO3and stabilized Z1O2, and proton-conducting materials such as doped BaCeO3and BaZrO3are well developed SOFCs electrolyte materials. The thesis is focused on those electrolyte materials and discussed the electrolyte structure, fim fabrication techniques and electrochemical performance of SOFCs.
     Chapter1mainly described the research background, development status and working principles of SOFCs, including ionic-conducting and proton-conducting SOFCs, summarized SOFCs electrolyte materials and their problems, introducesd the concept of bilayer electrolytes and discussed the possibilities of conbine the structure with SOFCs electrolytes. Besides, common fabrication techniques of electrolyte membrane were included.
     In Chapter2, pulse laser deposition (PLD) technique was succesfully introduced in fabricating dense8mo1%Y2O3stabilized ZrO2(YSZ) electronic-blocking layer and Ceo.8Smo.202-5(SDC)buffer layer. As the deposition temperature is low, thus inerfacial reaction between the doped ceria and stabilized zirconia can avoided. After incorporating YSZ film as electrolyte layer, the open circuit voltage (OCV) of fuel cell improved significantly indicating the YSZ film deposited by PLD technique is dense enough to block the eletronic conduction caused by Ce4+reduction. With SDC buffer layer deposited on the bilayer electrolytes, thermal mismatch and chemical reaction between Smo.5Sro.5CoO3-δ (SSC) cathode and YSZ layer can be avoided, also the polarization loss was reduced and cell performance was improved. The results indicate that as an excellent film fabrication technique, PLD can be used in the researchment of SOFCs electrolyte films.
     Chapter3discussed the influence of substrate morphology on the quality of PLD deposited fims. The research results show that when electrolytes were directly deposited on anode substrate, the films could not cover anode pores due to the smaller size of film thickness than pores, and the interface between electrolyte and anode appeared cracks after reducing in H2, thus influenced the whole cell structure and electrochemical performance. With functional layer optimized anode pores, deposited YSZ/SDC bilayer electrolyte films were uniform without any cracks. The corresponding fuel cell has an excellent electrical performance, the maximum power density of1.19W cm-2and open circuit voltage (OCV) of0.959V was achieved at750℃which shows an improvement in SDC single electrolyte cell, indicating anode optimization has a great asistant on cell performance and structure stability.
     In Chapter4, the effect of deposition parameters on the quality of Lao.9Sro.1Gao.gMgo.203-δ (LSGM) thin film in PLD process were reserached. As LSGM has high ion conductivity and was incorporated as electronic-blocking layer onto SDC electrolyte. The oxygen pressure and post-annealing temperatures were investigated their influence on surface morphology, element component, roughness and phase structure. In terms of the quality, deposition rate and composition of the LSGM film deposited by PLD technique, the proper oxygen pressure seems to be0.67Pa. In order to improve the crystallinity of the deposited LSGM films, the suitable method is the one-step process which means keeping the cathode firing and the post-annealing procedure in the same process. The experiment results indicate that SDC/LSGM bilayer electrolyte structure has good mechanical stability, which not only blocks the electronic conduction, bue also prohibits the reaction between LSGM and Ni-base anode.
     In Chapter5, BaZro.8Yo.203-δ (BZY) films were incorporated onto BaCe0.8Yo.203-δ (BCY) electrolytes with PLD technique and the effect of BZY films thicknesses on chemical stability and electrochemical performance was investigated. Only when BZY film achieves to a certain thickness, BZY layer can protect BCY in CO2atmosphere. With increasing thickness of BZY layer, the ohmic resistance increases, besides the poor matching between BZY layer and cathode caused bad polarization loss, thus the corresponding fuel cell has a lower electrochemical performance. The research results indicate that BCY/BZY bilayer electrolyte fuel cell, with cetain thickness of BZY layer, has good chemical stability and considerable electrochemical performance.
     In Chapter6, based on the better conductivity of BaZr0.7Pr0.1Y0.2O3-δ (BZPY) than BZY, BZPY thin film was fabricated on BCY electrolyte with PLD technique. BCY/BZPY bilayer electrolyte structure shows an excellent chemical stability. Besides, the membrane conductivity and fuel cell performance improves a lot in BCY/BZPY bilayer electrolyte fuel cell, the maximum power density at700℃is250 mW cm-2, the membrane conductivity at700℃is6.02×10"3S cm-1, which are both comparable with tranditional rare earth doped BaCeO3electrolyte cell. The results indicate that BCY/BZPY bilayer electrolyte structure has good chemical stability and electrochemical performance and has good future as proton-condictiong SOFCs electrolytes.
     In Chaper7, the works presented in the thesis are concluded and future research on bilayer electrolyte SOFCs is proposed
引文
[1]Zhan Z, Han D, Wu T, Ye X, Wang S, Wen T, et al. A solid oxide cell yielding high power density below 600 degrees C. Rsc Advances.2012;2:4075-8.
    [2]Meng X, Zhan Z, Liu X, Wu H, Wang S, Wen T. Low-temperature ceria-electrolyte solid oxide fuel cells for efficient methanol oxidation. Journal of Power Sources.2011;196:9961-4.
    [3]Cho S, Kim Y, Kim J-H, Manthiram A, Wang H. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte. Electrochim Acta.2011;56:5472-7.
    [4]Budziaiiowski WM, Milewski J. Solid-Oxide Fuel Cells in Power Generation Applications:A Review. Recent Patents on Engineering.2011;5:168-89.
    [5]Dokiya M. SOFC system and technology. Solid State Ionics.2002; 152:383-92.
    [6]Wachsman ED, Lee KT. Lowering the Temperature of Solid Oxide Fuel Cells. Science. 2011;334:935-9.
    [7]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.科学出版社2004.
    [8]Noh H-S, Son J-W, Lee H, Song H-S, Lee H-W, Lee J-H. Low Temperature Performance Improvement of SOFC with Thin Film Electrolyte and Electrodes Fabricated by Pulsed Laser Deposition. Journal of the Electrochemical Society.2009;156:B1484-B90.
    [9]Bi L, Fabbri E, Sun Z, Traversa E. BaZr0.8Y0.2O3-delta-NiO Composite Anodic Powders for Proton-Conducting SOFCs Prepared by a Combustion Method. Journal of the Electrochemical Society.2011;158:B797-B803.
    [10]Chen K, Chen X, Lue Z, Ai N, Huang X, Su W. Performance of an anode-supported SOFC with anode functional layers. Electrochim Acta.2008;53:7825-30.
    [11]Jiang SP, Love JG, Ramprakash Y. Electrode behaviour at (La,Sr)MnO3/Y2O3-ZrO2 interface by electrochemical impedance spectroscopy. Journal of Power Sources. 2002;110:201-8.
    [12]Jorgensen MJ, Mogensen M. Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. Journal of the Electrochemical Society.2001;148:A433-A42.
    [13]Ju Y-W, Inagaki T, Ida S, Ishihara T. Sm(Sr)CoO3 Cone Cathode on LaGaO3 Thin Film Electrolyte for IT-SOFC with High Power Density. Journal of the Electrochemical Society. 2011;158:B825-B30.
    [14]Wu T, Peng R, Xia C. Sm0.5Sr0.5CoO3-delta-BaCe0.8Sm0.2O3-delta composite cathodes for proton-conducting solid oxide fuel cells. Solid State Ionics.2008; 179:1505-8.
    [15]Myung D-H, Hwang J, Hong J, Lee H-W, Kim B-K, Lee J-H, et al. Pulsed Laser Deposition of LaO.6Sr0.4CoO3-delta-Ce0.9Gd0.1O2-delta Nano-Composite and Its Application to Gradient-Structured Thin-film Cathode of SOFC. Journal of the Electrochemical Society. 2011;158:B1000-B6.
    [16]Fabbri E, Bi L, Tanaka H, Pergolesi D, Traversa E. Chemically Stable Pr and Y Co-Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediate-Temperature Solid Oxide Fuel Cells. Advanced Functional Materials.2011;21:158-66.
    [17]Liu QL, Khor KA, Chan SH, Chen XJ. Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process. Journal of Power Sources.2006; 162:1036-42.
    [18]Sun H, Ma W, Yu J, Chen X, Lin H. Preparation and characterization of La0.8Sr0.04Ca0.16Co0.6Fe0.4O3-delta-La0.9Sr0.1Ga0.8Mg0.2O3 composite cathode thin film for SOFC by slurry spin coating. Journal of Rare Earths.2010;28:917-21.
    [19]Fergus JW. Electrolytes for solid oxide fuel cells. Journal of Power Sources.2006; 162:30-40.
    [20]De Jonghe LC, Jacobson CP, Visco SJ. Supported electrolyte thin film synthesis of solid oxide fuel cells. Annual Review of Materials Research.2003;33:169-82.
    [21]Kendall K. Progress in solid oxide fuel cell materials. International Materials Reviews. 2005;50:257-64.
    [22]Ormerod RM. Solid oxide fuel cells. Chemical Society Reviews.2003;32:17-28.
    [23]El Habra N, Sartori A, Bolzan M, Favaro M, Casarin M, Boldrini S, et al. A Study on Sc2O3-Stabilized Zirconia Obtained by MOCVD as a Potential Electrolyte for Solid Oxide Fuel Cells. Chemical Vapor Deposition.2012;18:289-94.
    [24]Kharton VV, Marques FMB, Atkinson A. Transport properties of solid oxide electrolyte ceramics:a brief review. Solid State Ionics.2004;174:135-49.
    [25]C.B.Choudhary, H.S.Maiti, Subbarao EC. Defect Structure and Transport Properties. Solid Electrolytes and Their Applications.1980;p:1-80.
    [26]Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishai N. Electrical conductivity of the ZrO2-Ln(2)O(3) (Ln= lanthanides) system. Solid State Ionics.1999;121:133-9.
    [27]Goodenough JB. Oxide-ion electrolytes. Annual Review of Materials Research. 2003;33:91-128.
    [28]Holtappels P, Vogt U, Graule T. Ceramic materials for advanced solid oxide fuel cells. Advanced Engineering Materials.2005;7:292-302.
    [29]Tikkanen H, Suciu C, Waernhus I, Hoffmann AC. Examination of the co-sintering process of thin 8YSZ films obtained by dip-coating on in-house produced NiO-YSZ. Journal of the European Ceramic Society.2011;31:1733-9.
    [30]Huang H, Nakamura M, Su P, Fasching R, Saito Y, Prinz FB. High-performance ultrathin solid oxide fuel cells for low-temperature operation. Journal of the Electrochemical Society. 2007;154:B20-B4.
    [31]Joo JH, Choi GM. Electrical conductivity of YSZ film grown by pulsed laser deposition. Solid State Ionics.2006;177:1053-7.
    [32]Fan L, Wang C, Chen M, Zhu B. Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. Journal of Power Sources.2013;234:154-74.
    [33]Mogensen M, Sammes NM, Tompsett GA. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics.2000; 129:63-94.
    [34]Brett DJL, Atkinson A, Brandon NP, Skinner SJ. Intermediate temperature solid oxide fuel cells. Chemical Society Reviews.2008;37:1568-78.
    [35]Schwarz K. Materials design of solid electrolytes. Proceedings of the National Academy of Sciences of the United States of America.2006;103:3497-.
    [36]Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B. Optimization of ionic conductivity in doped ceria. Proceedings of the National Academy of Sciences of the United States of America.2006;103:3518-21.
    [37]Kharton W, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, et al. Ceria-based materials for solid oxide fuel cells. Journal of Materials Science. 2001;36:1105-17.
    [38]Huang J, Xie F, Wang C, Mao Z. Development of solid oxide fuel cell materials for intermediate-to-low temperature operation. International Journal of Hydrogen Energy. 2012;37:877-83.
    [39]Gong Y, Ji W, Zhang L, Li M, Xie B, Wang H, et al. Low temperature deposited (Ce,Gd)O2-x interlayer for La0.6Sr0.4Co0.2Fe0.803 cathode based solid oxide fuel cell. Journal of Power Sources.2011; 196:2768-72.
    [40]Wei B, Lu Z, Li S, Ai G, Liu Z, Su W. Electrochemical characteristics of Ba0.5Sr0.5Co0.8Fe0.203-delta-Sm0.2Ce0.801.9 composite materials for low-temperature solid oxide fuel cell cathodes. Materials Letters.2006;60:3642-6.
    [41]Xia CR, Rauch W, Chen FL, Liu ML. Sm0.5Sr0.5Co03 cathodes for low-temperature SOFCs. Solid State Ionics.2002; 149:11-9.
    [42]Ralph JM, Schoeler AC, Krumpelt M. Materials for lower temperature solid oxide fuel cells. Journal of Materials Science.2001;36:1161-72.
    [43]Jung H-G, Sun Y-K, Jung HY, Park JS, Kim H-R, Kim G-H, et al. Investigation of anode-supported SOFC with cobalt-containing cathode and GDC interlayer. Solid State Ionics.2008;179:1535-9.
    [44]Dieterle L, Bach D, Schneider R, Stoermer H, Gerthsen D, Guntow U, et al. Structural and chemical properties of nanocrystalline La0.5Sr0.5Co03-delta layers on yttria-stabilized zirconia analyzed by transmission electron microscopy. Journal of Materials Science. 2008;43:3135-43.
    [45]Jung HY, Hong K-S, Jung H-G, Kim H, Kim H-R, Son J-W, et al. SOFCs with Sc-doped zirconia electrolyte and Co-containing perovskite cathodes. Journal of the Electrochemical Society.2007;154:B480-B5.
    [46]Ishihara T, Matsuda H, Takita Y. DOPED LAGA03 PEROVSKITE-TYPE OXIDE AS A NEW OXIDE IONIC CONDUCTOR. Journal of the American Chemical Society. 1994;116:3801-3.
    [47]Sun H, Ma W, Yu J, Chen X, Sen W, Zhou Y. Preparation and characterization of La0.9Sr0.1Ga0.8Mg0.203-delta thin film electrolyte deposited by RF magnetron sputtering on the porous anode support for IT-SOFC. Vacuum.2012;86:1203-9.
    [48]Zhu X-d, Zhang N-q, Wu L-j, Sun K-n, Yuan Y-x. Preparation and performance of large-area La0.9Sr0.1Ga0.8Mg0.2O3-delta electrolyte for intermediate temperature solid oxide fuel cell. Journal of Power Sources.2010;195:7583-6.
    [49]Cong LG, He TM, Ji YA, Guan PF, Huang YL, Su WH. Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.1503-delta by glycine-nitrate combustion method. Journal of Alloys and Compounds.2003;348:325-31.
    [50]Stevenson JW, Armstrong TR, McCready DE, Pederson IR, Weber WJ. Processing and electrical properties of alkaline earth-doped lanthanum gallate. Journal of the Electrochemical Society.1997;144:3613-20.
    [51]Hayashi H, Inaba H, Matsuyama M, Lan NG, Dokiya M, Tagawa H. Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics.1999;122:1-15.
    [52]Liu N, Shi M, Wang C, Yuan YP, Majewski P, Aldinger F. Microstructure and ionic conductivity of Sr-and Mg-doped LaGa03. Journal of Materials Science.2006;41:4205-13.
    [53]Steele BCH, Heinzel A. Materials for fuel-cell technologies. Nature.2001;414:345-52.
    [54]Joshi AV, Steppan JJ, Taylor DM, Elangovan S. Solid electrolyte materials, devices, and applications. Journal of Electroceramics.2004;13:619-25.
    [55]Takahashi T, Esaka T, Iwahara H. HIGH OXIDE ION CONDUCTION IN SINTERED OXIDES OF SYSTEM BI203-GD203. Journal of Applied Electrochemistry. 1975;5:197-202.
    [56]Takahashi T, Esaka T, Iwahara H. ELECTRICAL-CONDUCTION IN SINTERED OXIDES OF SYSTEM BI-20-3-BAO. Journal of Solid State Chemistry.1976;16:317-23.
    [57]Takahashi T, Iwahara H, Arao T. HIGH OXIDE ION CONDUCTION IN SINTERED OXIDES OF SYSTEM BI203-Y203. Journal of Applied Electrochemistry.1975;5:187-95.
    [58]Webster NAS, Ling CD, Raston CL, Lincoln FJ. The structure and conductivity of new fluorite-type Bi203-Er2O3-PbO materials. Solid State Ionics.2007;178:1451-7.
    [59]Watanabe A, Sekita M. Stabilized delta-Bi203 phase in the system Bi203-Er203-W03 and its oxide-ion conduction. Solid State Ionics.2005; 176:2429-33.
    [60]Takahashi T, Esaka T, Iwahara H. CONDUCTION IN BI203-BASED OXIDE ION CONDUCTORS UNDER LOW OXYGEN-PRESSURE.1. CURRENT BLACKENING OF BI2O3-Y2O3 ELECTROLYTE. Journal of Applied Electrochemistry.1977;7:299-302.
    [61]L.B.pankratz. Thermodynamic Properties of Elements and Oxides. US Bur of Mines. 1983;Bull. B:672.
    [62]Lee KT, Yoon HS, Wachsman ED. The evolution of low temperature solid oxide fuel cells. Journal of Materials Research.2012;27:2063-78.
    [63]Yahiro H, Baba Y, Eguchi K, Arai H. HIGH-TEMPERATURE FUEL-CELL WITH CERIA-YTTRIA SOLID ELECTROLYTE. Journal of the Electrochemical Society. 1988;135:2077-80.
    [64]Virkar AV. THEORETICAL-ANALYSIS OF SOLID OXIDE FUEL-CELLS WITH 2-LAYER, COMPOSITE ELECTROLYTES-ELECTROLYTE STABILITY. Journal of the Electrochemical Society.1991;138:1481-7.
    [65]Wachsman ED, Jayaweera P, Jiang N, Lowe DM, Pound BG. Stable high conductivity ceria/bismuth oxide bilayered electrolytes. Journal of the Electrochemical Society. 1997;144:233-6.
    [66]Park JY, Wachsman ED. Stable and high conductivity ceria/bismuth oxide bilayer electrolytes for lower temperature solid oxide fuel cells. Ionics.2006;12:15-20.
    [67]Ahn JS, Camaratta MA, Pergolesi D, Lee KT, Yoon H, Lee BW, et al. Development of High Performance Ceria/Bismuth Oxide Bilayered Electrolyte SOFCs for Lower Temperature Operation. Journal of the Electrochemical Society.2010;157:B376-B82.
    [68]Chan SH, Chen XJ, Khor KA. A simple bilayer electrolyte model for solid oxide fuel cells. Solid State Ionics.2003; 158:29-43.
    [69]Marques FMB, Navarro LM. Performance of double layer electrolyte cells.2. GCO/YSZ, a case study. Solid State Ionics.1997;100:29-38.
    [70]Zigui L, Hardy J, Templeton J, Stevenson J, Fisher D, Naijuan W, et al. Performance of anode-supported solid oxide fuel cell with thin bi-layer electrolyte by pulsed laser deposition. Journal of Power Sources.2012;210:292-6.
    [71]Oh E-O, Whang C-M, Lee Y-R, Park S-Y, Prasad DH, Yoon KJ, et al. Extremely Thin Bilayer Electrolyte for Solid Oxide Fuel Cells (SOFCs) Fabricated by Chemical Solution Deposition (CSD). Advanced Materials.2012;24:3373-7.
    [72]Ishihara T, Eto H, Yan J. Intermediate temperature solid oxide fuel cells using LaGaO3 based oxide film deposited by PLD method. International Journal of Hydrogen Energy. 2011;36:1862-7.
    [73]Bi ZH, Yi BL, Wang ZW, Dong YL, Wu HJ, She YC, et al. A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes. Electrochemical and Solid State Letters.2004;7:A105-A7.
    [74]Iwahara H. HIGH-TEMPERATURE PROTON CONDUCTING OXIDES AND THEIR APPLICATIONS TO SOLID ELECTROLYTE FUEL-CELLS AND STEAM ELECTROLYZER FOR HYDROGEN-PRODUCTION. Solid State Ionics.1988;28:573-8.
    [75]Iwahara H, Uchida H, Ono K, Ogaki K. PROTON CONDUCTION IN SINTERED OXIDES BASED ON BACE03. Journal of the Electrochemical Society.1988;135:529-33.
    [76]Katahira K, Kohchi Y, Shimura T, Iwahara H. Protonic conduction in Zr-substituted BaCe03. Solid State Ionics.2000;138:91-8.
    [77]Zuo C, Zha S, Liu M, Hatano M, Uchiyama M. Ba(Zr0.1Ce0.7Y0.2)03-delta as an electrolyte for low-temperature solid-oxide fuel cells. Advanced Materials.2006;18:3318-+.
    [78]Lin B, Hu M, Ma J, Jiang Y, Tao S, Meng G. Stable, easily sintered BaCe0.5Zr0.3Y0.16Zn0.04O3-delta electrolyte-based protonic ceramic membrane fuel cells with Ba0.5Sr0.5Zn0.2Fe0.803-delta perovskite cathode. Journal of Power Sources. 2008; 183:479-84.
    [79]Guo Y, Lin Y, Ran R, Shao Z. Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-delta (0.0<= y<= 0.8) for fuel cell applications. Journal of Power Sources.2009;193:400-7.
    [80]Kreuer KD. Proton-conducting oxides. Annual Review of Materials Research. 2003;33:333-59.
    [81]Fabbri E, Pergolesi D, Traversa E. Materials challenges toward proton-conducting oxide fuel cells:a critical review. Chemical Society Reviews.2010;39:4355-69.
    [82]Scherban T, Villeneuve R, Abello L, Lucazeau G. RAMAN-SCATTERING STUDY OF ACCEPTOR-DOPED BACE03. Solid State Ionics.1993;61:93-8.
    [83]Malavasi L, Fisher CAJ, Islam MS. Oxide-ion and proton conducting electrolyte materials for clean energy applications:structural and mechanistic features. Chemical Society Reviews. 2010;39:4370-87.
    [84]Hibino T, Hashimoto A, Suzuki M, Sano M. Proton conduction at the surface of Y-doped BaCe03. Journal of Physical Chemistry B.2001; 105:11399-401.
    [85]Matsumoto H, Kawasaki Y, Ito N, Enoki M, Ishihara T. Relation between electrical conductivity and chemical stability of BaCe03-based proton conductors with different trivalent dopants. Electrochemical and Solid State Letters.2007;10:B77-B80.
    [86]Oishi M, Akoshima S, Yashiro K, Sato K, Mizusaki J, Kawada T. Defect structure analysis of B-site doped perovskite-type proton conducting oxide BaCe03 Part 2:The electrical conductivity and diffusion coefficient of BaCe0.9Y0.103-delta. Solid State Ionics. 2008; 179:2240-7.
    [87]Kreuer KD. On the development of proton conducting materials for technological applications. Solid State Ionics.1997;97:1-15.
    [88]Fabbri E, Bi L, Pergolesi D, Traversa E. Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 degrees C with Chemically Stable Proton-Conducting Electrolytes. Advanced Materials.2012;24:195-208.
    [89]Xie K, Yan R, Xu X, Liu X, Meng G. A stable and thin BaCe0.7Nb0.1Gd0.203-delta membrane prepared by simple all-solid-state process for SOFC. Journal of Power Sources. 2009; 187:403-6.
    [90]Xie K, Yan R, Chen X, Wang S, Jiang Y, Liu X, et al. A stable and easily sintering BaCe03-based proton-conductive electrolyte. Journal of Alloys and Compounds. 2009;473:323-9.
    [91]Bi L, Zhang S, Fang S, Tao Z, Peng R, Liu W. A novel anode supported BaCe0.7Ta0.1Y0.2O3-delta electrolyte membrane for proton-conducting solid oxide fuel cell. Electrochemistry Communications.2008;10:1598-601.
    [92]Bi L, Zhang S, Zhang L, Tao Z, Wang H, Liu W. Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell. International Journal of Hydrogen Energy. 2009;34:2421-5.
    [93]Zuo C, Dorris SE, Balachandran U, Liu M. Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe0.8Y0.203-alpha mixed protonic-electronic conductor. Chemistry of Materials.2006; 18:4647-50.
    [94]Ryu KH, Haile SM. Chemical stability and proton conductivity of doped BaCe03-BaZr03 solid solutions. Solid State Ionics.1999; 125:355-67.
    [95]Fabbri E, D'Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E. Tailoring the chemical stability of Ba(Ce0.8-xZrx)Y0.2O3-delta protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Solid State Ionics.2008; 179:558-64.
    [96]Babilo P, Uda T, Haile SM. Processing of yttrium-doped barium zirconate for high proton conductivity. Journal of Materials Research.2007;22:1322-30.
    [97]Kreuer KD, Adams S, Munch W, Fuchs A, Klock U, Maier J. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics. 2001;145:295-306.
    [98]Pergolesi D, Fabbri E, D'Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, et al. High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nature Materials.2010;9:846-52.
    [99]Sun W, Yan L, Shi Z, Zhu Z, Liu W. Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3-delta electrolyte membrane. Journal of Power Sources.2010;195:4727-30.
    [100]Liu Y, Guo Y, Ran R, Shao Z. A new neodymium-doped BaZr0.8Y0.203-delta as potential electrolyte for proton-conducting solid oxide fuel cells. Journal of Membrane Science. 2012;415:391-8.
    [101]Sun W, Zhu Z, Shi Z, Liu W. Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.203-delta for solid oxide fuel cells. Journal of Power Sources. 2013;229:95-101.
    [102]Duval SBC, Holtappels P, Vogt UF, Stimming U, Graule T. Characterisation of BaZr0.9Y0.103-delta Prepared by Three Different Synthesis Methods:Study of the Sinterability and the Conductivity. Fuel Cells.2009;9:613-21.
    [103]Yamazaki Y, Hernandez-Sanchez R, Haile SM. Cation non-stoichiometry in yttrium-doped barium zirconate:phase behavior, microstructure, and proton conductivity. Journal of Materials Chemistry.2010;20:8158-66.
    [104]Khani Z, Taillades-Jacquin M, Taillades G, Marrony M, Jones DJ, Roziere J. New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics. Journal of Solid State Chemistry.2009; 182:790-8.
    [105]Magrez A, Schober T. Preparation, sintering, and water incorporation of proton conducting Ba0.99Zr0.8Y0.203-delta:comparison between three different synthesis techniques. Solid State Ionics.2004; 175:585-8.
    [106]Tao S, Irvine JTS. Conductivity studies of dense yttrium-doped BaZr03 sintered at 1325 degrees C. Journal of Solid State Chemistry.2007; 180:3493-503.
    [107]Tong J, Clark D, Hoban M, O'Hayre R. Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ionics.2010; 181:496-503.
    [108]Duval SBC, Holtappels P, Stimming U, Graule T. Effect of minor element addition on the electrical properties of BaZr0.9Y0.103-delta. Solid State Ionics.2008;179:11 12-5.
    [109]Nien SH, Hsu CS, Chang CL, Hwang BH. Preparation of BaZr0.1Ce0.7Y0.203-delta Based Solid Oxide Fuel Cells with Anode Functional Layers by Tape Casting. Fuel Cells. 2011;11:178-83.
    [110]Bi L, Tao Z, Liu C, Suna W, Wang H, Liu W. Fabrication and characterization of easily sintered and stable anode-supported proton-conducting membranes. Journal of Membrane Science.2009;336:1-6.
    [111]Matsumoto H, Nomura I, Okada S, Ishihara T. Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate. Solid State Ionics. 2008;179:1486-9.
    [112]Shim JH, Park JS, An J, Guer TM, Kang S, Prinz FB. Intermediate-Temperature Ceramic Fuel Cells with Thin Film Yttrium-Doped Barium Zirconate Electrolytes. Chemistry of Materials.2009;21:3290-6.
    [113]Pergolesi D, Fabbri E, Traversa E. Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochemistry Communications.2010; 12:977-80.
    [114]Fabbri E, Pergolesi D, D'Epifanio A, Di Bartolomeo E, Balestrino G, Licoccia S, et al. Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (TT-SOFCs). Energy & Environmental Science. 2008; 1:355-9.
    [115]Kueper TW, Visco SJ, Dejonghe LC. THIN-FILM CERAMIC ELECTROLYTES DEPOSITED ON POROUS AND NONPOROUS SUBSTRATES BY SOL-GEL TECHNIQUES. Solid State Ionics.1992;52:251-9.
    [116]Mehta K, Xu R, Virkar AV. Two-layer fuel cell electrolyte structure by sol-gel processing. Journal of Sol-Gel Science and Technology.1998; 11:203-7.
    [117]Seung-Goo K, Suk Woo N, Sung-Pil Y, Sang-Hoon H, Jonghee H, Tae-Hoon L, et al. Sol-gel processing of yttria-stabilized zirconia films derived from the zirconium n-butoxide-acetic acid-nitric acid-water-isopropanol system. Journal of Materials Science.2004;39:2683-8.
    [118]Thiele ES, Wang LS, Mason TO, Barnett SA. DEPOSITION AND PROPERTIES OF YTTRIA-STABILIZED ZIRCONIA THIN-FILMS USING REACTIVE DIRECT-CURRENT MAGNETRON SPUTTERING. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films.1991;9:3054-60.
    [119]Hertz JL, Tuller HL. Electrochemical characterization of thin films for a micro-solid oxide fuel cell. Journal of Electroceramics.2004;13:663-8.
    [120]Gourba E, Ringuede A, Cassir M, Billard A, Paiviasaari J, Niinisto J, et al. Characterisation of thin films of ceria-based electrolytes for IntermediateTemperature-Solid oxide fuel cells (IT-SOFC). Ionics.2003;9:15-20.
    [121]Gourba E, Briois P, Ringuede A, Cassir M, Billard A. Electrical properties of gadolinia-doped ceria thin films deposited by sputtering in view of SOFC application. Journal of Solid State Electrochemistry.2004;8:633-7.
    [122]Wang LS, Barnett SA. DEPOSITION AND PROPERTIES OF YTTRIA-STABILIZED BI203 THIN-FILMS USING REACTIVE DIRECT-CURRENT MAGNETRON COSPUTTERING. Journal of the Electrochemical Society.1992;139:2567-72.
    [123]Wang XG, Nakagawa N, Kato K. Active role of SDC interlayer in multi-layer anode of SOFCs. Electrochemistry.2002;70:252-7.
    [124]Beckel D, Bieberle-Huetter A, Harvey A, Infortuna A, Muecke UP, Prestat M, et al. Thin films for micro solid oxide fuel cells. Journal of Power Sources.2007; 173:325-45.
    [125]Greer JA, Tabat MD. LARGE-AREA PULSED-LASER DEPOSITION-TECHNIQUES AND APPLICATIONS. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films.1995;13:1175-81.
    [126]Greer JA, Tabat MD, Lu C. Future trends for large-area pulsed laser deposition. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms.1997;121:357-62.
    [127]Otani M, Tsukui S, Yoshida K, Umezaki Y, Mukai T. Fabrication of Gd0.5Sr0.5Co03 film for SOFC cathode by pulsed laser deposition. Solid State Ionics.2010; 180:1667-71.
    [128]Ju Y-W, Eto H, Inagaki T, Ida S, Ishihara T. Improvement in Thermal Cycling Durability of SOFCs Using LaGa03-Based Electrolyte by Inserting Convex Sm0.5Sr0.5Co03 Interlayer. Electrochemical and Solid State Letters.2010;13:B139-B41.
    [129]Rupp JLM, Infortuna A, Gauckler LJ. Microstrain and self-limited grain growth in nanocrystalline ceria ceramics. Acta Materialia.2006;54:1721-30.
    [130]Hobein B, Tietz F, Stover D, Kreutz EW Pulsed laser deposition of yttria stabilized zirconia for solid oxide fuel cell applications. Journal of Power Sources.2002;105:239-42.
    [131]Manoravi P, Sivakumar N, Joseph M, Mathews T. Laser ablation of La0.9Sr0.1Ga0.8Mg0.202.85-Plume and film characterization. Ionics.2004;10:32-8.
    [132]Mathews T, Manoravi P, Antony MP, Sellar JR, Muddle BC. Fabrication of Lal-xSrxGal-yMgy03-(x plus y)/2 thin films by pulsed laser ablation. Solid State Ionics. 2000;135:397-402.
    [133]Chen X, Wu NJ, Smith L, Ignatiev A. Thin-film heterostructure solid oxide fuel cells. Applied Physics Letters.2004;84:2700-2.
    [134]Yang D, Zhang X, Nikumb S, Deces-Petit C, Hui R, Maric R, et al. Low temperature solid oxide fuel cells with pulsed laser deposited bi-layer electrolyte. Journal of Power Sources. 2007;164:182-8.
    [1]Cho S, Kim Y, Kim J-H, Manthiram A, Wang H. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte. Electrochim Acta.2011;56:5472-7.
    [2]Liu QL, Khor KA, Chan SH, Chen XJ. Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process. Journal of Power Sources.2006;162:1036-42.
    [3]Uchida H, Arisaka S, Watanabe M. High performance electrode for medium-temperature solid oxide fuel cells-La(Sr)Co03 cathode with ceria interlayer on zirconia electrolyte. Electrochemical and Solid State Letters.1999;2:428-30.
    [4]Camaratta M, Wachsman E. High-performance composite Bi(2)Ru(2)O(7)-Bi(1.6)Er(0.4)O(3) cathodes for intermediate-temperature solid oxide fuel cells. Journal of the Electrochemical Society.2008;155:B135-B42.
    [5]Bozza F, Polini R, Traversa E. Electrophoretic Deposition of Dense Sr-and Mg-Doped LaGaO(3) Electrolyte Films on Porous La-Doped Ceria for Intermediate Temperature Solid Oxide Fuel Cells. Fuel Cells.2008;8:344-50.
    [6]Shimonosono T, Hirata Y, Ehira Y, Sameshima S, Horita T, Yokokawa H. Electronic conductivity measurement of Sm-and La-doped ceria ceramics by Hebb-Wagner method. Solid State Ionics.2004;174:27-33.
    [7]Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P. Gadolinia-doped ceria and yttria stabilized zirconia interfaces:Regarding their application for SOFC technology. Acta Materialia. 2000;48:4709-14.
    [8]Lim H-T, Virkar AV. Measurement of oxygen chemical potential in Gd(2)O(3)-doped ceria-Y(2)O(3)-stabilized zirconia bi-layer electrolyte, anode-supported solid oxide fuel cells. Journal of Power Sources.2009;192:267-78.
    [9]Price M, Dong JH, Gu XH, Speakman SA, Payzant EA, Nenoff TM. Formation of YSZ-SDC solid solution in a nanocrystalline heterophase system and its effect on the electrical conductivity. Journal of the American Ceramic Society.2005;88:1812-8.
    [10]Marques FMB, Navarro LM. Performance of double layer electrolyte cells.2. GCO/YSZ, a case study. Solid State Ionics.1997;100:29-38.
    [11]Chan SH, Chen XJ, Khor KA. A simple bilayer electrolyte model for solid oxide fuel cells. Solid State Ionics.2003;158:29-43.
    [12]Joo JH, Choi GM. Electrical conductivity of YSZ film grown by pulsed laser deposition. Solid State Ionics.2006;177:1053-7.
    [13]Ahn JS, Pergolesi D, Camaratta MA, Yoon H, Lee BW, Lee KT, et al. High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells. Electrochemistry Communications.2009; 11:1504-7.
    [14]Evans A, Bieberle-Huetter A, Rupp JLM, Gauckler LJ. Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources.2009; 194:119-29.
    [15]Zhang L, Xia C, Zhao F, Chen F. Thin film ceria-bismuth bilayer electrolytes for intermediate temperature solid oxide fuel cells with La(0.85)Sr(0.15)MnO(3-delta)-Y(0.25)Bi(0.75)O(1.5) cathodes. Materials Research Bulletin.2010;45:603-8.
    [16]Gong Y, Ji W, Zhang L, Li M, Xie B, Wang H, et al. Low temperature deposited (Ce,Gd)O(2-x) interlayer for La(0.6)Sr(0.4)Co(0.2)Fe(0.8)O(3) cathode based solid oxide fuel cell. Journal of Power Sources.2011;196:2768-72.
    [17]Jiang SP. A comparison of O-2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O-3 electrodes. Solid State Ionics.2002;146:1-22.
    [18]Jung HY, Hong K-S, Jung H-G, Kim H, Kim H-R, Son J-W, et al. SOFCs with Sc-doped zirconia electrolyte and Co-containing perovskite cathodes. Journal of the Electrochemical Society.2007;154:B480-B5.
    [19]Xia CR, Rauch W, Chen FL, Liu ML. Sm0.5Sr0.5Co03 cathodes for low-temperature SOFCs. Solid State Ionics.2002;149:11-9.
    [20]Zhu Z, Tao Z, Bi L, Liu W. Investigation of SmBaCuCoO(5+delta) double-perovskite as cathode for proton-conducting solid oxide fuel cells. Materials Research Bulletin. 2010;45:1771-4.
    [21]Noh H-S, Son J-W, Lee H, Song H-S, Lee H-W, Lee J-H. Low Temperature Performance Improvement of SOFC with Thin Film Electrolyte and Electrodes Fabricated by Pulsed Laser Deposition. Journal of the Electrochemical Society.2009;156:B1484-B90.
    [1]Zigui L, Hardy J, Templeton J, Stevenson J, Fisher D, Naijuan W, et al. Performance of anode-supported solid oxide fuel cell with thin bi-layer electrolyte by pulsed laser deposition. Journal of Power Sources.2012;210:292-6.
    [2]Uchida H, Arisaka S, Watanabe M. High performance electrode for medium-temperature solid oxide fuel cells-La(Sr)Co03 cathode with ceria interlayer on zirconia electrolyte. Electrochemical and Solid State Letters.1999;2:428-30.
    [3]Shimonosono T, Hirata Y, Ehira Y, Sameshima S, Horita T, Yokokawa H. Electronic conductivity measurement of Sm- and La-doped ceria ceramics by Hebb-Wagner method. Solid State Ionics.2004; 174:27-33.
    [4]Liu QL, Khor KA, Chan SH, Chen XJ. Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process. Journal of Power Sources.2006;162:1036-42.
    [5]Lim H-T, Virkar AV. Measurement of oxygen chemical potential in Gd(2)O(3)-doped ceria-Y(2)O(3)-stabilized zirconia bi-layer electrolyte, anode-supported solid oxide fuel cells. Journal of Power Sources.2009; 192:267-78.
    [6]Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P. Gadolinia-doped ceria and yttria stabilized zirconia interfaces:Regarding their application for SOFC technology. Acta Materialia. 2000;48:4709-14.
    [7]Yang D, Zhang X, Nikumb S, Deces-Petit C, Hui R, Maric R, et al. Low temperature solid oxide fuel cells with pulsed laser deposited bi-layer electrolyte. Journal of Power Sources. 2007; 164:182-8.
    [8]Joo JH, Choi GM. Electrical conductivity of YSZ film grown by pulsed laser deposition. Solid State Ionics.2006; 177:1053-7.
    [9]Pergolesi D, Fabbri E, Traversa E. Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochemistry Communications.2010;12:977-80.
    [10]Cho S, Kim Y, Kim J-H, Manthiram A, Wang H. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte. ElectrochimActa.2011;56:5472-7.
    [11]Hobein B, Tietz F, Stover D, Kreutz EW. Pulsed laser deposition of yttria stabilized zirconia for solid oxide fuel cell applications. Journal of Power Sources.2002;105:239-42.
    [12]Pandey SK, Thakur OP, Raman R, Goyal A, Gupta A. Structural and optical properties of YSZ thin films grown by PLD technique. Applied Surface Science.2011;257:6833-6.
    [13]Wang H, Ji W, Zhang L, Gong Y, Xie B, Jiang Y, et al. Preparation of YSZ films by magnetron sputtering for anode-supported SOFC. Solid State Ionics.2011; 192:413-8.
    [14]Ahn JS, Pergolesi D, Camaratta MA, Yoon H, Lee BW, Lee KT, et al. High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells. Electrochemistry Communications.2009;11:1504-7.
    [15]Zhang L, Xia C, Zhao F, Chen F. Thin film ceria-bismuth bilayer electrolytes for intermediate temperature solid oxide fuel cells with La(0.85)Sr(0.15)MnO(3-delta)-Y(0.25)Bi(0.75)O(1.5) cathodes. Materials Research Bulletin.2010;45:603-8.
    [16]Noh H-S, Son J-W, Lee H, Song H-S, Lee H-W, Lee J-H. Low Temperature Performance Improvement of SOFC with Thin Film Electrolyte and Electrodes Fabricated by Pulsed Laser Deposition. Journal of the Electrochemical Society.2009;156:B1484-B90.
    [17]De Jonghe LC, Jacobson CP, Visco SJ. Supported electrolyte thin film synthesis of solid oxide fuel cells. Annual Review of Materials Research.2003;33:169-82.
    [18]Noh H-S, Son J-W, Lee H, Ji H-I, Lee J-H, Lee H-W. Suppression of Ni agglomeration in PLD fabricated Ni-YSZ composite for surface modification of SOFC anode. Journal of the European Ceramic Society.2010;30:3415-23.
    [19]Zhao F, Virkar AV. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. Journal of Power Sources.2005;141:79-95.
    [20]Xia CR, Rauch W, Wellborn W, Liu ML. Functionally graded cathodes for honeycomb solid oxide fuel cells. Electrochemical and Solid State Letters.2002;5:A217-A20.
    [21]Xia CR, Rauch W, Chen FL, Liu ML. Sm0.5Sr0.5Co03 cathodes for low-temperature SOFCs. Solid State Ionics.2002;149:11-9.
    [22]Chen K, Chen X, Lue Z, Ai N, Huang X, Su W. Performance of an anode-supported SOFC with anode functional layers. Electrochim Acta.2008;53:7825-30.
    [I]Wachsman ED, Lee KT. Lowering the Temperature of Solid Oxide Fuel Cells. Science. 2011;334:935-9.
    [2]Uchida H, Arisaka S, Watanabe M. High performance electrode for medium-temperature solid oxide fuel cells-La(Sr)Co03 cathode with ceria interlayer on zirconia electrolyte. Electrochemical and Solid State Letters.1999;2:428-30.
    [3]Bozza F, Polini R, Traversa E. Electrophoretic Deposition of Dense Sr-and Mg-Doped LaGaO(3) Electrolyte Films on Porous La-Doped Ceria for Intermediate Temperature Solid Oxide Fuel Cells. Fuel Cells.2008;8:344-50.
    [4]Zhan Z, Han D, Wu T, Ye X, Wang S, Wen T, et al. A solid oxide cell yielding high power density below 600 degrees C. Rsc Advances.2012;2:4075-8.
    [5]Zhu X-d, Zhang N-q, Wu L-j, Sun K-n, Yuan Y-x. Preparation and performance of large-area La0.9Sr0.1Ga0.8Mg0.203-delta electrolyte for intermediate temperature solid oxide fuel cell. Journal of Power Sources.2010;195:7583-6.
    [6]Yang D, Zhang X, Nikumb S, Deces-Petit C, Hui R, Maric R, et al. Low temperature solid oxide fuel cells with pulsed laser deposited bi-layer electrolyte. Journal of Power Sources. 2007;164:182-8.
    [7]Ju Y-W, Ida S, Inagaki T, Ishihara T. Reoxidation behavior of Ni-Fe bimetallic anode substrate in solid oxide fuel cells using a thin LaGa03 based film electrolyte. Journal of Power Sources.2011;196:6062-9.
    [8]Guo W, Liu J, Jin C. Anode-supported LaGa03-based electrolyte SOFCs with Y203-doped Bi203 and La-doped Ce02 buffer layers. Journal of Alloys and Compounds. 2010;504:L21-L4.
    [9]Hong D, Liu L, Song X, Li Y. Influence of 0-2 Pressure on the Structure and Surface Morphology of YSZ Layer for YBCO Coated Conductor Deposited by PLD on Ni-W Tape. Journal of Superconductivity and Novel Magnetism.2011;24:1707-13.
    [10]Xuejiao L, Xie M, Da H, Hao W, Fanrong Z, Zhongliang Z. Impregnated nickel anodes for reduced-temperature solid oxide fuel cells based on thin electrolytes of doped LaGaO 3. Journal of Power Sources.2013;222:92-6.
    [II]Ju Y-W, Inagaki T, Ida S, Ishihara T. Sm(Sr)Co03 Cone Cathode on LaGa03 Thin Film Electrolyte for IT-SOFC with High Power Density. Journal of the Electrochemical Society. 2011;158:B825-B30.
    [12]Pergolesi D, Fabbri E, Traversa E. Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochemistry Communications.2010;12:977-80.
    [13]Joo JH, Choi GM. Electrical conductivity of YSZ film grown by pulsed laser deposition. Solid State Ionics.2006;177:1053-7.
    [14]Pandey SK, Thakur OP, Raman R, Goyal A, Gupta A. Structural and optical properties of YSZ thin films grown by PLD technique. Applied Surface Science.2011;257:6833-6.
    [15]何建廷,庄惠照,薛成山,田德恒,吴玉新,婧赵,et al.脉冲激光沉积法制备ZnO薄膜的研究进展.电子元件与材料.2006;25:12.
    [16]Liu XZ, He SM, Li DH, Lu QF, Wang ZH, Bao SX, et al. Dynamics of STO heteroepitaxial growth by pulsed laser deposition. Journal of Materials Science.2005;40:5139-45.
    [17]Lei L, Dingquan X, Dunmin L, Yongbin Z, Jianguo Z. Growth and structure of Bi 0.5(Na 0.7K 0.2Li 0.1) 0.5Ti0 3 thin films prepared by pulsed laser deposition technique. Physica B. 2009;404:325-8.
    [18]Yan JW, Matsumoto H, Akbay T, Yamada T, Ishihara T. Preparation of LaGa03-based perovskite oxide film by a pulsed-laser ablation method and application as a solid oxide fuel cell electrolyte. Journal of Power Sources.2006;157:714-9.
    [19]Heiroth S, Lippert T, Wokaun A, Doebeli M, Rupp JLM, Scherrer B, et al. Yttria-stabilized zirconia thin films by pulsed laser deposition:Microstructural and compositional control. Journal of the European Ceramic Society.2010;30:489-95.
    [20]Kanazawa S, Ito T, Yamada K, Ohkubo T, Nomoto Y, Ishihara T, et al. Preparation of doped LaGa03 films by pulsed laser deposition. Surface & Coatings Technology.2003;169:508-1 1.
    [21]Rojo T, de Larramendi IR, Anton RL, de Larramendi JIR, Baliteau S, Mauvy F, et al. Structural and electrical properties of thin films of Pr 0.8 Sr 0.2Fe 0.8Ni 0.20 3-delta. Journal of Power Sources.2007;169:35-9.
    [22]粱素平,蒋毅坚.脉冲激光溅射沉积YBCO超导薄膜.应用激光.2002;22:238.
    [23]Mathews T, Sellar JR, Muddle BC, Manoravi P. Pulsed laser deposition of doped lanthanum gallate and in situ analysis by mass spectrometry of the laser ablation plume. Chemistry of Materials.2000;12:917-22.
    [24]Shim JH, Park JS, An J, Guer TM, Kang S, Prinz FB. Intermediate-Temperature Ceramic Fuel Cells with Thin Film Yttrium-Doped Barium Zirconate Electrolytes. Chemistry of Materials.2009;21:3290-6.
    [25]赵涛,李清山,董艳锋,张立春,解晓君.氧压对PLD制备掺铜ZnO薄膜光学性质的影响.激光技术.2011;35:782.
    [26]Zhang L, Xia C, Zhao F, Chen F. Thin film ceria-bismuth bilayer electrolytes for intermediate temperature solid oxide fuel cells with La0.85Sr0.15Mn03-delta-Y0.25Bi0.7501.5 cathodes. Materials Research Bulletin.2010;45:603-8.
    [27]Zhao F, Virkar AV. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. Journal of Power Sources.2005;141:79-95.
    [28]Xia CR, Rauch W, Wellborn W, Liu ML. Functionally graded cathodes for honeycomb solid oxide fuel cells. Electrochemical and Solid State Letters.2002;5:A217-A20.
    [1]Iwahara H, Esaka T, Uchida H, Maeda N. PROTON CONDUCTION IN SINTERED OXIDES AND ITS APPLICATION TO STEAM ELECTROLYSIS FOR HYDROGEN-PRODUCTION. Solid State Ionics.1981;3-4:359-63.
    [2]Sun W, Zhu Z, Shi Z, Liu W. Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.2O3-delta for solid oxide fuel cells. Journal of Power Sources. 2013;229:95-101.
    [3]Bi L, Zhang S, Fang S, Tao Z, Peng R, Liu W. A novel anode supported BaCe0.7Ta0.1Y0.2O3-delta electrolyte membrane for proton-conducting solid oxide fuel cell. Electrochemistry Communications.2008; 10:1598-601.
    [4]Bi L, Fabbri E, Sun Z, Traversa E. Sinteractive anodic powders improve densification and electrochemical properties of BaZr0.8Y0.2O3-delta electrolyte films for anode-supported solid oxide fuel cells. Energy & Environmental Science.2011;4:1352-7.
    [5]Zuo C, Zha S, Liu M, Hatano M, Uchiyama M. Ba(Zr0.1Ce0.7Y0.2)O3-delta as an electrolyte for low-temperature solid-oxide fuel cells. Advanced Materials.2006; 18:3318-+.
    [6]Pergolesi D, Fabbri E, D'Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, et al. High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nature Materials.2010;9:846-52.
    [7]Fabbri E, Pergolesi D, Traversa E. Materials challenges toward proton-conducting oxide fuel cells:a critical review. Chemical Society Reviews.2010;39:4355-69.
    [8]Yamazaki Y, Hernandez-Sanchez R, Haile SM. High Total Proton Conductivity in Large-Grained Yttrium-Doped Barium Zirconate. Chemistry of Materials.2009;21:2755-62.
    [9]Kreuer KD. Proton-conducting oxides. Annual Review of Materials Research.2003;33:333-59.
    [10]Liu Y, Guo Y, Ran R, Shao Z. A new neodymium-doped BaZr0.8Y0.2O3-delta as potential electrolyte for proton-conducting solid oxide fuel cells. Journal of Membrane Science. 2012;415:391-8.
    [11]Fabbri E, Bi L, Pergolesi D, Traversa E. Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 degrees C with Chemically Stable Proton-Conducting Electrolytes. Advanced Materials.2012;24:195-208.
    [12]Kreuer KD, Adams S, Munch W, Fuchs A, Klock U, Maier J. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics. 2001;145:295-306.
    [13]Kreuer KD. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics.1999;125:285-302.
    [14]Joo JH, Choi GM. Electrical conductivity of YSZ film grown by pulsed laser deposition. Solid State Ionics.2006;177:1053-7.
    [15]Pergolesi D, Fabbri E, Traversa E. Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochemistry Communications.2010;12:977-80.
    [16]Fabbri E, Pergolesi D, D'Epifanio A, Di Bartolomeo E, Balestrino G, Licoccia S, et al. Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). Energy & Environmental Science. 2008;1:355-9.
    [17]Haile SM, Staneff G, Ryu KH. Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites. Journal of Materials Science.2001;36:1149-60.
    [18]Kreuer KD. On the development of proton conducting materials for technological applications. Solid State Ionics.1997;97:1-15.
    [19]Ji H-I, Kim B-K, Yu JH, Choi S-M, Kim H-R, Son J-W, et al. Three dimensional representations of partial ionic and electronic conductivity based on defect structure analysis of BaZr0.85Y0.15O3-delta. Solid State Ionics02011;203:9-17.
    [20]Tong J, Clark D, Bernau L, Sanders M, O'Hayre R. Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics. Journal of Materials Chemistry.2010;20:6333-41.
    [21]Tao Z, Zhu Z, Wang H, Liu W. A stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells. Journal of Power Sources.2010;195:3481-4.
    [22]Xie K, Yan R, Chen X, Dong D, Wang S, Liu X, et al. A new stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds.2009;472:551-5.
    [23]Bi L, Zhang S, Lin B, Fang S, Xia C, Liu W. Screen-printed BaCe0.8SM0.2O3-delta thin membrane solid oxide fuel cells with surface modification by spray coating. Journal of Alloys and Compounds.2009;473:48-52.
    [24]Bi L, Tao Z, Sun W, Zhang S, Peng R, Liu W. Proton-conducting solid oxide fuel cells prepared by a single step co-firing process. Journal of Power Sources.2009; 191:428-32.
    [25]Bi L, Zhang S, Fang S, Zhang L, Gao H, Meng G, et al. In Situ Fabrication of a Supported Ba(3)Ca(1.18)Nb(1.82)O(9-delta) Membrane Electrolyte for a Proton-Conducting SOFC. Journal of the American Ceramic Society.2008;91:3806-9.
    [26]Zhao F, Virkar AV. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. Journal of Power Sources.2005;141:79-95.
    [27]Xia CR, Rauch W, Wellborn W, Liu ML. Functionally graded cathodes for honeycomb solid oxide fuel cells. Electrochemical and Solid State Letters.2002;5:A217-A20.
    [28]Fabbri E, D'Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E. Tailoring the chemical stability of Ba(Ce0.8-xZrx)Y0.203-delta protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Solid State Ionics.2008;179:558-64.
    [29]Xingqin L, Kui X, Qianli M, Lin B, Yinzhu J, Jianfeng G, et al. An ammonia fuelled SOFC with a BaCe 0.9Nd 0.10 3-delta thin electrolyte prepared with a suspension spray. Journal of Power Sources.2007;170:38-41.
    [30]Lin B, Hu M, Ma J, Jiang Y, Tao S, Meng G. Stable, easily sintered BaCe0.5Zr0.3Y0.16Zn0.04O3-delta electrolyte-based protonic ceramic membrane fuel cells with Ba0.5Sr0.5Zn0.2Fe0.803-delta perovskite cathode. Journal of Power Sources. 2008;183:479-84.
    [31]Wang Y, Wang H, Liu T, Chen F, Xia C. Improving the chemical stability of BaCe0.8Sm0.203-delta electrolyte by Cl doping for proton-conducting solid oxide fuel cell. Electrochemistry Communications.2013;28:87-90.
    [1]Fabbri E, Pergolesi D, Traversa E. Materials challenges toward proton-conducting oxide fuel cells:a critical review. Chemical Society Reviews.2010;39:4355-69.
    [2]Kreuer KD. Proton-conducting oxides. Annual Review of Materials Research.2003;33:333-59.
    [3]Kreuer KD. On the development of proton conducting materials for technological applications. Solid State Ionics.1997;97:1-15.
    [4]Bi L, Zhang S, Fang S, Zhang L, Gao H, Meng G, et al. In Situ Fabrication of a Supported Ba(3)Ca(1.18)Nb(1.82)O(9-delta) Membrane Electrolyte for a Proton-Conducting SOFC. Journal of the American Ceramic Society.2008;91:3806-9.
    [5]Bi L, Zhang S, Lin B, Fang S, Xia C, Liu W. Screen-printed BaCe0.8SM0.203-delta thin membrane solid oxide fuel cells with surface modification by spray coating. Journal of Alloys and Compounds.2009;473:48-52.
    [6]Guo Y, Lin Y, Ran R, Shao Z. Zirconium doping effect on the performance of proton-conducting BaZryCe0.8-yY0.2O3-delta (0.0<= y<= 0.8) for fuel cell applications. Journal of Power Sources.2009;193:400-7.
    [7]Fabbri E, Bi L, Pergolesi D, Traversa E. Towards the Next Generation of Solid Oxide Fuel Cells Operating Below 600 degrees C with Chemically Stable Proton-Conducting Electrolytes. Advanced Materials.2012;24:195-208.
    [8]Fabbri E, Bi L, Tanaka H, Pergolesi D, Traversa E. Chemically Stable Pr and Y Co-Doped Barium Zirconate Electrolytes with High Proton Conductivity for Intermediate-Temperature Solid Oxide Fuel Cells. Advanced Functional Materials.2011;21:158-66.
    [9]Tao Z, Zhu Z, Wang H, Liu W. A stable BaCe03-based proton conductor for intermediate-temperature solid oxide fuel cells. Journal of Power Sources.2010;195:3481-4.
    [10]Xie K, Yan R, Chen X, Dong D, Wang S, Liu X, et al. A new stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds.2009;472:551-5.
    [11]Lin B, Hu M, Ma J, Jiang Y, Tao S, Meng G. Stable, easily sintered BaCe0.5Zr0.3Y0.16Zn0.04O3-delta electrolyte-based protonic ceramic membrane fuel cells with Ba0.5Sr0.5Zn0.2Fe0.803-delta perovskite cathode. Journal of Power Sources. 2008;183:479-84.
    [12]Bi L, Zhang S, Fang S, Tao Z, Peng R, Liu W. A novel anode supported BaCe0.7Ta0.1Y0.203-delta electrolyte membrane for proton-conducting solid oxide fuel cell. Electrochemistry Communications.2008;10:1598-601.
    [13]Zhao F, Virkar AV. Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. Journal of Power Sources.2005;141:79-95.
    [14]Xia CR, Rauch W, Wellborn W, Liu ML. Functionally graded cathodes for honeycomb solid oxide fuel cells. Electrochemical and Solid State Letters.2002;5:A217-A20.
    [15]Sun W, Zhu Z, Shi Z, Liu W. Chemically stable and easily sintered high-temperature proton conductor BaZr0.8In0.203-delta for solid oxide fuel cells. Journal of Power Sources. 2013;229:95-101.
    [16]Wang Y, Wang H, Liu T, Chen F, Xia C. Improving the chemical stability of BaCe0.8Sm0.203-delta electrolyte by Cl doping for proton-conducting solid oxide fuel cell. Electrochemistry Communications.2013;28:87-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700