用户名: 密码: 验证码:
基于免疫分析的农产品真菌毒素混合污染同步检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真菌毒素是由真菌产生的次级代谢产物,由于真菌在农产品生长、收获、储运、加工过程中都会发生,因此真菌毒素极易污染农产品、食品和饲料等,直接影响农产品及其制品的质量安全。农产品中的真菌毒素主要为黄曲霉毒素、玉米赤霉烯酮、赭曲霉毒素、呕吐毒素等。真菌毒素对人、畜往往具有很强的致癌作用、致畸作用、遗传毒性、免疫毒性、细胞毒性等,可损害人和动物的肝脏、肾脏、神经组织、造血组织及皮肤组织等,从而引起对机体的急性或慢性中毒,严重威胁人、畜健康。真菌毒素污染已成为农产品质量安全的重要热点、难点问题,受到了社会各界的广泛关注,并被发达国家作为技术贸易壁垒手段之一。
     我国地域辽阔、气候差异及变化较大,一种农作物被多种真菌侵染的情况较为常见。因此,一种自然条件生长的农产品可能受多种真菌毒素的混合污染。人和动物摄入受真菌毒素混合污染的农产品时,真菌毒素也会随之进入人体,几种真菌毒素协同作用对人和动物的健康危害作用可能比真菌毒素单独作用的危害大。近年来,真菌毒素混合污染受到了越来越多的关注,建立灵敏、快速、高检测通量的检测技术是真菌毒素混合污染监管和保障农产品质量安全的重要措施。目前,用于真菌毒素混合污染多组分检测的技术主要为多功能净化柱-高效液相与质谱联用方法和免疫快速检测方法等,然而多功能净化柱-高效液相与质谱联用方法受样品基质干扰大,特别是无法满足现场快速检测需求;免疫快速检测方法中主要针对单一真菌毒素污染,难以满足多种真菌毒素混合污染快速检测需求。
     针对上述问题,本论文的研究内容和创新点如下:
     1.选育出赭曲霉毒素A和玉米赤霉烯酮的高灵敏单克隆杂交瘤细胞株,并研制出系列真菌毒素高灵敏单克隆抗体,为多种真菌毒素混合污染检测研究提供自主核心试剂。
     研制出一种灵敏度高、特异性好的抗赭曲霉毒素A单克隆抗体。本研究采用动物免疫、细胞融合、半固体培养-梯度筛选法获得3株能产生抗赭曲霉毒素A抗体的单克隆细胞株1H2、1F8、3E2,其中1H2细胞株效价和灵敏度最高。1H2抗体亚型为IgG1型,对赭曲霉毒素A的亲和力常数为1.03×109L/mol,属于高亲和力抗体。1H2抗体对赭曲霉毒素A的反应特异性好,与赭曲霉毒素A结构类似物赭曲霉毒素B交叉反应不明显,与其他种类的真菌毒素黄曲霉毒素B1、G1、玉米赤霉烯酮、呕吐毒素的交叉反应不明显,交叉反应率均小于0.3%。1H2抗体对OTA的灵敏度(IC50值)为0.058ng/mL。该抗体是迄今研究报道的对赭曲霉毒素A特异性最好、灵敏度最高的单克隆抗体。
     研制出一种高灵敏度的抗玉米赤霉烯酮单克隆抗体。本研究筛选获得5株能产生抗玉米赤霉烯酮抗体的单克隆杂交瘤细胞株,其中2D3抗体的效价和灵敏度最高。通过对ELISA反应条件的优化,包括对抗原包被浓度,抗体使用浓度,封闭液,反应体系pH值,盐离子浓度的优化,2D3抗体对玉米赤霉烯酮的灵敏度(IC50值)为0.02ng/mL,是迄今报道的对玉米赤霉烯酮灵敏度最高的单克隆抗体。
     建立了基于免疫亲和柱前处理的间接竞争ELISA检测赭曲霉毒素A和玉米赤霉烯酮的方法。以1H2抗体和2D3抗体为基础,分别建立了基于免疫亲和柱前处理的间接竞争ELISA检测赭曲霉毒素A和玉米赤霉烯酮的方法。经免疫亲和柱处理后,样品基质对免疫竞争反应的干扰得到有效抑制。将建立的ELISA方法用于大米、小麦、大豆、花生样品中赭曲霉毒素A和玉米赤霉烯酮的检测,回收率高,检测结果与标准方法高效液相色谱法的一致性较好,说明该基于免疫亲和前处理的ELISA方法能用于农产品中赭曲霉毒素A和玉米赤霉烯酮的检测分析。
     2.研究建立了农产品多种真菌毒素混合污染免疫层析同步检测技术,并成功研制出多种真菌毒素混合污染同步检测的免疫层析试纸条。
     研制出一种能同步检测三种真菌毒素的免疫层析试纸条。试纸条具有三条检测线,每条检测线上固定一种真菌毒素的完全抗原,将三种真菌毒素抗体分别标记到胶体金上,基于竞争性免疫层析反应原理,可同步检测黄曲霉毒素B1、赭曲霉毒素A、玉米赤霉烯酮三种真菌毒素。该免疫层析试纸条特异性好,三种真菌毒素之间无交叉反应,对黄曲霉毒素B1、赭曲霉毒素A、玉米赤霉烯酮的可视化检测限分别为0.25、0.5、1ng/mL。检测试纸条的稳定性好,在室温干燥的环境下有效使用期达6个月以上。试纸条的准确性和重现性好,对玉米、大米和花生样品进行检测时,检测结果与ELISA方法的一致性较好,表明研制的免疫层析试纸条在农产品真菌毒素混合污染同步、快速检测中具有应用前景。
     3.研究建立了多种真菌毒素混合污染微阵列免疫芯片同步检测技术,并成功研制出一种能同步检测三种真菌毒素的聚合物刷微阵列免疫芯片。
     研制出一种能同步检测三种真菌毒素的免疫芯片。基于聚合物刷的微阵列免疫芯片,三维结构的聚合物刷扩大玻片比表面积,提高结合蛋白质分子的能力。且该刷状聚合物修饰的玻片非特异性吸附能力弱,在固定抗原后,不需像ELISA方法一样进行封闭,直接就可用于检测分析,大大缩短了检测时间。本实验通过对固定抗原浓度、抗体使用浓度等条件进行摸索和优化,对黄曲霉毒素B1和赭曲霉毒素A的检出限为4pg/mL,对玉米赤霉烯酮的检出限为3pg/mL。该方法对三种真菌毒素的线性范围分别为:黄曲霉毒素B14-330pg/mL;赭曲霉毒素A12-3000pg/mL;玉米赤霉烯酮3-2000pg/mL。该方法对添加三种真菌毒素的花生样品进行检测分析的准确性高,回收率在85.9-109.2%,该技术为农产品质量安全监测中多种污染物的高通量检测提供了技术支撑。
     4.研究建立了多种真菌毒素混合污染免疫亲和-高效液相色谱-质谱联用检测技术,并成功研制出多种真菌毒素同步净化、富集的免疫亲和柱。
     基于免疫亲和原理研制了能同步净化、富集黄曲霉毒素B1、赭曲霉毒素A、玉米赤霉烯酮和T-2毒素的免疫亲和柱,对四种真菌毒素的柱容量分别为127.4ng、165.1ng、146.85ng、245.2ng。并对多种真菌毒素同步提取的前处理方法进行了优化,将优化的前处理提取方法与免疫亲合柱结合,用于HPLC-MS/MS检测中的样品前处理,对四种真菌毒素同步检测的回收率介于87%-102%之间,研制的免疫亲和柱在真菌毒素混合污染的确证性检测中具有广阔的应用前景。
Mycotoxins are the secondary metabolites of fungi, which may occur in the farm cultivation, harvest,storage, transportation and processing of agro-products. Then the agro-products, food and feedstuffsmay be contaminated by mycotoxins, which directly affect the quality and safety of agro-products. Themain mycotoxins in the agro-products are aflatoxins, zearalenone, ochratoxins, deoxynivalenol andsome others. The toxicities of myxotoxins mainly are carcinogenesis, teratogenesis, genetic toxicity,immunotoxicity and cytotoxicity. Myxotoxins could damage the liver, kidney, nervous tissue,hemopoietic and skin tissue of human and animals, and then induce the acute and chronic intoxicationto the organism. The mycotoxin contamination has been one of the difficult problems of general interestin the agro-product quality and safety and has received great attention from all works of life. Thisproblem has been utilized as one of the technical trade barriers by the developed countries.
     China territory is vast and the climate is in large difference and changes, which enable one kind offarm crops contaminated by multiple kinds of fungi. Therefore, the farm crops and agro-productscultivated in the natural environment may be contaminated by multiple kinds of mycotoxins.Mycotoxins may enter the body of human and animals when they intake the contaminated food. Thesynergy health hazard of several mycotoxins on humans and animals is much more serious than theharm alone. In recent years, the multiple mycotoxin contamination has aroused more and more attention.Developing sensitive, rapid and high throughput detection technology is the important strateges tomonitor the multiple mycotoxins contamination and gurantee the agro-product quality and safety.Nowadays, the main technology for high throughput detection of multiple mycotoxins is multifuctionalpurification column linked high performance liquid chromatography tandem mass spectrometry andimmune rapid analysis method. While, this former method may be affected by the sample matrix and isnot suitable for on-site and rapid detection. Most of immunoassay methods can just detect one kind ofmycotoxin, which is hard to meet the request of high throughput detection of multiple mycotoxins.
     To solve above urgent problems, main research contents and novelties of this work are as follows:
     1. The highly sensitive monoclonal hybriboma cell lines were screened for ochratoxin A andzearalenone. And series of sensitive monoclonal antibodies were prepared for mycotoxins, whichprovided the self-developed key regents for the detection of mycotoxin composite contamination.
     A sensitive and specific monoclonal antibody against ochratoxin A was prepared. With the animalimmunization, cell fusion and semisolid medium culture-gradient screening, three monoclonal cell linesagainst ochratoxin A were obtained, named1H2,1F8and3E2. The antibody produced by1H2has thehighest titer and best sensitivity. The subtype of1H2antibody is IgG1, and the affinity constant is1.03×109L/mol, which means1H2antibody is of high affinity.1H2has good specificity for ochratoxinA, and has no obvious cross-reactivity with the analog ochratoxin B. It also has no obviouscross-reactivity with other mycotoxins, such as aflatoxin B1, G1, zearalenone, deoxynivalenol, and thecross-reactivity to these mycotoxins are below0.3%. The sensitivity (IC50value) of1H2against ochratoxin A is0.058ng/mL. Comparing with the reported anti-ochratoxin A monoclonal antibodies, thisone is of the best specificity and the highest sensitivity.
     A highly sensitive monoclonal antibody against zearalenone was prepared. Five monoclonal celllines for zearalenone were obtained, and2D3performed the highest titer and the best sensitivity. Afterthe optimization of the ELISA parameters, including the coating concentration of antigen, concentrationof antibody, coating buffer and pH value, the sensitivity (IC50value) of2D3antibody for zearalenonewas0.02ng/mL. Comparing with the reported monoclonal antibody,2D3has the best sensitivity.
     Indirect competitive ELISA based on the immunoaffinity column (IAC) was developed for detectionof ochratoxin A and zearalenone. Based on the1H2and2D3antibodies, the IAC was developed forsample preparation, and the indirect competitive ELISA with IAC (IAC-icELISA) for ochratoxin A andzearalenone were developed, respectively. After the purification with IAC, the effect of sample matrixhas been effectively elimilated. The developed IAC-icELISA was utilized to detect ochratoxin A andzearalenone in rice, wheat, soybean and peanut samples, which show good performance in accuracy andrecovery. The results of IAC-icELISA were in good agreement with those from high performance liquidchromatography determination. It means that this IAC-icELISA could be utilized for ochratoxin A andzearalenone detection in agro-products.
     2. The immunochromatographic technology for simultaneous detection of multiple mycotoxinscontamination was developed. And the immunochromatographic strip was successfully developed formultiple mycotoxins contamination.
     One kind of immunochromatographic strip for simultaneous detection of three mycotoxins wasfirstly developed. There were three test lines on the strip. Three mycotoxin antigens were separatelyimmobilized on each test line, respectively. Three mycotoxin antibodies were labeled on the colloidgold to prepare the mixed probe. This strip was of good specificity and there was no cross reactivitybetween the determination of these three mycotoxins. The visible detection limit of thisimmunochromatographic strip for aflatoxin B1, ochratoxin A, zearalenone was0.25,0.5,1ng/mL,respectively. This strip was of good stability and could be stored in the room temperature anddesiccative environment for more than six months. This strip was utilized to detect multiple mycotoxinsin maize, rice and peanut, and the results were in good agreement with the results of ELISA detection. Itmeant that this immunochromatographic strip was of good accuracy and reproducibility, and hadapplication prospect in the simultaneous and rapid evaluation of mycotoxin composite contamination inagro-products.
     3. The microarray immunochip was developed for simultaneous detection of multiple mycotoxinscontamination. And a polymer brush microarray immunochip was successfully developed forsimultaneous detection of three mycotoxins.
     A non-fouling polymer brush microarray immunochip was developed for simultaneous detection ofthree kinds of mycotoxins. The three-dimensional polymer brush can enlarge the specific surface area ofthe slide and increase the ability of combining the proteins. This biochip with non-fouling polymerbrush is weak in nonspecific adsorption. After the immobilization of the antigen, it can be directly used to perform detection and needs no coating process, which is unlike the ELISA method. And thedetection time could be shortened. The concentration of the immobilized antigen and the antibodysolutions were optimized. This method is of high sensitivity and the limits of detection for aflatoxin B1,ochratoxin A, zearalenone are4,4,3pg/mL, respectively. The linear ranges of this method for aflatoxinB1, ochratoxin A, zearalenone are4-330,12-3000,3-2000pg/mL. This high sensitive competitiveantigen microarray was utilized to detect three mycotoxins in the spiked peanut samples. Thistechnology was of high accuracy and the recovery was between85.9%and109.2%. This work offers apowerful high-throughput tool for fast screening of multiple contaminants in food quality monitoring.
     4. An immunoaffinity column linked high performance liquid chromatography tandem massspectrometry was developed. The immunoaffinity column for simultaneous purification andconcentration of four mycotoxins was successfully developed.
     The IAC for simultaneous capture of aflatoxin B1, ochratoxin A, zearalenone and T-2toxin wasdeveloped and the capacities for aflatoxin B1, ochratoxin A, zearalenone and T-2toxin were127.4ng,165.1ng,146.85ng,245.2ng, respectively. The preparation method for simultaneous extraction of thesefour mycotoxins was optimized. Combing with the IAC and the optimized extraction method for samplepreparation, the spiked and natural maize samples were evaluated with HPLC-MS/MS, which gave highrecoveries (between87%-102%) for these four mycotoxins. This self-developed IAC has wideapplication prospect in the conform test of detection of mycotoxins composite contamination.
引文
1.鲍蕾,梁成珠,刘学惠,张艺兵,出入境农产品中真菌毒素的污染检测及控制.中国食品工业,2005,l:60-61.
    2.管笛,黄曲霉毒素M1单克隆抗体及检测技术研究[博士学位论文].北京:中国农业科学院,2011.
    3.丁建英,韩剑众,赭曲霉毒素A的研究进展.食品研究与开发,2006,27(3):112-115.
    4.樊晓博,黄曲霉毒素B1免疫分析方法研究[硕士学位论文].陕西:西北农林科技大学,2010.
    5.付鹏程,李荣涛,谢刚,陈兰,吴君里,稻谷真菌毒素污染调查与分析.粮食储藏,2004,33(4):49-51.
    6.宫小明,任一平,董静,孙军,李健,金超,于金玲,超高效液相色谱串联质谱法测定花生、粮油中18种真菌毒素.分析测试学报,2011,30(1):6-12.
    7.高翔,李梅,张立实,赭曲霉毒素A的毒性研究进展.国外医学:卫生学分册,2005,32(1):51-54.
    8.胡华军,付涛,张明洲,洪治,陈宗伦,刘军,CdTe/ZnSe核壳量子点免疫层析试纸条检测克伦特罗的研究.分析化学,2010,38(12):1727-1731.
    9.黄薇,磁性免疫层析技术在氯霉素残留快速检测中的应用研究[硕士学位论文].湖北:华中科技大学,2012.
    10.李群伟,王绍萍,真菌毒素与人类疾病的研究进展与展望.中国地方病防治杂志,2001,16(1):24-25.
    11.刘雪芬,基于环糊精的黄曲霉毒素B1荧光增敏检测技术研究[硕士学位论文].北京:中国农业科学院,2011.
    12.李永哲,赵智贤,侈大伟,张蜀澜,胡朝军,高扬,杨卫平,于孟学,朱力平,程京,蛋白芯片技术在自身抗体检测中的应用.中华检验医学杂志,2006,29(12):1116-1119.
    13.焦杨,班克臣,曹骥,岳海英,陈茂伟,苏建家,黄曲霉毒素B1诱发大鼠肝癌过程中β连环蛋白的变化.中华肝脏病杂志,2007,15(10):783-784.
    14.康熙雄,免疫芯片.齐鲁医学检验,2005,16(3):3-5.
    15.劳海苗,吴英松,刘天才,现代免疫分析方法最新进展.医学研究杂志,2010,39(10):121-123.
    16.李季伦,朱彤霞,张旎,李宝仁,邓泽沛,李永生,孟繁静,玉米赤霉烯酮的研究.北京农业大学学报,1980,l:13-28
    17.廉慧锋,赵笑天,王蓉珍,宋欢,林勤保,超高效液相色谱-串联质谱法同时测定玉米、花生、麦仁中的9种真菌毒素.食品科学,2010,31(20):360-366.
    18.梁梓森,许利娜,马勇江,邓衔柏,范小龙,李玉谷,宁章勇,玉米赤霉烯酮对小鼠胸腺细胞凋亡的影响.中国兽医杂志,2009,45(7):88-90.
    19.卢艳华,D-二聚体单克隆抗体制备及荧光胶乳免疫层析应用的研究[硕士学位论文].广州:华南理工大学,2012.
    20.马皎洁,邵兵,林肖惠,于红霞,李凤琴,我国部分地区2010年产谷物及其制品中多组分真菌毒素污染状况研究.中国食品卫生杂志,2011,23(6):481-488.
    21.马良,张宇昊,李培武,LIF-HPCE法检测食品中的黄曲霉毒素B1.食品科学,2009,30(10):135-139.
    22.钱利纯,尹兆正,玉米赤霉烯酮对畜禽的毒害作用研究进展.黑龙江畜牧兽医,2005,9:78-80.
    23.石志红,张新祥,常文保,蛋白质芯片研究进展.大连化学,2002,17:1-5.
    24.宋世平,免疫芯片研究的现状及未来.中华检验医学杂志,2003,26(8):515-517.
    25.孙建斌,纳米磁性免疫层析技术与致病性病原微生物检测研究[硕士学位论文].陕西:第四军医大学,2012.
    26.唐宁,玉米赤霉烯酮单抗的制备及初步应用[硕士学位论文].扬州:扬州大学,2009.
    27.万亮,三种真菌毒素蛋白质微阵列检测方法的初步研宂以及抗四环素多克隆抗体的制备[硕士学位论文].南昌:南昌大学,2008.
    28.王春红,张善宝,常见真菌毒素对人体的危害及生物降解研究进展.陕西农业科学,2009,4:99-107.
    29.王丹,建立同时检测三种真菌毒素膜免疫芯片方法的研究与抗庆大霉素多克隆抗体的制备[博士学位论文].南昌:南昌大学,20l0.
    30.王金昌,涂祖新,王小红,杨一兵,玉米赤霉烯酮的毒害及脱毒技术的研究进展.江西科学,2008,26(2):252-255.
    31.王静,周蕾,李伟,胡孔新,陈维娜,闫中强,杨瑞馥,上转磷光免疫层析检测肠出血性大肠杆菌0157.中国食品卫生杂志,2007,19(1):41-44.
    32.王若军,苗朝华,付双喜,冯定远,中国饲料及饲料原料受霉菌污染的调查报告.饲料工业,2003,24(7):53-54.
    33.王莹,同时检测多种真菌毒素的生物芯片技术研究[硕士学位论文].湖北:华中农业大学,2012.
    34.王元凯,王君,王雨晨,陈志飞,严亚贤,郝倩雯,李树清,于翠,杨翠云,孙建和,玉米赤霉烯酮单克隆抗体的制备及间接竞争ELISA检测方法的建立.微生物学通报,2011,38(12):1793-1800.
    35.温志立,免疫传感器的发展概述.生物医学工程学杂志,2001,18(4):642-646.
    36.徐剑宏,祭芳,陆琼娴,杨慧勇,史建荣,谷物真菌毒素的控制策略.江苏农业学报,2007,23(6):642-646.
    37.薛巍,姜雯,苏荣国,微流控芯片检测技术进展.化学分析计量,2007,16(3):77-79.
    38.杨晓达,常文保,慈云祥,免疫分析法进展,1995,7(2):83-97.
    39.余增丽,张立实,吴德生,玉米赤霉烯酮对MCF-7细胞肿瘤相关基因表达的影响.毒理学杂志,2005,19(3):175-177.
    40.张道宏,黄曲霉毒素杂交瘤细胞株的选育及免疫层析检测技术研究[博士学位论文].北京:中国农业科学院,2011.
    41.张华,赵丽芬,饲料中霉菌和霉菌毒素的检测方法.贵州农业科学,2004,32(5):86-87.
    42.中华人民共和国卫生部中国国家标准委员会,(2012).GB/T28716-2012.食饲料中玉米赤霉烯酮的测定免疫亲和柱净化-高效液相色谱法.北京:中国标准出版社.
    43.中华人民共和国卫生部中国国家标准委员会,(2010).GB5413.37-2010.食品安全国家标准乳和乳制品中黄曲霉毒素M1的测定.北京:中国标准出版社.
    44.张艳敏,李志军,食品安全快速检测技术研究进展.粮油加工,2009,8:120-122.
    45.张甄,同时检测黄曲霉毒素B1和玉米赤霉烯酮免疫层析试纸条的研制[硕士学位论文].黑龙江:黑龙江八一农垦大学,2010.
    46.周闯,何成华,司慧民,李荣佳,张海彬,2012年国内饲料及原料霉菌毒素污染调查分析.畜牧与兽医,2014,46(1):81-84.
    47. Abbas H.K., Williams W.P., Windham G.L, Pringle H.C., Xie W., Shier W.T., Aflatoxin andfumonisin contamination of commercial corn (Zea mays) hybrids in Mississippi. Journal ofAgricultural and Food Chemistry2002,50:5246-5254.
    48. Abia W.A., Warth B., Sulyok M., Krska R., Tchana A.N., Njobeh P.B., Dutton M.F., Moundipa P.F.,Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon byliquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control2013,31:438-453.
    49. Alarcón S.H., Palleschi G., Compagnone D., Pascale M., Visconti A., Barna V.I., Monoclonalantibody based electrochemical immunosensor for the determination of ochratoxin A in wheat.Talanta2006,69:1031-1037.
    50. Alvarez L., Gil A.G., Ezpeleta O., Garc a-Jalón J. A., López de Cerain A., Immunotoxic effects ofochratoxin A in Wistar rats after oral administration. Food and chemical toxicology2004,42:825-834.
    51. Asao T., Buchi G., Abdel-Kader M.M., Chang S.B., Wick E.L., Wogan G.N., The Structures ofAflatoxins B and GI. Journal of the American Chemical Society1965,87:882-886.
    52. Ben Rejeb I., Arduini F, Arvinte A, Amine A., Gargouri M., Micheli L., Bala C., Moscone D.,Palleschi G., Development of a bio-electrochemical assay for AFB1detection in olive oil.Biosensors and Bioelectronics2009,24:1962-1968.
    53. Betina V., Zearalenone and brefeldin A. Developments in food science1984.
    54. Boudra H., Le Bars P., Le Bars J., Thermostability of Ochratoxin A in wheat under two moistureconditions. Applied and Environmental Microbiology1995,61:1156-1158.
    55. Burkin A., Kononenko G., Soboleva N., Production and analytical properties of antibodies with highspecificity to zearalenone. Applied Biochemistry and Microbiology2002,38:263-268.
    56. Burmistrova N.A., Goryacheva I.Y., Basova E.Y., Franki A.S., Elewaut D., Van B.K., Deforce D.,Van P.C., De S.S., Application of a new anti-zearalenone monoclonal antibody in differentimmunoassay formats. Analytical and bioanalytical chemistry2009,395:1301-1307.
    57. CAST, Myeotoxins: risks in Plant, animal and humans.(Rehard J. L., Payne, G. A. eds). Council ofAgricultural Science and Technology (CAST) Task Force Report Ames, Iowa,2003,139:199.
    58. Cha S.H, Kim S.H, Bischoff K., Kim H.J, Son S.W., Kang H.G., Production of a highlygroup-specific monoclonal antibody against zearalenone and its application in an enzyme-linkedimmunosorbent assay. Journal of veterinary science2012,13:119-125.
    59. Chen A.L., Wang G.Q., Cao Q., Wang, Y., Zhang Z., Sun Y., Wang H., Xu C., Zhou Q., Han P., LiuM., Yang Y., Xing W., Mitchelson K.R., Cheng J., Develpoment of an antibody hapten-chip systemfor detecting the residues of multiple antibiotic drugs. J. Forensic. Sci2009,54:953-960.
    60. Chidumayo N.N., Yoshii K., Saasa N., Sakai M., Kariwa H., Development of a tick-borneencephalitis serodiagnostic ELISA using recombinant Fc-antigen fusion proteins. DiagnosticMicrobiology and Infectious Disease2014,78:373-378.
    61. Choi S. W., Chang H.J., Lee N, Kim J.H., Chun H.S., Detection of mycoestrogen zearalenone by amolecularly imprinted polypyrrole-based surface plasmon resonance (SPR) sensor. Journalofagricultural and food chemistry2009,57:1113-1118.
    62. Commission E, No R.2006of19December2006, Setting Maximum Levels for certainContaminants in Foodstuffs.Official Journal of the European Union,2006.
    63. ConkováE., LaciakováA., PástorováB., Seidel H., KováG., The effect of zearalenone on someenzymatic parameters in rabbits. Toxicology letters2001,121:145-149.
    64. Corstjens P.L., van Lieshout L., Zuiderwijk M., Kornelis D., Tanke H.J., Deelder A.M., van Dam G.J., Up-converting phosphor technology-based lateral flow assay for detection of Schistosomacirculating anodic antigen in serum. Journal of clinical microbiology2008,46:171–176.
    65. Cupid B.C., Lightfoot T.J., Russell D., Gant S.J., Turner P.C., Dingley K.H., Curtis K.D., LevesonS.H., Turteltaub K.W., Garner R.C., The formation of AFBI-macromolecular adducts in rats andhumans at dietary levels of exposure. Food and chemical toxicology2004,42:559-569.
    66. Degan P., Montagnoli G., Wild C.P., Time-resolved fluoroimmunoassay of aflatoxins. Clinicalchemistry1989,35:2308-2310.
    67. Deng G., Xu K., Sun Y., Chen Y., Zheng T.S., Li J.L., High sensitive immunoassay for multiplexmycotoxin detection with photonic crystal microsphere suspension array. Analytical chemistry2013,85:2833-2840.
    68. Devreese M., De Baere S., De Backer P., Croubels S., Quantitative determination of severaltoxicological important mycotoxins in pig plasma using multi-mycotoxin and analyte-specific highperformance liquid chromatography-tandem masss pectrometric methods. Journal ofChromatography A2012,1257:74-80.
    69. Detroy R.W., Microbial Toxins. New York: Academic Press1971:163-178.
    70. Dilkin P., Zorzete P., Mallmann C.A., Gomes J.D.F., Utiyama C.E., Oetting L.L., Correa B.,Toxicological effects of chronic low doses of aflatoxin B1and fumonisin B1-containingFusariummoniliformeculture material in weaned piglets. Food and Chemical Toxicology2003,41:1345-1353.
    71. Engvall E., Perlmann P., Enzyme-linked immunosorbent assay, ELISA III. Quantitation of specificantibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. The Journal ofImmunology1972,109:129-135.
    72. European Commission, Commission regulation (EC) NO1881/2006of19December2006settingmaximum levels for certain contaminants in foodstuffs.2006. Off. J. Eur. Union. L364:5-17.
    73. Faulk W.P., Taylor G.M., An immunocolloid method for the electron microscope. Immunochemistry1971,8:1081–1083.
    74. Fink-Gremmels J., Mycotoxins: Their implications for human and animal health. VeterinaryQuarterly1999,21:115-120.
    75. Friend D.W., Thompson B.K., Trenholm H.L., Panich, P.L., Thompson B.K., Boermans H.J.,Toxicity of T-2toxin and its interaction with deoxynivalenol when fed to young pigs. CanadianJournal of Animal Science1992,72:703-711.
    76. Gao Z.X., Liu N., Cao Q., Zhang L., Wang S., Yao W., Chao F., Immunochip for the detection offive kinds of chemicals: Atrazine, nonylphenol,17-beta estradiol, paraverine and chloramphenicol.Biosensors and Bioelectronics2009,24:1445-1450
    77. Goryacheva I.Y., Karagusheva M.A., Peteghem C.V., Sibanda L., Saeger S.D., Immunoaffinitypre-concentration combined with on-column visual detection as a tool for rapid aflatoxin M1screening in milk. Food control2009,20:802-806.
    78. Guo X., Wen F., Zheng N., Luo Q., Wang H., Wang H., Li S., Wang J., Development of anultrasensitive aptasensor for the detection of aflatoxin B1. Biosensors and Bioelectronics2014,46:340-344.
    79. Han Z., Zheng Y., Luan L., Cai Z., Ren Y., Wu Y., An ultra-high-performance liquidchromatography-tandem mass spectrometry method for simultaneous determination of aflatoxinsB1, B2, G1, G2, M1and M2in traditional Chinese medicines. Analytica chimica acta2010,664:165-171.
    80. Harvey R.B., Edrington T.S., Kubena L.E., Elissalde M.H., Casper H.H., Rottinghaus G.E., TurkJ.R., The effects of dietary fumonisin B1-containing culture material, deoxynivalenol-contaminatedwheat or their combination on growing barrows. Am. J. Vet. Res.1996,57:1790-1794.
    81. Harvey R.B., Kubena L.F., Corrier D.E., Huff W.E., Rottinghaus G.E., Cutaneous ulceration andnecrosis in pigs fed aflatoxin and T-2toxin contaminated diets. J. Vet. Diagn. Invest.1990,2:227-229.
    82. He Q.H., Xu Y., Wang D., Kang M, Huang Z.B., Li Y.P., Simultaneous multiresidue determinationof mycotoxins in cereal samples by polyvinylidene fluoride membrane based dot immunoassay.Food Chemistry2012,134:507-512.
    83. Hidy P.H., Baldwin R.S., Greasham R.L., Keith C.L., McMullen J.R., Zearalenone and somederivatives: production and biological activities. Adv. Appl. Microbiol1977,22:59-82.
    84. Hu W.H., Lu Z.S., Liu Y.S., Chen T., Zhou X.Q., Li C.M., A portable flow-through fluorescentimmunoassay lab-on-a-chip device using ZnO nanorod-decorated glass capillaries. Lab Chip2013,13,1797-1802
    85. Jester E.L., Abraham A., Wang Y., El Said K.R., Plakas S.M., Performance evaluation ofcommercial ELISA kits for screening of furazolidone and furaltadone residues in fish. Foodchemistry2014,145:593-598.
    86. Jornet D., Busto O., Guasch J., Solid-phase extraction applied to the determination of ochratoxin Ain wines by reversed-phase high-performance liquid chromatography. Journal of Chromatography A2000,882:29-35.
    87. Juan C., Ritieni A., Ma es J., Determination of trichothecenes and zearalenones in grain cereal,flour and bread by liquid chromatography tandem mass spectrometry. Food chemistry2012,134:2389-2397.
    88. Kittane M., Parker R, Berndt W.O, Phillps T.D., Ochratoxin A-Induced Teratogensis in Rats PartialProtection by Phenylalanine. Applied and Environmental Microbiology1984,12:1186-1188.
    89. Kloth K., Rye-Johnsen M., Didier A., Dietrich R., M rtlbauer E., Niessner R., Seidel M., Aregenerable immunochip for the rapid determination of13different antibiotics in raw milk. Analyst2009,134:1433-1439
    90. Kolosova A.Y., De Saeger S., Sibanda L., Verheijen R.,Van Peteghem C., Development of acolloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenoneand deoxynivalenol. Analytical and bioanalytical chemistry2007,389:2103-2107.
    91. Kubena L.F., Edrington T.S., Harvey R.B., Buckley S.A., Phillips.T.D., Rottinghaus G.E., CasperH.H., Individual and combined effects of fumonisin BI present in fusarium moniliforme culturematerial and T-2toxin or deoxynivalenol in broiler chicks. Poultry Sci1997,76:1239-1247.
    92. Kuiper-Goodman T., Scott P., Watanabe H., Risk assessment of the mycotoxin zearalenone.Regulatory toxicology and pharmacology1987,7:253-306.
    93. Kuiper-Goodman T., Risk assessment of ochratoxin A: an update. Food Addit. Contam.1996,13:53-57.
    94. Iikka H., Salifu D., Veli-Matti M., Harri S., Timo L., Europium as a label in time-resolvedimmunofluorometric assays. Analytical Biochemistry1984,137:335-343.
    95. International Agency for Research on Caneer, IARC Monographs on the Evaluation ofCancinogenic Risk to Humans. World Health Oranisation, lyon,1993,56.
    96. International Agency for Research on Cancer, Some naturally occurring substances: food items andconstituents, heterocyclic aromatic amines and mycotoxins. IARC Scientific Publication1993,56:486-521
    97. Li P.W., Zhang Q., Zhang W., Immunoassays for aflatoxins. Trends in Analytical Chemistry,2009.
    98. Liao C.D., Wong J.W., Zhang K., Hayward D.G., Lee N. S., Trucksess M.W., Multi-mycotoxinAnalysis of Finished Grain and Nut Products Using High-Performance LiquidChromatography–Triple-Quadrupole Mass Spectrometry. Journal of agricultural and food chemistry2013,61:4771-4782.
    99. Lindenmeier M., Schieberle P., Rychlik M.,Quantification of ochratoxin A in foods by a stableisotope dilution assay using high-performance liquid chromatography–tandem mass spectrometry.Journal of Chromatography A2004,1023:57-66.
    100. Liu Y., Guo C.X., Hu W., Lu Z., Li C.M., Sensitive protein microarray synergistically amplified bypolymer brush-enhanced immobilizations of both probe and reporter. Journal of colloid andinterface science2011,360:593-599.
    101. Lobeau M., De Saeger S., Sibanda L., Barna-VetróI., Van Peteghem C., Development of a newclean-up tandem assay column for the detection of ochratoxin A in roasted coffee. Analyticachimica acta2005,538:57-61.
    102. Ma Z., Huang B., Zhang J., Zhang Y., Zhu L., Tu Q., Time-resolved fluoroimmunoassay ofzearalenone in cereals with a europium chelate as label. Journal of Rare Earths2009,27:1088-1091.
    103. Mantle P.G., Risk assessment and the importance of ochratoxins. Int. Biodeter Biodegr2002,50:143-146.
    104. Medina A., Mateo R., Lopez-Ocana L., Valle-Algarra F.M., Jimenez M., Study of Spanish grapemycobiota and ochratoxin A production by Isolates of Aspergillus tubingensis and other members ofAspergillus section Nigri. APPI. Environ. Mierobiol.2005,71:4696-4702.
    105. MeKenzie K.S., Sarr A.B., Mayura K., Bailey R.H., Miller D.R., Rogers T.D., Norred W.P., VossK.A., Plattner R.D., Kubena L.F., Phillips T.D., Oxidative degradation and detoxification ofmycotoxins using a novel source of ozone. Food Chem. Toxicol.1997,35(8):807-820.
    106. Moreau C., Moisissures Toxinques dans Alimentation. Paris: Masoson Editrurs Press1974:71-164.
    107. Moss M.O., Recent studies of mycotoxins. Journal of Applied Microbiology, SymposiumSupplement1998,84:62S-76S.
    108. Nassar A.F.C, Miyashiro S., Gregori F., Piatti R. M., Daniel G.T., Gregory L., Standardization of anenzyme-linked immunosorbent assay (ELISA) for detection of antibodies anti-Corynebacteriumpseudotuberculosis in sheep. Small Ruminant Research2014,116:229-232.
    109. Neagu D., Capodilupo A., Vilkanauskyte A., Micheli L., Palleschi G., Moscone D., AFB1-APConjugate for Enzyme Immunoassay of Aflatoxin B1in Corn Samples. Analytical Letters2009,42:1170-1186.
    110. Ngundi M. M., Qadri S. A., Wallace E. V., Moore M.H., Lassman M.E., Shriver-Lake L.C., LiglerF.S., Taitt C.R., Detection of deoxynivalenol in foods and indoor air using an array biosensor.Environmental science&technology2006,40:2352-6.
    111. Ngundi M. M., Shriver-Lake L. C., Moore M. H., Lassman M.E., Ligler F.S., Taitt C.R., Arraybiosensor for detection of ochratoxin A in cereals and beverages. Analytical chemistry2005,77:148-154.
    112. Njobeh P.B., Dutton M.F., Koch S.K., Chuturgoon A.A., Stoev S.D., Mosonik J.S., Simultaneousoccurrence of mycotoxins in human food commodities from Cameroon. Mycotoxin Research2010,26:47-57.
    113. Nolan J P., Sklar L.A., Suspension array technology: evolution of the flat-array paradigm. Trendsin Biotechn2002,20:9-12.
    114. North J., Immunosensors: antibody-based biosensors. Trends Biote-chnol1985,3:180.
    115. Olivier M., Hussain S.P., Caron de Fromentel C., Hainaut P., Harris C.C., TP53mutation spectraand load: a tool for generating hypotheses on the etiology of cancer. IARC Sei Publ.2004,157:247-270.
    116. Pei S.C., Lee W.J., Zhang G.P., Hu X.F., Eremin S.A., Zhang L. J., Development ofanti-zearalenone monoclonal antibody and detection of zearalenone in corn products from China byELISA. Food Control2013,31:65-70.
    117. Peters J., Bienenmann-Ploum M., de Rijk T., Haasnoot W., Development of a multiplex flowcytometric microsphere immunoassay for mycotoxins and evaluation of its application in feed.Mycotoxin research2011,27:63-72.
    118. Radi B., Fuchs R., Peraica M., Luci A., Ochratoxin A in human sera in the area with endemicnephropathy in Croatia. Toxicology letters1997,91:105-109.
    119. Ren Y., Zhang Y., Shao S., Cai Z., Feng L., Pan H., Wang Z., Simultaneous determination ofmulti-component mycotoxin contaminants in foods and feeds by ultra-performance liquidchromatography tandem mass spectrometry. Journal of Chromatography A2007,1143:48-64.
    120. Rodríguez-Carrasco Y., Berrada H., Font G., Ma es J., Multi-mycotoxin analysis in wheat semolinausing an acetonitrile-based extraction procedure and gas chromatography–tandem massspectrometry. Journal of Chromatography A2012,1270:28-40.
    121. Rossi C.N., Takabayashi C.R., Ono M.A., Saito G.H., Itano E.N., Kawamura O., Hirooka E.Y., OnoE.Y.S., Immunoassay based on monoclonal antibody for aflatoxin detection in poultry feed. FoodChemistry2012,132:2211-2216.
    122. Rucker V.C., Havenstrite K.L., Simmons B.A., Sickafoose S.M., Herr A.E., Shediac R., Functionalantibody immunobilization on dimensional polymeric surfaces generated by reactiveion etching.Langmuir2005,21:7621-7625.
    123. Saha D., Acharya D., Roy D., Shrestha D., Dhar T. K., Simultaneous enzyme immunoassay for thescreening of aflatoxin B1and ochratoxin A in chili samples. Analytica chimica acta2007,584:343-349.
    124. Saito K., Ikeuchi R., Kataoka H.,Determination of ochratoxins in nuts and grain samples by in-tubesolid-phase microextraction coupled with liquid chromatography-mass spectrometry. Journal ofChromatography A2012,1220:1-6.
    125. Sapsford K. E., Taitt C. R., Fertig S., Moore M.H., Lassman M.E., Maragos C.M., Shriver-LakeL.C.Indirect competitive immunoassay for detection of aflatoxin B1in corn and nut products usingthe array biosensor. Biosensors and Bioelectronics2006,21:2298-2305.
    126. Schatzmayr G., Zehner F., Taubel M., Schatzmayr D., Klimitsch A., Loibner A.P., Binder E.M,Microbiologicals for deactivating mycotoxins. Molecular Nutrition&Food Research2006,50:543-551.
    127. Steiner W.E., Rieker R.H., Battaglia R., Aflatoxin Contamination in Dried Figs: Distribution andAssociation with Fluorescence. Journal Agric. Food Chem.1988,36:88-91.
    128. Stob M., Baldwin R.S., Tuite J., Andrews F.N., Gillette K.G., Isolation of an anabolie, uterotrophiccompound from corn infected with Gibberella zeae. Nature1962,196:13-18.
    129. Sun X., Yan L., Tang Y.J., Zhang Y.Z., A rapid and specific immunosensor for the detection ofaflatoxigenic Aspergilli. European Food Research and Technology2012,234:1013-1021.
    130. Tang D., Sauceda J.C., Lin Z., Ott S., Basova E., Goryacheva I., Biselli S., Lin J., Niessner R.,Knopp D., Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detectionof aflatoxin B2in food. Biosens. Bioelectron.2009,25:514-518.
    131. Uchigashima M., Narita H., Nakajima M., Miyake S., Development of an immuno-affinity columnfor ochratoxin analysis using an organic solvent-tolerant monoclonal antibody. Methods2012,56:180-185.
    132. Uchigashima M., Saigusa M., Yamashita H., Miyake S., Fujita K., Nakajima M., Nishijima M.,Development of a novel immunoaffinity column for aflatoxin analysis using an organicsolvent-tolerant monoclonal antibody. Journal of agricultural and food chemistry2009,57:8728-8734.
    133. Varzakas T, Mass Spectrometry in Food Safety: Methods and Protocols [M]. Springer Science,2012,233-258.
    134. Vendl O., Berthiller F., Crews C., Krska R., Simultaneous determination of deoxynivalenol,zearalenone, and their major masked metabolites in cereal-based food by LC–MS–MS. Analyticaland bioanalytical chemistry2009,395:1347-1354.
    135. Visconti A., Pascale M., Centonze G., Determination of ochratoxin A in domestic and importedbeers in Italy by immunoaffinity clean-up and liquid chromatography. Journal of Chromatography A2000,888:321-326.
    136. Wang J.J., Liu B.H., Hsu Y.T., Yu F.Y., Sensitive competitive direct enzyme-linked immunosorbentassay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1in milk. FoodControl2011,22:964-969.
    137. Wang L., Lu D., Wang J., Du D., Zou Z.X., Wang H., Smith J.N., Timchalk C., Liu F.Q., Lin Y.H.,A novel immunochromatographic electrochemical biosensor for highly sensitive and selectivedetection of trichloropyridinol, a biomarker of exposure to chlorpyrifos. Biosensors andBioelectronics2011,26:2835-2840.
    138. Wang Y., Ning B., Peng Y., Bai J.L., Liu M., Fan X.J., Sun Z.Y., Lv Z.Q., Zhou C.H., Gao Z.X.,Application of suspension array for simultaneous detection of four different mycotoxins in corn andpeanut. Biosensors and Bioelectronics2013,41:391-396.
    139. Xu K., Sun Y., Li W., Xu J., Cao B., Jiang Y.K., Zheng T.S., Li J.L., Pan D.D., Multiplexchemiluminescent immunoassay for screening of mycotoxins using photonic crystal microspheresuspension array. Analyst2014,139:771-777.
    140. Yallow R.S., Berson S.A., Assay of plasma in sulin in human subjects by immunological methods.Nature1959,184:1648-1649.
    141. Yang C., Lates V., Prieto-Simón B., Marty J.L., Yang X., Aptamer-DNAzyme hairpins forbiosensing of Ochratoxin A. Biosensors and Bioelectronics2012,32:208-12.
    142. Yuan M., Sheng W., Zhang Y., Wang J.P., Yang Y.J., Zhang S.G., Goryacheva I.Y., Wang S., Agel-based visual immunoassay for non-instrumental detection of chloramphenicol in food samples.Analytica chimica acta2012,751:128-34.
    143. Zhang A., Ma Y., Feng L., Wang Y., He C., Wang X., Zhang H., Development of a sensitivecompetitive indirect ELISA method for determination of ochratoxin A levels in cereals originatingfrom Nanjing, China. Food Control2011,22:1723-1728.
    144. Zhang D., Li P., Yang Y., Zhang Q., Zhang W., Xiao Z., Ding X., A high selectiveimmunochromatographic assay for rapid detection of aflatoxin B1. Talanta2011,85:736-742.
    145. Zhang D., Li P., Zhang Q., Zhang W., Ultrasensitive nanogold probe-basedimmunochromatographic assay for simultaneous detection of total aflatoxins in peanuts. Biosensorsand Bioelectronics2011,26:2877-2882.
    146. Zhang D., Li P., Zhang Q., Zhang W., Huang Y., Ding X., Jiang J., Production of ultrasensitivegeneric monoclonal antibodies against major aflatoxins using a modified two-step screeningprocedure. Analytica chimica acta2009,636:63-69.
    147. Zheng M. Z., Richard J. L., Binder J., A review of rapid methods for the analysis of mycotoxins.Mycopathologia2006,161:261-273.
    148. Zuo P., Ye B.C., Small Molecule Microarrays for Drug Residue Detection in Foodstuffs. Joumal ofAgriculture and Food Chemistry2006,54:6978-6983.
    149. Zollner P., Berner D., Jodlbauer J, Lindner W., Determination of zearalenone and its metabolitesα-and β-zearalenol in beer samples by high-performance liquid chromatography-tandem massspectrometry. Journal of Chromatography B: Biomedical Sciences and Applications2000,738:233-241.
    150. Zollner P., Mayer-Helm B., Trace mycotoxin analysis in complex biological and food matrices byliquid chromatography–atmospheric pressure ionisation mass spectrometry. Journal ofChromatography A2006,1136:123-169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700