用户名: 密码: 验证码:
固体氧化物燃料电池动力学分析与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在不可再生资源锐减、生态环境恶化的现状下,能源多样化的研究已将燃料电池这种高效、环保的产能模式推到了可再生能源研究的前沿,其中作为燃料来源多、转化效率高、容量范围宽、环境更友好的固体氧化物型燃料电池(Solid Oxide Fuel Cell, SOFC)是最具商业化发展潜力的能源之一。SOFC系统正常运转需要800-1000℃甚至更高的内部环境温度,电堆内高温、高速率的化学反应过程给系统在材料加工、结构设计、过程控制等方面开展研究带来了诸多困难。全封闭的工作环境使得过程参数难以实测获取,直接影响了对其电特性、热管理、稳定度的分析与研究。目前,以数值模拟与仿真分析为主、实验测试与参数拟合为辅的低成本、高效率的研究方法,仍然是加速SOFC本体及其发电系统技术发展的最有效手段。
     为了了解SOFC微观状态下的稳态性能以及关键参数的分布情况,研究中首先对板式结构SOFC单体建立了多物理场耦合模型,进行数值模拟与性能分析,在此基础上又对电池电堆展开了动态特性的分析与建模,采用时间尺度分析的方法简化模型。在控制方法研究过程中,首先对电堆的机理模型进行简化并建立了用于温度控制的非线性模型,开展温度控制策略的研究;其次对包含内部燃料重整环节和尾气循环利用的SOFC发电系统提出了模型预测控制的控制策略。论文的主要工作体现在:
     1.在对SOFC工作原理与特性开展电化学、热力学理论推导的基础上,为SOFC单电池建立了多物理场耦合模型并进行了稳态性能的分析。建模过程中,充分考虑了电池内部多种影响传热传质的因素,对不同物理域尺度下的基于流体力学、电化学、热力学的守恒方程采用设定模型边界耦合条件的方式进行了综合建模。该方法解决了由于模型属性差别、量级不同而无法匹配的问题,最终建立了稳态工作点下电池单体的三维仿真模型,能够采用3D图像的形式描述单电池极板、电解质层内部燃料与氧化剂的气体质量、流量、压力和电势、电流的分布状况。通过对不同工况下的仿真结果进行分析与比较,获得更全面的SOFC单体稳态性能描述。
     2.在数值模拟工作的基础上,结合实验测试获得的暂态性能分析结果围绕电池电堆的集总动态建模方法展开了研究。首先将电堆内部的动态行为等效为阻性、容性、感性元件在电路中带来的影响,重点考虑了电容性元素在燃料电池建模过程中的识别与数学表述。接下来引入了时间尺度分析的方法,将动态行为表述形式予以分类,或为常值,或为函数形式,使得最终得到的模型能够充分表征电池电堆内这些潜在的阻性、容性和感性元件在工作过程中参数的变化、反应速率的变化、耦合参数的调整等瞬态行为,为接下来控制方法的研究提供准确有效的数学模型。
     3.分析了引起电堆内部温度变化的参变量间直接或间接的影响关系,针对之前搭建的系统模型本身具有强非线性、单一控制策略无法达到控制目标等问题,结合控制系统设计的需要,将电堆的温度模型与NARIMAX模型进行联合,得到了包含电堆温度和输出电压的辨识模型。分别采用常规广义预测控制方法和改进型广义预测控制方法对入口气体流量、组分和温度进行实时控制,改进中采用了基于最小二乘原理的Levenberg-Marquardt算法作为参数预测优化的方法。通过对两种控制效果的比较,提出的算法降低了计算过程陷入局部极小值的可能性,并且使系统对由负载电流变化引起的扰动具有迅速、有效的抑制作用。
     4.为了使SOFC电堆对多种燃料具有更好的适用性,在之前的电堆模型基础上加入了燃料重整环节和尾气循环燃烧室两个重要的辅助部件,将之前建立的SIMULINK仿真模型扩展为可采用CH4、CO、H2、N2等多成分混合气体燃料的模型并以非线性状态空间方程的方式予以表述。针对扩展后的系统分别采用基于白适应UKF参数估计的非线性模型预测控制与鲁棒模型预测控制方法,从直接能量最大化、损耗能量最小化的角度提出控制的优化目标和约束条件。提出的控制方案在处理SOFC系统的控制目标值与边界约束发生冲突时能够表现稳定,当目标与约束条件发生冲突时,能迅速得出最接近于目标的控制输入的次优值。
     本课题的研究工作对于推进SOFC电堆及其集成系统在材料制备、结构设计、能效分析、控制策略方面的研究具有理论应用和实践指导的意义,为进一步研究和设计SOFC-GT系统的控制方案、系统故障诊断等方面的研究奠定了基础。
The study of the various energy sources has brought the fuel cells, which are clean, pro-environment and efficient, to the forefront of the renewable energy research, when the non-renewable resources have dropped sharply and environment degraded. Of them, the Solid Oxide Fuel Cell (SOFC) which possesses the quality of resourcefulness, high convertibility, wide range and friendly environment has become one of the most potential energy resources for commercial development. It needs800-1000℃even higher temperature in the enclosed environment for the work properly. It causes difficulties for the studies on material processing, structural design and other aspects of the process control because of its higher temperature and faster speed in the chemical reaction process. In its enclosed working environment, part of the unmeasurable process parameters directly affects the analysis and study of its electrical characteristics, thermal management, and stability. At present, the low-cost, high-efficiency methods with numerical simulation analysis supplemented by experimental testing and parameter fitting have become the main means of speeding up the development of SOFC and the power generation.
     In order to understand the steady-state characters of SOFC in the microscopic and the distribution of the key parameters, this thesis adopts multiple physical field coupling models to carry out the numerical simulation for the planar structure of SOFC. Based on this, it builds the dynamic modeling of the stack, and simplifies the model using time scales. In the process of control method research, first, it simplifies the model and establishes the nonlinear model for controlling the temperature; second, it puts forward the predictive control strategy of SOFC power system which contains internal fuel reforming and exhaust gas recycling. The main work of the paper is presented in the following:
     1. Based on the analysis of the principle and characteristics of SOFC electrochemistry, thermodynamics theory, multi-physics coupling model is established for SOFC single cell and its steady state is analyzed. In the establishment, the various factors of affected internal battery of heat and mass transfer are fully considered. The model contains series of conservation laws of fluid mechanics, thermodynamics, electrochemistry which adopts the method of setting boundary coupling condition in different physical domains, the scales. This method solves the problems of the difference model attributed and unmatched magnitude. Based on this, the work has built the three-dimensional simulation model of the single battery under the steady-state operating point, describing the distribution of oxidizing agent quality, gas flow rate, gas pressure and electric potential under the multiple steady-state operating points inside the single cell using3D images so as to master the working point of the steady state performance.
     2. On the working of the numerical simulation, the stack's lumped model is studied on the basis of analysis of the results obtained from the experiment. First, the dynamic behavior of the internal stack attributed to resistive, capacitive, inductive elements in the circuit, which causes the impact on it. Of them, the focus is on the identification and equivalent of the element of capacitance in the modeling. Then the time scale analysis method is introduced, the expression of the dynamic behavior is classified as constant value or as a function, so that the resulting model can adequately characterize the cell stack within these potential resistive, capacitive and inductive element in the work process parameter variations. All of these provide the accurate, visible, and controllable mathematical model for the following work of control method of the research.
     3. It first analyzes the relationships of the changes influenced by the internal temperature of the stack parameters directly or indirectly, and then combined the lumped model with NARIMAX model the system according to the system control design, which obtains the identification model containing the stack temperature and output voltage. It also uses conventional methods and improved one, respectively, to control inlet gas flow rate, composition and temperature in real-time. In the improvement, the Levenberg-Marquardt algorithm is applied as a parameter prediction. By comparison of the two control effect, the proposed algorithm reduces the computation process into the possibility of local minima and make system changes caused by the load current disturbance has rapid and effective inhibition.
     4. In order to make the SOFC pile have better applicability for composite fuel, the two important auxiliary parts-fuel reforming and exhaust gas recirculation-are added to the established pile model, expending the SIMULINK simulation model to use CH4, CO, H2, N2etc mixed gases nonlinear model and express in nonlinear state space equation method. For the extended system, the nonlinear predictive control system of the self-adaptive UKF parameters and robust model are used respectively, then put forward the optimization objectives and constraints of control and robust model directly from the point of energy maximization, loss minimization. All of these result better effectiveness. The control method performs steadily when the target value conflicts with the boundary constraints in SOFC system and quickly get the suboptimal control closest to the target control input of the optimal value.
     This research work has its practical guidance and application significance to develop the SOFC pile and the integrated system in material preparation, structure design, performance analysis, and the control strategy, has laid the solid foundation for the further establishment of SOFC-GT system in the control design and system fault diagnosis.
引文
[1]Parlsons ER, Shelton WW, Lyons JL. Advanced fossil power systems comparison study-final report. US Department of Energy Office of Fossil Energy,National Energy Technology Laboratory,West Virginia,2002
    [2]周小谦.中国电力改革和推进热电联产及分布式能源的发展.第二届中国分布式能源国际研讨会,Bejing,2006
    [3]Williams MC, Strakey J, Sudoval W.US DOE Fossil energy fuel cells program. Journal of Power Sources,2006(159):1241-1247
    [4]中华人民共和国科学技术部.国家中长期科学和技术发展规划纲要(2006-2020年)2006, http://www.most.gov.cn/mostinfo/xinxifenlei/gjkjgh/200811/ t20081129 65774.htm
    [5]薛峰,王海风,Raj Aggarwal.英国国家基金电力能源领域重大研究计划.电力系统自动化,2007,31(4):1-6
    [6]Surdoval W. Clean economic energy in a carbon challenged world. In 10th Annual Solid State Energy Conversion Alliance (SECA) Workshop. Pittsburgh, PA.2009
    [7]中华人民共和国国务院.中华人民共和国国民经济和社会发展第十二个五年规划纲要2011, http://www.gov.cn/2011lh/content_1825838.htm
    [8]詹姆斯.拉米尼,安德鲁斯.迪克斯.燃料电系统原理、设计、应用(第二版).北京:科学出版社,2006
    [9]何晓亮.燃料电池技术5到10年将产业化.能源研究与利用,2012(2):17-19
    [10]侯明,衣宝廉.燃料电池技术发展现状与展望.电化学,2012,18(1):1-13
    [11]王诚.燃料电池技术开发现状及发展趋势.新材料产业,2012(2):37-43
    [12]刘俊.燃料电池技术研究进程及未来展望.化学工程与装,2012(4):115-116
    [13]刘春娜.国外微型燃料电池研发动态.电源技术,2012,36(3):301-302
    [14]问朋朋,黄明宇,倪红军,贾中实.燃料电池车发展概况及展望.电源技术,2012,36(4):596-610
    [15]衣宝廉.燃料电池—原理·技术·应用.北京:化学工业出版社,2003
    [16]Fuel cell handbook, edition 7. US:US Department of Energy.2004
    [17]Gemma, C, Opening doors to fuel cell commercialization-Alkaline fuel cell (AFC).Germany:Fuel Cell Today,2007
    [18]Gemma, C, Opening doors to fuel cell commercialization-Molten carbonate fuel cells (MCFC). Germany:Fuel Cell Today,2007
    [19]Gemma, C, Opening doors to fuel cell commercialization-Proton exchange membrane fuel cell (PEMFC). Germany: Fuel Cell Today,2007
    [20]Gemma, C, Opening doors to fuel cell commercialization-Solid oxide fuel cells (SOFC). Germany:Fuel Cell Today,2007
    [21]Blum L, Meulenberg WA, Nabielek H, Wilekens RS, Worldwide SOFC technology overview and benchmark. International Journal of Applied Ceramic Technology,2005,2(6):482-492
    [22]Subhash C Singhal, Kevin Kendall.高温固体氧化物燃料电池—原理、设计和应用.北京:科学出版社,2007
    [23]Kirubakaran, Shailendra Jain, RK Nema. A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews, 2009(13):2430-1440
    [24]Ivan Verhaert, Sebastian Verhelst, Henk Huisseune, Isabelle Poels, Griet Janssen, Grietus Mulder, Michel De Paepe. Thermal and electrical performance of an alkaline fuel cell. Applied Thermal Engineering,2012(40):227-235
    [25]Dunbar WR. Computer simulation of solid electrolyte fuel cells. US:Marquette University,1983
    [26]Vayenas CG, Debenedetti PG. Steady-state analysis of high temperature fuel cells.Chemistry Eng Sci.,1983,38(11):1817-1829
    [27]陆天虹,等.我国燃料电池发展概况.电源技术,1998,2(4):182-185
    [28]毕道治.中国燃料电池的发展.电源技术,2000,24(2):103-107
    [29]毛宗强.燃料电池.北京:化学工业出版社,2005
    [30]韩敏芳,彭苏萍.固体氧化物燃料电池发展及展望.产业透视,2005,23(3):26-29
    [31]Rushi Liu, Lei Zhang, Xueliang Sun, Hansan Liu, Jiujun Zhang. Polymer electrolyte membrane fuel cells.U.S.A:Electrochemical Technologies for Energy Storage and Conversion,2012
    [32]韩敏芳,彭苏萍著.固体氧化物燃料电池材料及制备.北京:科学出版社,2004
    [33]辛显双,朱庆山.固体氧化物燃料电池(SOFC)电池稳定性分析.化学进展,2009,21(1):227-234
    [34]Debangsu Bhattacharyya, Raghunathan Rengaswamy. A review of solid oxide fuel cell (SOFC) dynamic models. Ind. Eng. Chem. Res.,2009,48:6068-6086
    [35]蒋先锋.固体氧化物燃料电池的热力学及电化学应用基础.化工时刊,2012,26(7):54-58
    [36]孙奉仲,杨祥良,高明等.热电联产技术与管理.北京:中国电力出版社,2008,1(32):63-69
    [37]D White. Hybrid gas turbine and fuel cell systems in perspective review. ASME Turbo ExPo,1999,99-GT-419
    [38]伊亭.燃料电池-燃气轮机联合循环动态仿真研究.上海:上海交通大学,2002
    [39]卢立宁,李素芬,沈胜强等.固体氧化物燃料电池与燃气轮机联合发电系统模拟研究.热能动力工程,2004,19(4):358-437
    [40]史翊翔,蔡宁生,李振山SOFC/Micro-GT混合循环系统性能分析.清华大学学报,2005,45(8):1142-1146
    [41]Kandepu R, Imsland L, Stiller C, Foss BA, and Kariwala V. Control-relevant modeling and simulation of a SOFC-GT hybrid system. Modeling, Identification & Control,2006,27(3):143
    [42]Kandepu R, Imsland L, Foss B, Stiller C, Thorud B, and Bolland O. Modeling and control of a SOFC-GT-based autonomous power system. Energy,2007, 32(4):406-417
    [43]Jiang W, Fang R, Khan J. Control strategies for start-up and part-load operation of solid oxide fuel cell/gas turbine hybrid system. Journal of Fuel Cell Science and Technology,2010(7):317-331
    [44]赵华,党政,席光.SOFC/MGT混合系统耦合特性研究.工程热物理学报,2011,32(10):1647-1650
    [45]W Burbank Jr, DD Witmer, F Holcomb. Model of a novel pressurized SOFC-GT hybrid engine. Journal of Power Sources,2013,23(03):429-446
    [46]陈建颖,曾凡蓉,王绍荣,陈玮,郑学斌.固体氧化物燃料电池关键材料及电池堆技术.化学进展,2011(23):2-3
    [47]孟秀霞,杨乃涛,尹屹梅,谭小耀,马紫峰.微管式固体氧化物燃料电池制备技术及电堆组装工艺.化工学报,2011,62(11):2977-2986
    [48]魏波,刘伟,舒文玉,吕喆.中温固体氧化物燃料电池的基本性质测量.物理实验,2012,32(6):5-8
    [49]阎景旺,程漠杰,衣宝廉.固体氧化物燃料电池材料的开发.电池,2012,32(3):188-190
    [50]王玲,曾燕伟,蔡铜祥.固体氧化物燃料电池电解质材料的研究进展.电池,2012,42(3):172-175
    [51]U B Pal, SC Singhal. Electrochemical vapor deposition of yttria-stabilized zirconia films.Journal of Electrochemistry Society,1990(137):2937-2941
    [52]Mirjana Prica, Kevin Kendall, Svend A Markland. Atomic force microscopy powder compacts during drying.Journal of American Ceramic Society,1998 (81):541-548
    [53]Raj ES, Skinner SJ, Kilner JA. Electrical conductivity, oxygen diffusion and surface exchange studies on a melilite-type La1.05Sr0.95Ga3O7+δ. Solid State Ionics,2005(176):1097-1101
    [54]Thomas CI, Kuang XJ, Deng ZQ, Niu HJ, Claridge JB, Rosseinsky MJ. Phase stability control of interstitial oxide ion conductivity in the La1+xSr1-xGa3O7+x/2 melilite family. Chemistry of Materials,2010,22:2510-2516
    [55]马紫峰.固体氧化物燃料电池电极材料研究La1-xSrxMn03的合成及其电导特性.电源技术,1993,17(6):1-4
    [56]马紫峰,林维明,黄传荣等.固体氧化物燃料电池电极材料研究—甲烷氧化转化阳极材料的制备与表征.电源技术,1994(1):10-19
    [57]张义煌,江义,卢自桂等.阳极负载型SOFC阳极基底厚度对性能的影响.电化学,2000,16(3):284-290
    [58]张义煌.中温固体氧化物燃料电池阳极性能研究.辽宁:中国科学院大连化学物理研究所,2000
    [59]罗坤,屠恒勇,符显珠,骆静利,余晴春.VOx2Cu浸渍复合阳极支撑的抗硫中温固体氧化物燃料电池的制备与性能.功能材料,2011(42):970-976
    [60]潘霞,吴也凡,罗凌虹,石纪军,程亮,张家嵩,沈国阳,苏蕙.中温固体氧化物燃料电池Ni-YSZ阳极浸渍制备.稀有金属材料与工程,2011,40(1):310-314
    [61]SP Simner, JW Stevenson. Solid oxide fuel cells Ⅶ.The Electrochemical Society Proceedings,2001 (16):1051-1060
    [62]HS Spacil.US patent 3558360,1964-10,modified in 1967-11,granted in 1970-03
    [63]Gorte RJ, Vohs JM. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis,2003(216):477-486
    [64]Mclntosh S, Gorte RJ. Direct hydrocarbon solid oxide fuel cells. Chemical Reviews,2004(104):4845-4865
    [65]YH Huang, RI Dass, ZL Xing, JB Goodenough, Double perovskites as anode materials for solid oxide fuel cells.Science,2006(312):254-257
    [66]肖循,唐超群,夏正才.两种不同阴极材料的固体氧化物燃料电池.电源技术,2002,2(3):128-130
    [67]刘荣辉,马文会,王华,杨斌.固体氧化物燃料电池阴极材料的研究进展.云南化工,2005,32(3):45-49
    [68]史翊翔,蔡宁生.固体氧化物燃料电池阴极数学模型与性能分析.中国电机工程学报,2006,26(4):82-87
    [69]Jiang SP. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells:a review. Journal of Materials Science, 2008(43):6799-6833
    [70]韩敏芳,李震,杜晓佳,陈鑫.固体氧化物燃料电池合金连接体涂层材料研究进展.稀有金属材料与工程,2009,38(2):708-711
    [71]程继贵,齐海涛,何海根,高建峰.中温固体氧化物燃料电池新型连接体材料的研制.材料热处理学报,2010,31(12):14-18
    [72]沈哲敏,孙克宁,严琰,周晓亮,张乃庆.平板式固体氧化物燃料电池Ag-CuO封接材料的研究.功能材料,2011,8(42):1372-1375
    [73]J H Kim, D Peck, R Song, S Hyun. Synthesis and sintering properties of (Lao 8Cao 2-xSrx) CrO3 perovskite materials for SOFC interconnect. Journal of Electroceramics,2006,17(2):729-733
    [74]迟克彬,李方伟,李影辉.固体氧化物燃料电池研究进展.天然气化工,2002,27(4):37-44
    [75]Aguiar P, Chadwick D, and Kershenbaum L. Modeling of an indirect internal reforming solid oxide fuel cell. Chemical Engineering Science,2002(57):1665-1677
    [76]Wu XJ, Zhu XJ, Cao GY, Su HY. Modeling a SOFC stack based on GA-RBF neural networks identification. Journal of Power Source,2007,167(1):145-150
    [77]谭勋琼,吴政球,周野,钟浩,李军军.固体氧化物燃料电池的集总建模与仿真.中国电机工程学报,2010,30(17):104-110.
    [78]Iwai H, Yamamoto Y, Saito M, Yoshida H. Numerical simulation of intermediate-temperature direct-internal-reforming planar solid oxide fuel cell. Energy,2011(36):2225-2234
    [79]李孝波,李春艳,池源.微网中固体氧化物燃料电池的控制策略及特性研究.电工技术,2012(1):23-25
    [80]吴大中,吴丽华.固体氧化物燃料电池的建模与仿真.电子设计工程,2012,20(19):11-16
    [81]周念成,李春艳,王强钢,邓浩.固体氧化物燃料电池发电系统建模与控制.电力系统保护与控制,2012,40(1):120-126
    [82]王伏龙,肖铎.燃料电池建模与仿真.电源技术,2012,36(5):661-662
    [83]Yongmin Xie, Yubao Tang, Jiang Liu. A verification of the reaction mechanism of direct carbon solid oxide fuel cells.Journal Solid State Electrochem,2012(10):1866-1875
    [84]樊鹏飞,张兄文,李国君,刘倩.板式固体氧化物燃料电池的热应力分析.西安交通大学学报,2012,46(7):75-81
    [85]谢海斌,张代兵,沈林成.基于MATLAB/SIMULINK与FLUENT的协调仿真 方法研究.系统仿真学报,2007,19(8):1824-1827
    [86]Bhattacharyya D, Rengaswamy R. A Review of solid oxide fuel cell dynamic models. Industrial and Engineering Chemistry Research,2009,48(13):6068-6086
    [87]Pukrushpan J, Stefanopoulou A, Varigonda S. Control-oriented model of fuel processor for hydrogen generation in fuel cell applications. Control Engineering Practice,2006(14):277-293
    [88]Zhang XW, Li J, Li G, Feng Z. Development of a control-oriented model for the solid oxide fuel cell. Journal of Power Sources,2006(160):258-267
    [89]Ferrari M, Traverso A, Pascenti M, and Massardo A. Early start-up of solid oxide fuel cell hybrid systems with ejector cathodic recirculation:experimental results and model verification. Journal of Power and Energy,2007,221(5):627-635
    [90]Wepfer WJ, Woolsey MH. High-temperature fuel cells for power generation. Energy Conversion and Management,1985,(25):477-486
    [91]Ahmed S, McPheeters C, Kumar R. Thermal-hydraulic model of a monolithic solid oxide fuel cell. Journal Electrochem. Soc.,1991(138):2712-2718
    [92]Hirano A, Suzuki M, Ippommatsu M. Evaluation of a new solid oxide fuel cell system by non-isothermal modeling. Journal Electrochem. Soc,1992,139(10): 2744-2751
    [93]Yakabe H, Ogiwara T, Hishinuma M, Yasuda I.3-D model calculation for planar SOFC. Journal of Power Sources,2001(102):144-154
    [94]Bove R, Ubertini S. Modeling solid oxide fuel cell operation:Approaches, techniques and results. Journal of Power Sources,2006(159):543-559
    [95]David J, Hall R, Gerald C. Transient modeling and simulation of a tubular solid oxide fuel cell. IEEE Transactions on Energy Conversion,1999,3(14):749-753
    [96]Padulles J, Ault GW, Mcdonald JR. An integrated SOFC plant dynamic model for power systems simulation. Journal of Power Sources,2000,1-2(86):495-500
    [97]Sedghisigarchi K, Feliachi A. Dynamic and transient analysis of power distribution systems with fuel cells Part I:Fuel cell dynamic model. IEEE Transactions on Energy Conversion,2004,2(19):423-428
    [98]Achenbach E. Three dimensional and time-dependent simulation of a planar solid oxide fuel cell. Power Sources,1994(49):333-348
    [99]Ferguson JR, Fiard JM, and Herbin R. Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. Power Sources,1996,58(2): 109-122
    [100]Yakabe H, Hishinuma M, Uratani M, Matsuzaki Y and Yasuda I. Evaluation and modeling of performance of anode-supported solid oxide fuel cell. Power Sources,2000,86(1-2):423-431
    [101]Khaleel MA, Rector DR, Lin Z, Johnson K, Recknagle K. Multiscale electrochemistry modeling of solid oxide fuel cells. Int J Multiscale Com,2005, 3(1):33-47
    [102]SX Liu, C Song and ZJ Lin. The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the rib design optimization. Power Source,2008,183(1):214-225
    [103]Atriagada J, Olausson P, Selimovic A. Artificial neural network simulator for SOFC performance prediction. Journal of Power Sources,2002,112(1):54-60
    [104]Jurado F. Power supply quality improvement with a SOFC plant by neural-network-based control. Journal of Power Sources,2003,117(1-2):75-83
    [105]Jurado F. Modeling SOFC plants on the distribution system using identification algorithms. Journal of Power Sources,2004,129(2):205-215
    [106]Jurado F. A method for the identification of solid oxide fuel cells using a hammerstein model. Journal of Power Source,2006,154(1):145-152
    [107]Fredriksson Moller B, Arriagada J, Assadi M, Potts I. Optimization of an SOFC/GT system with CO2 capture. Journal of Power Sources,2004,131(12): 320-326
    [108]Recknagle KP, Williford RE, Chick L A, Rector DR, and Khaleel MA. Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks. Journal of Power Sources,2003(113):109-114
    [109]Ota T, Koyama M, Wen CJ, Yamada K, and Takahashi H. Object-based modeling of SOFC system:Dynamic behavior of micro-tube SOFC. Journal of Power Sources,2003(118):430-439
    [110]Nagata S, Momma A, Kato T, and Kasuga Y. Numerical analysis of output characteristics of tubular SOFC with internal reformer. Journal of Power Sources,2001(101):60-71
    [111]Petruzzi L, Cocchi S, and Fineschi F. A global thermo-electrochemical model for SOFC systems design and engineering. Journal of Power Sources, 2003(118):96-107
    [112]Aguiar P, Adjiman CS, and Brandon NP. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I:Model-based steady-state performance. Journal of Power Sources,2004(138):120-136
    [113]Murshed AM, Huang B, and Nandakumar K. Estimation and control of solid oxide fuel cell system. Computers & Chemical Engineering,2010,34(1):96-111
    [114]Murshed AKM M, Huang B, Nandakumar K. Control relevant modeling of planar solid oxide fuel cell system. Journal of Power Sources,2007(163): 830-845
    [115]Qi Y, Huang B, and Chuang K. Dynamic modeling of solid oxide fuel cell:The effect of diffusion and inherent impedance. Journal of Power Sources,2005, 150(1-2):32-47
    [116]Qi Y, Huang B, and Luo J. Dynamic modeling of a finite volume of solid oxide fuel cell:The effect of transport dynamics. Chemical Engineering Science, 2006,61(18):6057-6076
    [117]Qi Y, Huang B, and Luo J. Nonlinear state space Modeling and simulation of a SOFC fuel cell. In Proceedings of the American Control Conference,2006, 2534-2538
    [118]Qi Y, Huang B, and Luo J.1-D Dynamic modeling of SOFC with analytical solution for reacting gas-flow problem. AIChE Journal,2008,54(6),1537-1553
    [119]Stiller C, Thorud B, Seljeb S, et al. Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells. Journal of Power Sources,2005,141(2):227-240
    [120]Kandepu R, Imsland L, Foss BA, Stiller C, Thorud B, and Bolland O. Modeling and control of a SOFC-GT-based autonomous power system. Energy,2007(32): 406-417
    [121]Stiller C, Thorud B, Bolland O, Kandepu R, and Imsland L. Control strategy for a solid oxide fuel cell and gas turbine hybrid system. Journal of Power Sources,2006(158):303-315
    [122]Auld AE, Mueller F, Smedley K, Samuelsen S, and Brouwer J. Applications of one-cycle control to improve the interconnection of a solid oxide fuel cell and electric power system with a dynamic load. Journal of Power Sources, 2008(179):155-163
    [123]Mueller F, Brouwer J, Jabbari F, and Samuelsen S. Dynamic simulation of an integrated solid oxide fuel cell system including current-based fuel flow control. Journal of Fuel Cell Science and Technology,2006(3):144-154
    [124]Mueller F, Jabbari F, Gaynor R, and Brouwer J. Novel solid oxide fuel cell system controller for rapid load following. Journal of Power Sources,2007 (172):308-323
    [125]Kaneko T, Brouwer J, and Samuelsen GS. Power and temperature control of fluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybrid system. Journal of Power Sources,2006(160):316-325
    [126]Inui Y, Ito N, Nakajima T, and Urata A. Analytical investigation on cell temperature control method of planer solid oxide fuel cell. Energy Conversion and Management,2006(47):2319-2328
    [127]Yang JS, Sohn JL, and Ro ST. Performance characteristics of a SOFC-GT hybrid system with various part-load control modes. Journal of Power Sources, 2007(166):155-164
    [128]Yang JS, Sohn JL, and Ro ST. Performance characteristics of part-load operations of a SOFC-GT hybrid system using air-bypass valves. Journal of Power Sources,2008(175):296-302
    [129]Yang F, Zhu XJ, Cao GY. Nonlinear fuzzy modeling of a MCFC stack by an identification method. Journal of Power Source,2007,166(2):354-361
    [130]Huo HB, Zhu XJ, Hu WQ, Tu HY, Li J, and Yang J. Nonlinear model predictive control of SOFC based on a hammerstein model. Journal of Power Sources,2008,185(l):338-344
    [131]Huo HB, Zhong ZD, Zhu XJ, and Tu HY. Nonlinear dynamic modeling for a SOFC stack by using a hammerstein model. Journal of Power Sources,2008, 175(1):441-446
    [132]Kang YW, Li J, Cao GY, Tu HY, Li J, Yang J. Dynamic temperature modeling of an SOFC using least square support vector machines. Journal of Power Source,2008,179(2):683-692
    [133]Wu, XJ, Zhu XJ, Cao GY, and Tu HY. Nonlinear modeling of a SOFC stack based on ANFS identification. Simulation Modeling Practice and Theory,2008, 16(4):399-409
    [134]Wu XJ, Zhu XJ, Cao GY, and Tu H.Y. Predictive control of SOFC based on a GA-RBF neural network model. Journal of Power Sources,2008,179(1):232-239
    [135]Autissier N, Larrain D, Van Herle J, Favrat D. CFD simulation tool for solid oxide fuel cells. Journal of Power Sources,2004,131:313-319
    [136]Ho TX, Kosinski P, Hoffmann AC, Vik A. Modeling of transport, chemical and electrochemical phenomena in a cathode-supported SOFC. Chemical Engineering Science,2009,64:3000-3009
    [137]Hussain MM, Li X, Dincer I. A numerical investigation of modeling an SOFC electrode as two finite layers. International Journal of Hydrogen Energy,2009,34:3134-3144
    [138]Ho TX, Kosinski P, Hoffmann AC, Vik A. Numerical modeling of solid oxide fuel cells. Chemical Engineering Science,2008,63:5356-5365
    [139]Ho TX, Kosinski P, Hoffmann AC, Vik A. Numerical analysis of a planar anode-supported SOFC with composite electrodes. International Journal of Hydrogen Energy,2009,34:3488-3499
    [140]Ho TX, Kosinski P, Hoffmann AC, Vik A. Effects of heat sources on the performance of a planar solid oxide fuel cell. International Journal of Hydrogen Energy,2010,35:4276-4284
    [141]Hussain MM, Li X, Dincer I. A general electrolyte-electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells. Journal of Power Sources,2009,189:916-928
    [142]Andersson M, Yuan J, Sunden B. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. Applied Energy,2010,87:1461-1476
    [143]Bavarian M, Soroush M, Kevrekidis IG, Benziger JB. Mathematical modeling, steady-state and dynamic behavior, and control of fuel cells:a review. Industrial & Engineering Chemistry Research,2010,49(17):7922-7950
    [144]Magistri L, Traverso A, Cerutti F, et al. Modeling of pressurized hybrid systems based on integrated planar solid oxide fuel cell (IP-SOFC) technology. Fuel Cells,2005,5(1):80-96
    [145]Padulles J, Ault GW, McDonald JR. An integrate SOFC plant dynamic model for power systems simulation. Journal of Power Sources,2008(6):495-500
    [146]Bhattacharyya D, Rengaswamy R, and Finnerty C. Dynamic modeling and validation studies of a tubular solid oxide fuel cell. Chemical Engineering Science,2009,64(9):2158-2172
    [147]包成,蔡宁生.固体氧化物燃料电池—燃气轮机混合发电系统建模与控制的研究现状与进展.机械工程学报,2008,44(2):1-7
    [148]Jin X, Xue X. Mathematical modeling analysis of regenerative solid oxide fuel cells in switching mode conditions. Journal of Power Sources,2010,195: 6652-6658
    [149]金红光,郑丹星,徐建中.分布式冷热电联产系统装置及应用.北京:中国电力出版社,2010
    [150]Zhang X, Chan SH, Li G, Ho HK, Li J, Feng Z. A review of integration strategies for solid oxide fuel cells. Journal of Power Sources,2010,95: 685-702
    [151]Badwal SPS, Foger K. Solid oxide electrolyte fuel cell review. Ceramics International,1996,22:257-265
    [152]Stambouli AB, Traversa E. Solid oxide fuel cells (SOFCs):a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews,2002,6:433-455
    [153]Zhu WZ, Deevi Sc. A review on the status of anode materials for solid oxide fuel cells. Materials Science and Engineering A,2003,362:228-39
    [154]Sanchez D, Mu-noz A, Sanchez T. An assessment on convective and radiative heat transfer modeling in tubular solid oxide fuel cells. Journal of Power Sources,2007,16:25-34
    [155]Kakac S, Pramuanjaroenkij A, Zhou XY. A review of numerical modeling of solid oxide fuel cells. International Journal of Hydrogen Energy,2007,32: 761-86
    [156]Jeon DH. A comprehensive CFD model of anode-supported solid oxide fuel cells. Electrochimica Acta,2009,54:2727-36
    [157]Burt AC, Celik IB, Gemmen RS, Smirnov AV. A numerical study of cell-to-cell variations in a SOFC stack. Journal of Power Sources,2004,126:76-87
    [158]O'hayre RBDM, Prinz FB. The triple phase boundary a mathematical model and experimental investigations for fuel cells. Electrochemistry,2005,152: 439-44
    [159]Wang G, Yang Y, Zhang H, Xia W.3-D model of thermo-fluid and electrochemical for planar SOFC. Journal of Power Sources,2007,167:398-405
    [160]Barzi Y, Ghassemi M, and Hamedi M. Numerical analysis of start-up operation of a tubular solid oxide fuel cell. International Journal of Hydrogen Energy, 2009,34(4):2015-2025
    [161]Ni M.2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell. Energy Conversion and Management.2010,51:714-721
    [162]Nagel FP, Schildhauer TJ, Biollaz Sma, Stucki S. Charge, mass and heat transfer interactions in solid oxide fuel cells operated with different fuel gases-a sensitivity analysis. Journal of Power Sources,2008,184:129-142
    [163]Ni M, Leung Dye, Leung Mkh. Electrochemical modeling and parametric study of methane fed solid oxide fuel cells. Energy Conversion and Management, 2009,50:268-278
    [164]Tsai C-L, Schmidt VH. Tortuosity in anode-supported proton conductive solid oxide fuel cell found from current flow rates and dusty-gas model. Journal of Power Sources,2011,196:692-699
    [165]Tseronis K, Kookos IK, Theodoropoulos C. Modeling mass transport in solid oxide fuel cell anodes:a case for a multidimensional dusty gas-based model. Chemical Engineering Science,2008,63:5626-5638
    [166]Cheddie DF, Munroe NDH. A dynamic ID model of a solid oxide fuel cell for real time simulation. Journal of Power Sources,2007,171:634-643
    [167]Andreassi L, Rubeo G, Ubertini S, Lunghi P, Bove R. Experimental and numerical analysis of a radial flow solid oxide fuel cell. International Journal of Hydrogen Energy,2007,32:4559-4574
    [168]Akhtar N, Decent SP, Kendall K. Numerical modeling of methane-powered micro-tubular, single-chamber solid oxide fuel cell. Journal of Power Sources,2010,195:7796-77807
    [169]Ho TX, Kosinski P, Hoffmann AC, Vik A. Transport, chemical and electrochemical processes in a planar solid oxide fuel cell:Detailed three-dimensional modeling. Journal of Power Sources,2010,195:6764-6773
    [170]Bay L., Jacobsen T. Dynamics of the YSZ-Pt interface. Solid State Ionics,1997,(93):201-206
    [171]Adler S.B., Wilson J.R., Schwartz D.T. Nonlinear harmonic response of mixed-conducting SOFC cathodes. In Solid Oxide Fuel Cells VIII (SOFC-VIII). Electrochemical Society Proceedings,2003-07, S.C. Singhal and M. Dokiya (Eds.), The Electrochemical Society, Pennington, NJ,516-524
    [172]Chaisantikulwat A, Diaz-Goano C, Meadows ES. Dynamic modeling and control of planar anode-supported solid oxide fuel cell. Computers & Chemical Engineering,2008,32:2365-2381
    [173]Bhattacharyy D, Rengaswamy R. Dynamic modeling and system identification of a tubular solid oxide fuel cell (TSOFC). In Proceedings of the American Control Conference,2009(56):2672-2677
    [174]Hajimolana S, and Soroush M. Dynamics and control of a tubular solid-oxide fuel cell. Industrial and Engineering Chemistry Research,2009,48(13):6112-6125
    [175]孙西芝,陈时锦,程凯等.多尺度仿真方法研究综述.系统仿真学报,2006,18(10):2699-2702
    [176]Mohammadi R, Ghassemi M, Mollayi Barzi Y, Hamedi MH. Impedance simulation of a solid oxide fuel cell anode in time domain. Solid State Electrochem,2012(16):3275-3288
    [177]Wang L, Zhang H, Weng S. Modeling and simulation of solid oxide fuel cell based on the volume-resistance characteristic modeling technique. Journal of Power Sources,2008,177:579-589
    [178]陈希平,朱秋琴,王彩霞.广义预测控制算法的研究.控制工程,2005(5):35-37
    [179]Deng Z, Cao HL, Li X. Generalized predictive control for fractional order dynamic model of solid oxide fuel cell output power. Journal of Power Sources,2010,195:8097-8103
    [180]Mendes J, Araujo R, Souza F. Adaptive fuzzy generalized predictive control based on discrete time T-S fuzzy model. Emerging Technologies and Factory Automation,2010:1-8
    [181]Aimin An, Haochen Zhang, Xin Liu, Li wen Chen. Generalized predictive control for gas supply system in a proton exchange membrane fuel cell. International Conference on Energy and Environmental Protection. Hohhot, China,2012,1380-1388
    [182]Ramakumar R, Chiradeja P. Distributed generation and renewable energy systems. In:Proceedings of the 37th intersociety energy conversion engineering conference. VDI Verlag GMBH,2002,716-724
    [183]Colpan CO, Dincer I, Hamdullahpur F. Thermodynamic modeling of direct internal reforming solid oxide fuel cells operating with syngas. International Journal of Hydrogen Energy,2007,32:787-795
    [184]Huntington G T. Advancement and analysis of a Gauss pseudospectral transcription for optima control. Cambridge:Messachusetts Institute of Technology,2007
    [185]Pedro N. Two-dimensional transient model of a cascaded micro-tubular solid oxide fuel cell fed with methane. Journal of Power Sources,2006(157):325-334
    [186]Sanchez D, Chacartegui R, Mu-noz A, Sanchez T. On the effect of methane internal reforming modeling in solid oxide fuel cells. International Journal of Hydrogen Energy,2008,33:1834-1844
    [187]Kang Y, Li J, Cao G, Tu H, Li J, Yang J. One-dimensional dynamic modeling and simulation of a planar direct internal reforming solid oxide fuel cell. Chinese Journal of Chemical Engineering,2009,17:304-317
    [188]Arpornwichanop A, Chalermpanchai N, Patcharavorachot Y, Assabumrungrat S, Tade M. Performance of an anode-supported solid oxide fuel cell with direct-internal reforming of ethanol. International Journal of Hydrogen Energy,2009,34:7780-7788
    [189]席裕庚,李德伟.预测控制定性综合理论的基本思路和研究现状.自动化学报,2008,34(10):1225-1234
    [190]Magnil L, Raimondo MD, Allgower F. Nonlinear model predictive control: towards new challenging applications. Germany:Springer,2009
    [191]安爱民.基于预测控制的先进过程控制技术研究.兰州:兰州理工大学,2010
    [192]丁香乾,杨晓黎.非线性CSTR过程预测控制器设计.控制工程,2009,16(2):145-147
    [193]Minh, V.T., Muhamad, W.M.W. Model predictive control of a condensate distillation column. International Journal of Systems Control,2010,1(1):4-12
    [194]Jun Li, Nan Gao, Guangyi Cao, Hengyong Tu, Mingruo Hu, Xinjian Zhu, Jian Li. Predictive control of a direct internal reforming SOFC using a self recurrent wavelet network model. J Zhejiang Univ-Sci A (Appl Phys & Eng),2010,11(1): 61-70
    [195]Fardadi M, Mueller F, Jabbari F. Feedback control of solid oxide fuel cell spatial temperature variation. Journal of Power Sources,2010,195:4222-4233
    [196]宋文尧,张牙.卡尔曼滤波,科学出版社,1991
    [197]Julier S J, Uhlmann J K. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automation Control,2000,45(3):477-482
    [198]潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器-UKF综述.控制与决策,2005,20(5):481-489
    [199]石勇,韩崇昭.自适应UKF算法在目标跟踪中的应用.自动化学报,2011,37(6):755-759
    [200]Betts J T. Practical Methods for optimal control using nonlinear programming. Philadelphia:SIAM,2001,71-72
    [201]Diehl M, Bock H G, Schloder J P, Findeisen R, Nagy Z, Allgower E. Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. Journal of Process Control,2002,12(4): 577-585
    [202]Qin S J, Badgwell T A. A survey of industrial mode predictive control technology. Control engineering Practice,2003,11(7):733-764
    [203]Geoffrey T, Huntington G T, Rao A V. A comparions between global and local orthogonal collocation methods for solving optimal control problems. Proceedings of the 2007 American Control Conference. New York City, USA, 2007:1950-1957
    [204]Chen Yang, Shao Zhijiang, Qian Jixin, Wang Kexin. Global versus local orthogonal collocation in simultaneous approach. CIESC Journal,2010,61(2): 384-391
    [205]平续斌,丁宝苍.动态输出反馈鲁棒模型预测控制离线算法,自动化学报,2012,38(9)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700