用户名: 密码: 验证码:
平板式固体氧化物燃料电池系统的动态建模与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid Oxide Fuel Cell, SOFC)以其安静、环保、高效的优点而成为21世纪最具发展前景的供电技术。其普及应用对保护环境、缓解能源危机具有重大的意义。随着SOFC技术的发展,电堆在实验室环境下已经具有良好的工作性能,但SOFC要走向应用,就必须脱离实验台的环境成为独立发电系统。因此,实现SOFC独立发电系统稳定、高效、长寿命地运行是其产业化应用的必经之路。为此,本文就SOFC独立发电系统的温度约束、功率跟踪和系统效率三个关键问题,从热电耦合建模、稳态性能优化、系统综合控制三个方面进行了深入的研究。由于本文具有很强的工程项目背景,所以本文的理论及方法研究成果均以能真正指导实际应用为检验标准。根据项目的推进计划,本文具体的研究对象为5kW平板式纯氢气SOFC独立发电系统以及水蒸气重整器,为后续集成重整器的SOFC独立发电系统的理论、方法研究及应用打下坚实的基础。
     首先,本文搭建了带有冷空气旁路阀的SOFC系统热电耦合物理模型。为了保证该模型的准确性,我们利用大量实验数据对模型进行验证。结果表明本文搭建的模型能够准确地反映实际电堆的工作特性,确保了本文研究工作的基础有效性。基于物理模型,我们对SOFC独立发电系统进行深入的稳态性能分析、优化,揭示了系统的内在机理,理清了系统各输入变量对温度约束、功率跟踪与系统效率三要素的影响关系,并获得了系统的最优操作点。研究发现,旁路阀装置对电堆的温度控制效果与系统效率都有显著的提高。然后,基于最优操作点,我们研究了系统的开环动态响应特性,为SOFC安全、快速、高效的动态控制奠定了基础。
     由于在实际应用中,SOFC内部的温度分布无法在低成本、不影响电堆性能的情况下获得,所以,基于最少的易测变量设计能够准确观测SOFC温度分布的观测器是进行SOFC最大工作温度、最大温度梯度控制的关键环节。因此,我们首先对物理模型采用温度层化简和准静态假设的方法对模型进行降阶简化,然后在工作点附近进行线性化获得状态空间模型。并基于“全可测最小维状态空间”的方法设计快速、准确的SOFC空间温度分布观测器。
     最后,本文分别使用“基于T-S模糊模型的约束广义预测控制策略”与“基于最优操作点的温度约束前馈、功率跟踪反馈控制策略”实现了对重整器系统与SOFC系统的有效控制。由于重整器样机已经实现组装与控制调试,在获得大量实验数据的基础上可以对物理模型进行校正,设计面向工程应用的“基于T-S模糊模型的约束广义预测控制策略”。该控制策略采用在线T-S模糊模型来校正CARIMA模型的参数获得准确的系统预测输出,并且利用拉格朗日乘算子法处理输入约束,这样在保证控制效果的基础上可以极大地减少计算量,有利于工程实现。仿真结果表明该算法比传统PID控制方法具有更好的控制性能。对于还尚处于组装过程中的SOFC系统,没有获得大量的实验数据来建立校正模型,以获取系统准确的阶次及时滞系数,从而无法设计面向工程应用的基于模型的广义预测控制算法。因此,以工程应用为导向,基于稳态分析与观测器,提出“基于最优操作点温度约束前馈、功率跟踪反馈控制策略”对SOFC的约束、功率、效率三要素进行协同控制。仿真结果表明,该控制策略能够有效地抑制温度约束的震荡,并具有快速的功率跟踪性能。最终实现了对SOFC安全、快速、高效的控制,将SOFC控制中温度约束、功率跟踪、系统效率三个相互耦合的关键控制要素进行了有效的协调管控。
Due to the advantages of quiet operation, environmental friendly and high efficiency,SOFC (Solid oxide fuel cell) becomes the most promising power technology in21century.Although the SOFC stack achieves a good performance in laboratory conditions, thestand-alone SOFC system still faces the challenges of long-life time, high efficiency andload following in the process of the large-scale implementation. In order to achieve anstable and long-life operation for a stand-alone solid oxide fuel cell system, thetemperature constraints, load following and high efficiency are studied in this dissertationfrom the aspects of thermo-electrical modeling, steady-state analysis, observer design andcontroller development. Based on an engineering project, a steam reformer and a5kWscale pure hydrogen planar SOFC stand-alone system is studied in this dissertation.
     Firstly, a high-fidelity physical model of a improved SOFC system comprising aco-flow SOFC stack, a tail-burner, two heat-exchangers, a blower and a bypass valve, isdeveloped to capture both steady state and transient behavior of the system as well as thetemperature distributions in SOFC along the direction of gas flow. In order to ensure theaccuracy of the system model, the electrical characteristics of stack are validated by plentyexperimental data from two SOFC stacks (22and24cells) assembled in lab. The resultsconfirm the effectiveness of the work in this dissertation.
     Based on this model, the steady state performance of the system is analyzed andoptimized, which gives insights into the sensitivity of input variables to systemtemperature constraints, load following and system efficiency. And then, the systemopen-loop response between two optimal operation points are investigated. Moreover, thesimulation results show that the bypass valve in SOFC system can be used to improve thesystem efficiency and manage spatial temperature distribution both. As the spatialtemperature distribution profile is critical for the safe operation of SOFC system, andcannot be obtained by practical directly measuring at an acceptable cost, an accurate andfast linear observer is developed according to a novel sensor configuration estimationmethod to estimate the spatial temperature distribution profile in SOFC.
     Finally, two control strategies named “T-S fuzzy model based constrained generalizedpredictive control (TS-CGPC)” and “optimal operation points based temperatureconstraints feed forward and load following feedback control (OOPFF-FB)” areimplemented to steam reformer and the5kW SOFC system separately. Due to the steamreformer model can be modified by experimental data from the steam reformer prototype,a “T-S CGPC” controller is developed for practical implementation. In order to achievefast calculation, the CARIMA model in GPC is revised with the consequent parameters ofonline T-S fuzzy model and the input constraints is handled by the Lagrange multipliertechnique. The simulation results shows the reforming process can be well managed byTS-CGPC controller, which is better than PID controller. However, the SOFC system isunder assembly process, and the SOFC system model cannot be modified. The systemorder and time-delay coefficients are not available for the development of TS-CGPCcontroller for SOFC system. Therefore, based on the steady-state analysis and temperatureobserver, the control strategy of “OOPFF-FB” is proposed for the cooperative control oftemperature, power, efficiency in SOFC system. The simulation results demonstrate thatthe temperature variation of SOFC is effectively restrained during fast load following, andthe system efficiency is guaranteed by the optimal operation point. In a word, the SOFCsystem achieves high system efficiency and fast load following capability withouttemperature constraints violation.
     The modeling and control analysis results in this work can be extended to any SOFCsystems with different configurations and other similar nonlinear system, and provides avaluable solution for the control of SOFC system to achieve high efficiency, longlife timeand fast load following capability.
引文
[1]肖钢.燃料电池技术[M].北京:电子工业出版社,2009.
    [2]衣宝廉.燃料电池——高效、环境友好的发电方式[M].北京:化学工业出版社,2000.
    [3]李箭.固体氧化物燃料电池:发展现状与关键技术[J].功能材料与器件学报.2007,13(6):683-690.
    [4]曹洪亮.固体氧化物燃料电池发电系统动态建模与控制:[博士学位论文].武汉:华中科技大学图书馆,2012.
    [5] S.C. Singhal and K. Kendall, editors. High Temperature Solid Oxide Fuel Cells:Fundamentals, Design and Applications. ELSEVIER Science,2004.
    [6]黄秋安.金属支撑固体氧化物燃料电池阻抗谱建模与诊断:[博士学位论文].武汉:华中科技大学图书馆,2007.
    [7] EG&G Technical Services, Inc. Fuel cell Handbook [M], Seventh Edition.Morgantown, West Virginia: U.S. Department of Energy,2004.
    [8] Y. Chen, Y. Wang, H. Xu, G. Xiong. Efficient production of hydrogen from naturalgas steam reforming in palladium membrane reactor. Applied Catalysis B:Environmental,2008,80:283–294.
    [9] National Energy Technology Laboratory. http://www.netl.doe.gov/technologi-es/coalpower/fuelcells/seca
    [10] National Energy Technology Laboratory. http://www.netl.doe.gov/publicat-ions/proceedings/10/seca/Presentations/Keairns_Presentation.pdf
    [11] U.S. Department of Energy. http://www.fossil.energy.gov/programs/power-systems/futuregen/
    [12] European Commission. http://www.sofc600.eu
    [13]汪婉宜,鄭耀宗.固態氧化物燃料電池國際現況分析[J].能源報導.2011,11(12):6-16.
    [14]彭珍珍,杜洪兵,陈广乐等.国外SOFC研究机构及研发状况[J].硅酸盐学报.2010,38(3):542-548.
    [15] Acumentrics. http://www.acumentrics.com/sofc-products-overview.htm.
    [16] Bloomenergy. http://www.bloomenergy.com.
    [17] Delphi. http://delphi.com/manufacturers/cv/fuelcells/.
    [18] Siemens. http://www.energy.siemens.com/hq/en/power-generation/fuelcells/
    [19]魏增福,郑金.燃料电池发电的研究现状与应用前景[J].2009,22(12):1-7.
    [20] V. Power. http://www.versa-power.com/products.htm.
    [21] Ztek. http://www.ztekcorp.com/.
    [22] H.L. De, K. Mayer, U. Stimming, et al. Operation of anode-supported thinelectrolyte film solid oxide fuel cells at800℃and below [J]. Journal of PowerSources.1998,71(12):302-305.
    [23] Ebz. http://ebz-dresden.de/en/fuel-cells/01-home/01-home.html.
    [24] C. Power. http://www.cerespower.com/.
    [25] S. Hexis. http://www.hexis.com/de/galileo-1000-n.
    [26] Kepco. http://www.kepco.org/.
    [27] M.H. Industries. http://www.mhi.co.jp/en/technology/business/power/sofc/develop-ment_situation.html.
    [28]韩敏芳,尹会燕,唐秀玲等.固体氧化物燃料电池发展及展望[J].真空电子技术.2005,05(4):23-28.
    [29]科技日报. http://www.stdaily.com/kjrb/content/2010-09/08/content_227-660.htm
    [30] Fuelcelltoday. http://www.fuelcelltoday.com/.
    [31] P. Aguiar, C.S. Adjiman, N.P. Brandon. Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell: II. Model-baseddynamic performance and control [J]. Journal of Power Sources.2005,147(1-2):136-147.
    [32] Sean M. Kelly, Trevor T. Grover. Solid-oxide fuel cell system having an integratedair supply system [P]. US,6608463. B1,2003-8-19.
    [33] Karl J. Haltiner, Jr. Fairport, Solid-oxide fuel cell system having means forcontrolling tail gas combustion temperature [P]. US,7001682. B2,2006-2-21.
    [34]华中科技大学.一种固体氧化物燃料电池系统及热电协同控制方法[P].中国,CN,201310104574.9,2013-3-29.
    [35] A. Selcuk, G. Merere, and A. Atkinson. The influence of electrodes on the strengthof planar zirconia solid oxide fuel cells. Journal of Materials Science,2001,36:1173-1182.
    [36] C.K Lin, T.T. Chen, Y.P. Chyou, and L.K Chiang. Thermal stress analysis of aplanar SOFC stack. Journal of Power Sources,2007,164:238-251.
    [37] A. Nakajo, C. stiller, G. Hiirkegaxd, and O. Bolland. Modeling of thermal stressesand probability of survival of tubular SOFC. Journal of Power Sources,2006,158:287-294.
    [38] A. Selimovic, M. Kemm, T. Torisson, and M. Assadi. Steady state and transientthermal stress analysis in planar solid oxide fuel cells. Journal of Power Sources,2005,145:463-469.
    [39] P. Aguiar, C.S. Adjiman, and N.P. Brandon. Anode-supported intermediatetemperature direct internal reforming solid oxide fuel cell. II: Model-baseddynamic performance and control. Journal of Power Sources,2005,147:136-147.
    [40] F. Mueller, F. Jabbari, R. Gaynor, et al. Novel solid oxide fuel cell systemcontroller for rapid load following [J]. Journal of Power Sources.2007,172(1):308-323.
    [41] J. Larminie, A. Dicks, Fuel Cell Systems Explained [M], Wiley, Chichester,2000.
    [42] E. Achenbach. Response of a solid oxide fuel cell to load change [J]. Journal ofPower Sources,1995,57:105-109.
    [43] L.G. Carreiro and A.A. Burke. Unmanned underwater vehicles.7th Annual SECAworkshop and Peer Review Meeting, September2006.
    [44] M. Peksen, Ro. Peters, L. Blum, D. Stolten. Hierarchical3D multiphysicsmodelling in the design and optimisation of SOFC system components [J].International Journal of Hydrogen Energy.2011,36(7):4400-4408.
    [45] E. Achenbach. Three-dimensional and time-dependent simulation of a planar solidoxide fuel cell stack [J]. Journal of Power Sources.1994,49:333-348.
    [46] National Energy Technology Laboratory. http://www.netl.doe.gov/publications/proceedings/04/seca-wrkshp/Fluent%20-%20Prinkey.pdf
    [47] M.M. Hussain, X. Li, I. Dincer. A numerical investigation of modeling an SOFCelectrode as two finite layers [J]. International Journal of Hydrogen Energy,2009,34:3134-3144.
    [48] R. Suwanwarangkul, E. Croiset, M.W. Fowler, P.L. Douglas, E. Entchev, M.A.Douglas. Performance comparison of Fick’s, dusty-gas and Stefan–Maxwellmodels to predict the concentration overpotential of a SOFC anode [J]. Journal ofPower Sources,2003,122:9-13.
    [49] L. Petruzzi, S. Cocchi, F. Fineschi. A global thermo-electrochemical model forSOFC systems design and engineering [J]. Journal of Power Sources.2003,118(1-2):96-107.
    [50] P. Hofmann, K.D. Panopoulos. Detailed dynamic Solid Oxide Fuel Cell modelingfor electrochemical impedance spectra simulation [J]. Journal of Power Sources.2010,195(16):5320-5339.
    [51] Y. Qi, B. Huang, J. Luo. Dynamic modeling of a finite volume of solid oxide fuelcell: The effect of transport dynamics [J]. Chemical Engineering Science.2006,61(18):6057-6076.
    [52] P. Aguiar, C.S. Adjiman, and N.P. Brandon. Anode-supported intermediatetemperature direct internal reforming solid oxide fuel cell. I: model-basedsteady-state performance [J]. Journal of Power Sources,2004,138:120-136.
    [53] P. Aguiar, C.S. Adjiman, and N.P. Brandon. Anode-supported intermediatetemperature direct internal reforming solid oxide fuel cell. II: Model-baseddynamic performance and control [J]. Journal of Power Sources,2005,147:136-147.
    [54] Y. Qi, B. Huang, J. Luo. Dynamic modeling of a finite volume of solid oxide fuelcell: The effect of transport dynamics [J]. Chemical Engineering Science.2006,61(18):6057-6076.
    [55] Y.W. Kang, J. Li, G.Y. Cao, et al. A reduced1D dynamic model of a planar directinternal reforming solid oxide fuel cell for system research [J]. Journal of PowerSources.2009,188(1):170-176.
    [56] S. Hajimolana, M. Soroush, Dynamics and control of a tubular solid-oxide fuel cell[J]. Industrial and Engineering Chemistry Research,2009,48(13):6112-6125.
    [57] Y. Inui, N. Ito, T. Nakajima, et al. Analytical investigation on cell temperaturecontrol method of planar solid oxide fuel cell [J]. Energy Conversion andManagement.2006,47(15-16):2319-2328.
    [58] J. Padullés, G. Ault, J. McDonald. Integrated SOFC plant dynamic model forpower systems simulation [J]. Journal of Power Sources,2000,86(1):495-500.
    [59] K. Sedghisigarchi, A. Feliachi. Dynamic and transient analysis of powerdistribution systems with fuel cells-part I [J]. IEEE Transtactions on EnergyConversion,2004,19(2):423-428.
    [60] F. Jurado. Modeling SOFC plants on the distribution system using identificationalgorithms [J]. Journal of Power Sources,2004,129(2):205-215.
    [61] B. Huang, Y. Qi, M. Murshed. Solid oxide fuel cell: Perspective of dynamicmodeling and control [J]. Journal of Process Control,2011,21:1426-1437.
    [62] F. Jurado. A method for the identification of solid oxide fuel cells using aHammerstein model [J]. Journal of Power Sources,2006,154(1):145-152.
    [63] J. Yang, X. Li, H. Mou, J. Li. Control-oriented thermal management of solid oxidefuel cells based on a modified Takagi-Sugeno fuzzy model [J]. Journal of PowerSources,2009,188(2):475-482.
    [64] ZH. Deng, HL. Cao, X. Li, JH. Jiang, J. Yang, Y. Qi. Generalized predictivecontrol for fractional order dynamic model of solid oxide fuel cell output power [J].Journal of Power Sources,2010,195(24):8097-8103.
    [65] HL. Cao, ZH. Deng, X. Li, J. Yang, Y. Qi. Dynamic modeling of electricalcharacteristics of solid oxide fuel cells using fractional derivatives [J]. InternationalJournal of Hydrogen Energy,2010,35(4):1749-1758.
    [66] H. Xi. Dynamic modeling and control of planar SOFC power systems [D].Michigan: The University of Michigan,2007.
    [67] H. Xi, S. Varigonda, B. Jing. Dynamic Modeling of a Solid Oxide Fuel CellSystem for Control Design [J]. American Control Conference, Marriott Waterfront,Baltimore, MD, USA,2010,423-428.
    [68] L. Magistri, A. Traversa, F. Cerutti, M. Bozzolo, P. Costamagna, A. Massardo.Modelling of pressurised hybrid systems based on integrated planar solid oxide fuelcell (IP-SOFC) technology [J]. Fuel Cells,2005,5(1):80-96.
    [69] F. Mueller, J. Brouwer, F. Jabbari, S. Samuelsen. Dynamic simulation of anintegrated solid oxide fuel cell system including current-based fuel flow control [J].Journal of Fuel Cell Science and Technology,2006,3(2):144-154.
    [70] A.M. Murshed, B. Huang, K. Nandakumar. Control relevant modeling of planersolid oxide fuel cell system. Journal of Power Sources,2007,163:830-845.
    [71] D. Georgis, S.S. Jogwar, A.S. Almansoori, et al. Design and control of energyintegrated SOFC systems for in situ hydrogen production and power generation [J].Chemical Engineering Energy Systems Engineering.2011,35(9):1691-1704.
    [72] Leah, R.T., Brandon, N.P., Aguiar, P. Modelling of cells, stacks and systems basedaround metal-supported planar IT-SOFC cells with CGO electrolytes operating at500~600°C [J]. Journal of Power Sources,2005,145(2):336-352.
    [73] P. Chinda, P. Brault. The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT)systems steady state modeling [J]. International Journal of Hydrogen Energy,2012,37(11):9237–9248.
    [74] JE Freeh, CJ Steffen, LM Larosiliere. Off-design performance analysis of a solidoxide fuel cell-gas turbine hybrid for auxiliary aerospace power [C]: Proc FuelCell20053rd International Conference on Fuel Cell Science Engineering andTechnology. Michigan U.S.A.2005:74099-1-8.
    [75] R. Gaynor, F. Mueller, F. Jabbari, et al. On control concepts to prevent fuelstarvation in solid oxide fuel cells [J]. Journal of Power Sources.2008,180(1):330-342.
    [76] B.M. Sanandaji, T.L. Vincent, A.M. Colclasure, et al. Modeling and control oftubular solid-oxide fuel cell systems: II. Nonlinear model reduction and modelpredictive control [J]. Journal of Power Sources.2010,196(1):208–217.
    [77] P. Adhikari, M. Abdelrahman. Modeling, Control, and Integration of a PortableSolid Oxide Fuel Cell System [J]. Journal of Fuel Cell Science and Technology.2012,9(1):11010-11014.
    [78] M. Fardadi, F. Mueller, F. Jabbari. Feedback control of solid oxide fuel cell spatialtemperature variation [J]. Journal of Power Sources.2010,195(13):4222-4233.
    [79] HL. Cao, X. Li, ZH. Deng, JH. Jiang, J Yang, J Li, Y Qi. Dynamic modeling andexperimental validation for the electrical coupling in a5-cell solid oxide fuel cellstack in the perspective of thermal coupling [J]. International Journal of HydrogenEnergy,2011,36(7):4409-4418.
    [80] F. Mueller. The Dynamics and Control of Integrated Solid Oxide Fuel CellSystems: Transient Load Following and Disturbance Rejection [D]. California:University of California, Irvine,2008.
    [81] F. Mueller, M. Fardadi, B. Shaffer, et al. Transient Performance of IntegratedSOFC System Including Spatial Temperature Control [C]. Brooklyn: Proceedingsof the ASME2010Eighth International Fuel Cell Science, Engineering andTechnology Conference,2010.
    [82] M. Ni, D.Y. Leung, M.K. Leung. Electrochemical modeling and parametric studyof methane fed solid oxide fuel cells [J]. Energy Conversion and Management.2009,50(2):268-278.
    [83] H. Xi, J. Sun. Dynamic Analysis of Planar Solid Oxide Fuel Cell Models WithDifferent Assumptions of Temperature Layers [J]. Journal of Fuel Cell Science andTechnology.2009,6(1):11011-11012.
    [84] D. Dochain, N. Tali-Maanar, and J.P. Babary. On modeling, monitoring andcontrol of fixed bed bioreactors [J]. Computers and Chemical Engineering,1997,21:1255-1266.
    [85] P.C. Muller and H.I. Weber. Analysis and optimization of certain qualities ofcontrollability and observability for linear dynamical systems [J]. Automatica,1972,8:237-246.
    [86] F.W.J. van den Berg, H.C.J. Hoefsloot, H.F.M. Boelens, and A.K. Smilde.Selection of optimal sensor position in a tubular reactor using robust degree ofobservability criteria [J]. Chemical Engineering Seience,2000,55:827-837.
    [87]郑大钟.线性系统理论[M],第二版.北京:清华大学出版社,2002.
    [88] Takagi T, Sugeno M. Fuzzy identification of system and its applications tomodelling and control [C]. IEEE, Transactions on Systems Man and Cybernetics,1985,15:116-132.
    [89]苏佰丽.非线性系统的有约束模糊预测控制研究:[博士学位论文].天津:南开大学图书馆,2006.
    [90] Yang J, Li X. Predictive control of solid oxide fuel cell based on Takagi-Sugenofuzzy model [J]. Journal of Power Sources,2009,193:699-705.
    [91] Angelov PP, Filev DP. An approach to online identification of Takagi-Sugenofuzzy models [C]. IEEE, Transactions on Systems, Man and Cybernetics, Part B:Cybernetics,2004,34:484-498.
    [92] Yang J, Li X. Control-oriented thermal management of solid oxide fuel cells basedon a modified Takagi-Sugeno fuzzy model [J]. Journal of Power Sources,2009,188:475-482.
    [93] Deng ZH, Cao HL, Li X. Generalized predictive control for fractional orderdynamic model of solid oxide fuel cell output power [J]. Journal of Power Sources,2010,195:8097-8103.
    [94] Clarke DW, Mohtadi C, Tuffs PS. Generalized predictive control-Part I. The basicalgorithm [J]. Automatica,1987,23(2):137-148.
    [95] Alt nten A. Generalized predictive control applied to a PH neutralization process.Computers and Chemical Engineering,2007,31:1199-1204.
    [96] Ozkan G, Hapoglu H, Alpbaz M. Generalized predictive control of optimaltemperature profiles in a polystyrene polymerization reactor [J]. ChemicalEngineering and Processing,1998,37:125-139.
    [97] Clarke DW. Application of generalized predictive control to industrial processes
    [C], IEEE, Control Systems Magazine.1988,8(2):49-55.
    [98] Xu M, Li S, Cai W. Cascade generalized predictive control strategy for boiler drumlevel [C]. ISA Transactions,2005,44:399-411.
    [99] Venkateswarlu C, Gangiah K. Constrained generalized predictive control ofunstable nonlinear process [C]. Institution of Chemical Engineers,1997,75(Part A):371-376.
    [100]李曦.质子交换膜燃料电池系统的建模与智能控制策略研究:[博士学位论文].上海交通大学图书馆,2005.
    [101] Jung HP, Soohee H, Wook HK. Generalized predictive controls over state space[C], SICE Annual Conference, Takamatsu, Kagawa University, Japan,2007.
    [102] Hernandez GAM, Jones DI. Applying generalized predictive control to apumped-storage hydroelectric power station [C]. IASTED Int. Conf. Modeling,Identification Control,2002,23:380-385.
    [103] Gossner JR, Kouvaritakis B, Rossiter JA. Stable generalized predictive control withconstraints and bounded disturbances [J]. Automatica,1997,33:551-568.
    [104] Munoz-Hernandez GAM, Jones D. MIMO generalized predictive control for ahydroelectric power station [C]. IEEE, Transactions on Energy Conversion,2006;21(4):921-929.
    [105] Huang B, Qi Y, Murshed M. Solid oxide fuel cell-perspective of dynamic modelingand control [J]. Journal of Process Control,2011,21:1426-1437.
    [106] Clarke DW, Mohtadi C. Properties of generalized predictive control [J].Automatica,1989,25(6):859-875.
    [107] Charles LL, Richard JH. Solving Least squares problems [M]. Proctice-Hall,1974.http://www.google.com/books?hl=zh-CN&lr=&id=ROw4hU85nz8C&oi=fnd&pg=PA1&dq=Solving+Least+squares+problems&ots=mj7CEFbIJl&sig=kiWAKjXcJB9h_F3RTv4LQq-UWzM#v=onepage&q&f=false.
    [108] Tsang TTC, Clarke DW. Generalized predictive control with input constraints [J].Control Theory and Applications,1988,135(6):451-460.
    [109] Jiang JH, Li X, Deng ZH, Yang J, Zhang YS, Li J. Thermal management of anindependent steam reformer for a solid oxide fuel cell with constrained generalizedpredictive control [J]. International Journal of Hydrogen Energy.2012,37(17):12317-12331.
    [110] Aidu Q, Brant Peppley, Kunal Karan, Integrated fuel processors for fuel cellapplication: A review [J]. Fuel Processing Technology,2007,88:3-22.
    [111] Finn J., Jens R. Rostrup-Nielsen, Conversion of hydrocarbons and alcohols for fuelcells [J]. Journal of Power Sources,2002,105:195-201.
    [112] Halabi MH, Croon M. Reactor modeling of sorption-enhanced autothermalreforming of methane part I: performance study of hydrotalcite and lithiumzirconate-based process [J]. Chemical Engineering Journal,2011,168:872-882.
    [113] Halabi MH, Croon M. Reactor modeling of sorption-enhanced autothermalreforming of methane part II: Effect of operational parameters [J]. ChemicalEngineering Journal,2011,168:883-888.
    [114] Zamaniyan A, Ebrahimi H, Mohammadzadeh JSS. A unified model for top firedmethane steam reformers using three dimensional zonal analysis [J]. ChemicalEngineering and Processing,2008,47:946-956.
    [115] Farhadi F, Babaheidari MB, Hashemi MMYM. Radiative models for the furnaceside of a bottom-fired reformer [J]. Applied Thermal Engineering,2005,25:2398-2411.
    [116] Pedernera MN, Pina J, Borio DO. Use of a heterogeneous two-dimensional modelto improve the primary steam reformer performance [J]. Chemical EngineeringJournal,2003,94:29-40.
    [117] Hyman M, Simulate methane reformer reactions [J]. Hydrogen Processor,1968,47:131-137.
    [118] Davies J, Lihou D. Optimal design of methane steam reformer [J]. ChemicalProcess Engineering,1971,52:71-80.
    [119] Golebebiowski A, Wasala T. Thermal processes in catalytic reforming of methanewith water vapor [J]. International Chemical Engineering,1973,13:133-139.
    [120] Peksen M. Numerical modeling and experimental validation of a planar typepre-reformer in SOFC technology [J]. International Journal of Hydrogen Energy,2009,34:6425-6436.
    [121] Sandhua SS, Saif YA, Fellner JP. A reformer performance model for fuel cellapplications [J]. Journal of Power Sources,2005,140:88-102.
    [122] Jahn H, Schroer W. Dynamic simulation model of a steam reformer for aresidential fuel cell power plant [J]. Journal of Power Sources,2005,150:101-109.
    [123] Sari A, Espanet C, Hissel D. Particle swarm optimization applied to the co-designof a fuel cell air circuit [J]. Journal of Power Sources,2008,179:121-131.
    [124] Chibante R, Campos D. An experimentally optimized PEM fuel cell model usingPSO algorithm [C]. IEEE International Symposium on Industrial Electronics (ISIE),Bari,2010,2281-2285.
    [125] Li Q, Chen W, Wang Y. Parameter identification for PEM fuel-cell mechanismmodel based on effective improved adaptive particle swarm optimization, IEEETransactions on Industrial Electronics.2011,58:2410-9.
    [126] Yang J, Li X, Jiang JH. Parameter optimization for tubular solid oxide fuel cellstack based on the dynamic model and an improved genetic algorithm.International Journal of Hydrogen Energy,2011,36:6160-74.
    [127] Li X, Deng ZH, Qin Y; Parameter optimization of thermal-model-oriented controllaw for PEM fuel cell stack via novel genetic algorithm [J]. Energy Conversion andManagement,2011,52(11):3290-3330.
    [128] Camacho EF. Constrained generalized predictive control [C]. IEEE Transactionson Automatic Control,1993,38(2):327-332.
    [129] Mendes J, Araujo R, Souza F. Adaptive fuzzy generalized predictive control basedon discrete time T-S fuzzy model [C]. IEEE, Emerging Technologies and FactoryAutomation, Bilbao,2010,1-8.
    [130]胡寿松.自动控制原理[M],第四版.北京:科学出版社,2001.
    [131]巩长忠.基于T-S模糊模型的控制方法及稳定性分析:[博士学位论文].大连理工大学图书馆,2003.
    [132]周德云,陈新海,佟明安.自适应广义预测控制系统的鲁棒稳定性分析[J],航空学报,1994,15(7):833-840.
    [133] Zhang WD, Sun YX, Xu XM. Robust digital controller design for processes withdead times: New results [J]. IEE Proc-Control Theory Appl,1998,145(2):159-164.
    [134]孙青林,陈增强,袁著祉.基于频域的多变量广义预测控制(MIMO-GPC)稳定性分析[J].中国工程科学,2004,6(10):39-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700