用户名: 密码: 验证码:
新型铋—基光催化剂的制备、修饰及其光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铋-基复合氧化物具有独特的层状结构,有利于光捕获以及光生载流子的传递,提高光催化活性,且能够通过层间分子或离子变化调变光催化性能,因此成为近期光催化材料研究领域的热点之一。将光催化应用于染料废水净化是未来的重要发展方向。一方面,由于染料的大规模需求和生产,染料废水是当前工业废水的主要部分,占35%以上;另一方面,染料分子结构稳定,一般化学方法难以降解。而光催化降解过程中会产生一些毒性比染料本身还强的中间产物,同时,染料废水对光产生屏蔽效应,影响光催化剂对光的吸收和利用。光催化效率不仅取决于光催化剂组成,而且与结构形貌密切相关。本论文合成了不同形貌的铋系列氧化物(BiOBr和Bi2MoO6),并以Bi2MoO6为母体,进一步设计稀土修饰和异质结结构的光催化剂,考察所制备的光催化剂在降解染料废水中有机污染物的光催化活性。通过纳米结构裁剪和组成调变,进一步优化光催化剂。在此基础上,结合系统表征,初步探索不同形貌结构光催化剂的形成机理和晶体生长机理,考察光催化反应动力学并研究其反应机理,讨论光催化剂的构效关系。主要研究工作分为以下四个部分:
     (1)微波辅助离子液体合成纳米片堆积形成的BiOBr微立方体及其光催化活性
     采用微波辅助离子液体成功地合成了不同形貌的BiOBr,离子液体发挥结构导向作用,同时,结合微波作用,能够实现高结晶度和规整形貌结构的BiOBr光催化剂的合成。光在纳米片层之间的多次反射可提高光利用率,从而提高光催化活性。同时还发现由于表面有机物的敏化作用导致BiOBr催化剂具有相对高的光催化活性。
     (2)喷雾干燥法合成笼状Bi2MoO6中空微球及其光催化活性
     以葡萄糖为模板剂,通过喷雾干燥法,合成了笼状Bi2MoO6中空微球,考察了喷雾温度和葡萄糖用量对Bi2MoO6晶型、形貌、空心球壳厚度、球壳的孔分布和结构影响。所制备的Bi2MoO6在可见光诱导光催化降解废水RhB溶液中显示高活性,归因于其高比表面积,且光在Bi2MoO6笼状空心球空腔中的多次反射,提高了光的利用率。动力学测量显示,在罗丹明B(RhB)降解过程中遵循的是一级动力学,HPLC-MS检测表明,RhB经脱乙基的过程,形成了5个中间产物最后完全矿化为C02。
     (3)稀土原位修饰Bi2MoO6高活性可见光催化剂
     采用原位法制备了系列稀土离子修饰的Bi2MoO6可见光催化剂并应用于RhB的光催化降解,RhB的降解历程与采用非修饰的Bi2MoO6可见光催化剂相同。在不同稀土离子中,Gd3+修饰效果最佳,可能与其独特的f层电子结构有关;原位法优于浸渍法,主要归因于Gd3+进入Bi2MoO6晶格,形成施主能级,导致能级带隙变窄,不仅有利于可见光活化光催化剂,而且阻碍电子-空穴复合并抑制修饰剂流失,从而提高光催化活性和稳定性。
     (4)溶剂热合成BiOBr/Bi2MoO6及其光催化活性的研究
     采用溶剂热法制备了花球状BiOBr/Bi2Mo06可见光催化剂,其高比表面积有利于提高对RhB的吸附,BiOBr的作用是利用其对染料的优异吸附性能,提高光催化剂对RhB的吸附速率和吸附量,同时通过与Bi2MoO6构建异质结,促进光生电子与空穴分离,抑制其复合。因此BiOBr/Bi2MoO6显示高活性。该光催化反应中光生空穴为主要活性物种,RhB的降解历程与非修饰的Bi2MoO6可见光催化剂存在时相同。
Bismuth-containing complex oxides, as excellent visible light photocatalysts, that were layer structure composed of [Bi2O2]2+slabs interleaved by double slabs of different atoms which could diversify the photocatalytic activity of bismuth-containing complex oxides, have attracted extensive attention these days. The layered structure endowed the complex oxides with high carrier mobility and small probability of the recombination of photogenerated electrons and holes. On the one hand, dyes were demanded and produced in a large scale in industry. On the other hand, traditional chemical methods were difficult in decomposing dyes due to the steady molecule structure of dyes. Hence, the application of photocatalytic method in dye wastewater cleaning could be important development in future. Unluckily, in the photodecomposition process of dye wastewater treatment, the yielded intermediates could be more toxic than the dye molecule itself. Furthermore, the light shielding effect of dyes wastewater could affect the absorption and utilization of light. The photocatalytic efficiency could not only depend on the catalyst composition, but also closely relate to the structure and morphology. This thesis focused on the synthesis of bismuth-containing complex oxides (BiOBr and Bi2MoO6) with various morphologies and the hierarchical flower-like RE/Bi2MoO6and BiOBr/Bi2MoO6spheres by solvothermal technology, and then the cleaning wastewater by photocatalysis for various organic compounds. The photocatalysts were further optimized by the cutting and adjusting of the structure. Based on the above results and the systematic characterization, the formation and crystal growth mechanism of the photocatalysts with various morphologies were studied. Meanwhile, the reaction kinetics and reaction mechanism of photocatalytic process was disclosed. Then, the correlation of the photocatalytic performances or the mineralization ability to the morphology has been discussed based on the photocatalytic activity with various morphologies. The research work could be described in the following four parts:
     (1) Microwave-assisted ionic liquid self-assembly of BiOBr nanosheets in microcube with enhanced photocatalytic activity
     BiOBr with various morphologies has been successfully synthesized via microwave-assisted ionic liquid self-assembly method. Ionic liquid, which could play the oriented role, could help to achieve BiOBr with the high crystallinity and regular morphology structure, combined with microwave. The visible light reflection among the nanosheets of microcube could enhance light absorption, and then increase the photocatalytic activity of BiOBr nanosheets in microcube. Simultaneously, it was observed that the photocatalytic performance of the uncalcined hierarchical BiOBr microcube was superior to that of the calcined hierarchical BiOBr due to the sensitization effect of the organics on the surface.
     (2) Aerosol-spraying preparation of Bi2MoO6, A visible photocatalyst in hollow microspheres with a porous outer shell and enhanced activity
     Bi2MoO6hollow microspheres with cage-like pores on the outer shell were synthesized by aerosolspraying with glucose as a template. The aerosol-spraying temperature and the amount of glucose played key roles in determining the crystal phase and the Bi2MoO6morphology including outer shell thickness and number of cage-like pores on the outer shell. The photocatalytic degradation of rhodamine B under visible-light irradiation was examined which revealed that the reaction followed first order kinetics with respect of rhodamine B concentration and rhodamine B was completely degraded into CO2via de-ethylation process with the formation of5intermediates. The as-prepared Bi2MoO6exhibited high activity owing to the high surface area and additionally because of multiple light reflections in the hollow chamber.
     (3) In situ rare-earth doped Bi2MoO6visible light photocatalyst with enhanced activity
     A series of Bi2MoO6visible light photocatalysts were doped with various rare-earth via in-situ synthesis and used for photocatalytic degradation of RhB. The Gd3+-modification was superior over other rare-earth due to Gd3+with particular4f electron structure, and the in-situ synthesis was better than traditional impregnation method since the Gd3+was incorporated into the Bi2MoO6crystal lattice to form donor level, which facilitated photocatalystic activation with visible lights illuminating, retarded the photo-induced electron-hole recombination, and inhibited the leaching of dopants, leading to the enhanced activity and stability.
     (4) Solvothermal preparation of BiOBr/Bi2MoO6heterostructures with enhanced photocatalytic property
     The flower-like BiOBr/Bi2MoO6microsphere was synthesized by a simple solvothermal method. The0.20-BiOBr/Bi2MoO6sample exhibited excellent adsorption, photocatalytic abilities, and mineralization ability for the degradation of RhB under visible light irradiation (>420nm), due to the heterojunction structure, higher SBET and the BiOBr strong adsorption abilities for RhB. In this system, h+was the dominant reactive specie. The photocatalyst degradation processes of RhB for before and after modified were uniform.
引文
1.徐再荣.全球环境问题与国际回应[M],北京:中国环境科学出版社,2007.
    2.佚名.我国面临的十大环境问题.保护环境手抄报,2012-09-07,.http://edu.pcbaby.com.cn/resource/scb/bhhj/1209/1133896.html
    3.葛玉刚.浅谈水污染的危害与治理[J],科技论纭2011,33,59-59.
    4.王武,华红艳.我国水污染的危害与治理[J],管理工程师2011,6,4-7.
    5.王蓉梅,高永春,张秀兰.防治水污染[J],企业标准化2007,2,69-70.
    6.正东.水污染和环境保护[J],物理教学探讨2003,21,76-77.
    7.崔玉波,余丹,朱宝英.两级逆向垂直潜流人工湿地去除营养物的性能研究[J],中国给水排水2007,23,8-12.
    8.郭飞宏,汪龙眠,张继彪,郑正.蚯蚓生态滤池对农村生活污水的深度净化效果[J],环境工程学报2012,6,714-718.
    9.黄薇,张劲,桑连海.生物浮岛技术的研发历程及在水体生态修复中的应用[J],长江科学院院报2011,28,37-42.
    10.陆东芳,陈孝云.水生植物原位修复水体污染应用研究进展[J],群学技术与工程2011,11,5137-5142.
    11.林和健,林云琴.低温等离子体技术在环境工程中的研究进展[J],环境技术2005,1,21-24.
    12. Clements J S, Sato M, David R H. Preliminary investigation ofprebreak down phenomena and chemical reactions using a pulsed high voltage discharge in water[J], IEEE Tran. Ind. Appl.1987,23,224-235.
    13. Kusi H, Koprivanac N, Locke B R. Decompositionofphenolbyhybrid gas/liquid electrical discharge reactors with zeolite catalysts[J], J. Hazard. Mater.2005,125, 190-200.
    14. Sano N, Yama moto T, Takemori I, et al. Degradation of phenol by simultaneous use of gas-phase corona discharge and catalyst supported mesoporous carbon gels[J],Ind. Eng. Chem. Res.2006,45,2897-2900.
    15.王嘉麟,陈春茂,左岩,等.高压脉冲放电/臭氧协同作用提高油田污水可生化性实验[J],化工进展2008,27,250-254.
    16.简武,冯玮隽,沈玲玲.膜分离技术在水处理中的研究及应用进展[J],绿色科技2012,3,163-165.
    17.刘启明,田清华,马建华,姚雅娴,林建清,张亚平,巫晶晶.含盐废水电渗析膜分离处理工艺研究[J],兰态环境学报2012,21,1604-1607.
    18. Ilyes J. Preparation of a new ceramic microfihration membrane from minercoal fly ash:Application to the treatment of the textile dying efluents[J], Powder Technol.2011,208,427-432.
    19. Barredo-Damas S. Ceramic membrane behavior in textile wastewater uhrafihration[J], Desalination 2010,250,623-628.
    20.陈士明,刘玲.微絮凝直接过滤一超滤深度处理印染废水试验研究[J],水必理技术2011,37,76-79.
    21.卢徐节,朱华土.预处理反渗透耦合工艺深度处理印染废水[J],中国给水排水2010,26,116-118.
    22. Selene G. Textile wastewater treatment in a benchscale anaerobic bioflm anoxicaerobic membrane bioreaetor comb ined with nanofihration[J], J. Environ. Sci. Health Part A 2011,46,1512-1518.
    23.王家廉.我国膜技术与应用的现状和发展趋势[J],中国环保产业2010,9,16-18.
    24. Glaze W H. Drinking-water treatment with ozone [J], Environ. Sci. Technol.1987, 21,224-230.
    25.刘晶冰,燕磊.高级氧化技术在水处理的研究进展[J],水处理技术2011,3,11-17.
    26.李为之,张永丽.臭氧在水处理技术中的应用[J],科技创新导报2013,3,152-153.
    27.刘金泉,王凯,王发珍,等.几种高级氧化技术在焦化废水深度处理中的应 用比选[J],水处理技术2009,35,112-115.
    28. Jun-ichiro H, Joji I, Katsuki K, et al. Decomposition of volatile organochlorines by ozone and utilization efficiency of ozone with ultraviolet in a bubble-column [J], Water Res.1993,27,1091-1097.
    29. Antonio L, Michele P, Angela V, et al. Fentons pretreatment of mature landfill leachate [J], Chemosphere 2004,54,1005-1010.
    30.尹娟娟,袁凤英,宋伟冬,等.高级氧化技术处理苯酚废水的研究[J],工业安全与环保2008,34,11-12.
    31.张凤娥,谢琦,涂保华.芬顿氧化法预处理餐饮废水的试验研究[J],中国给水排水2006,22,96-98.
    32.张萱,郭幸丽,凌晞.高级氧化技术在水处理中的研究进展[J],天津化工2013,27,11-13.
    33.安路阳,薛文平,马红超,等.催化湿式氧化法处理高浓度含氰废水[J],大连工业大学学报2012,31,199-201.
    34.袁金磊,杨学林,黄永茂,等.催化湿式氧化技术处理焦化废水[J],水资源保护2009,25,51-54.
    35.叶文旗,赵翠,潘一,杨双春.高级氧化技术处理煤化工废水研究进展[J],当代化工2013,42,172-174.
    36.徐长城.超声波-光催化降解含酚废水的实验研究.[硕士学位论文]昆明:昆明理工大学,2004.
    37.杨怀杰,李永水.电化学氧化法处理高盐低COD污水研究[J],油气田环境保护2011,21,13-17.
    38.舒欣,丁晶,赵庆良.电化学法处理氨氮废水的实验研究[J],黑龙江在学自然科学学报2012,29,246-250.
    39.李海涛,李玉平,张安洋,等.新型非均相电-Fenton技术深度处理焦化废水[J],环境群学2011,32,171-177.
    40.吕娜.浅谈高级氧化技术在有机污水处理中的联合应用[J],化学工程师 2008,7,43-45.
    41. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J], Nature 1972,238,37-38.
    42. Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J], Bull. Environ. Contam. Toxicol.1976,16,697-701.
    43. Frank S N, Bard A G. Semiconductor electrodes.12. Photoassisted oxidations and photoelectrosynthesis at polycrystalline titanium dioxide electrodes [J], J. Am. Chem. Soc.1977,99,4667-4675.
    44. Frank S N, Bard A G Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 power[J], J. Am. Chem. Soc.1977,99,303-304.
    45. Frank S N, Bard A G. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders[J], J. Phys. Chem.1977, 81,1484-1488.
    46. Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J], Chem. Rev.1995,95,735-758.
    47. Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis[J], Chem. Rev.1995,95,69-96.
    48. Li X, Zhu J, Li H. Comparative study on the mechanism in photocatalytic degradation of different-type organic dyes on SnS2 and CdS[J], Appl. Catal. B 2012,123-124,174-181.
    49. Pan C S, Zhu Y F. New Type of BiPO4 Oxy-Acid Salt Photocatalyst with High Photocatalytic Activity on Degradation of Dye[J], Environ. Sci. Technol.2010,44, 5570-5574.
    50. Guo H, Chen J, Weng W, Wang Q, Li S. Facile template-free one-pot fabrication of ZnCo2O4 microspheres with enhanced photocatalytic activities under visible-light illumination[J], Chem. Eng. J.2014,239,192-199.
    51.张昊,任发政.羟基和超氧自由基的检测研究进展[J],光谱学与光谱分析2009,29,1093-1099.
    52.田益玲,陈冠华,崔同.动力学分光光度法测定中药对超氧阴离子自由基的清除率[J],光谱学与光谱析2005,25,617-619.
    53.李熙.金属硫化物及其修饰二氧化钛光催化性能和机理研究,[博士学位论文]上海:华东师范大学,2012.
    54.邰超,邹洪,谷学新,等.Fenton反应产生的羟自由基及其清除的电化学方法测定[J],分析测试学报2002,21,30-33.
    55. Zhao Y P, Yu W L, Wang D P, et al. Chemiluminescence determination of comparison with tea polyphenols[J], Food Chem.2003,80,115-118.
    56. Rhodes C J, Tran T T, Morris H. A determination of antioxidant efficencies using ESR and computational methods[J], Spectrochim. Acta. Part A 2004,60, 1401-1410.
    57.李田,严煦世.光催化氧化饮用水深度处理研究[J],中国给水排水1992,8,12-17.
    58.魏洪斌,李田,严熙世.水中有机污染物的光催化氧化[J],环劈科学进展1994,2,50-57.
    59.胡春,王怡中,汤鸿霄.多相光催化氧化的理论与实践发展[J],环境科学进展1995,3,55-64.
    60. Zhao J, Hisao H, Akira T, et al. Photodegradation of Surfactants.11.ζ-Potential Measurements in the Photocatalytic Oxidation of Surfactants in Aqueous TiO2 Dispersions[J], Langmuir 1993,9,1646-1650.
    61.孟耀斌,黄霞,钱易.不同波段紫外光在Ti02悬浊液中的消光特点叨,环境群学2001,22,46-50.
    62. Li H X, Bian Z F, Zhu J, Zhang D Q, Li G S, Huo Y N, et al. Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity [J], J. Am. Chem. Sci.2007,129,8406-84077
    63.卞振峰.醇热体系制备新型TiO2光催化剂及其性能研究.[博士学位论文]上海:上海师范大学,2010.
    64. Qiu X, Miyauchi M, Sunada K, Minoshima M, Liu M, Lu Y, Li D, Shimodaira Y, Hosogi Y, Kuroda Y, Hashimoto K. Hybrid CuxO/TiO2 Nanocomposites As Risk-Reduction Materials in Indoor Environments[J], Acs Nano.2012,6, 1609-1618.
    65. Deng Q, Wei M, Ding X, Jiang L, Ye B, Wei K. Brookite-type TiO2 nanotubes[J], Chem. Comm.2008,31,3657-3659.
    66. Chen G, Chen J, Song Z, Srinivasakannan C, Peng J. A new highly efficient method for the synthesis of rutile TiO2[J], J. Alloys Compd.2014,585,75-77.
    67. Barnard A S, Zapol P. Effects of particle morphology and surface hydrogenation on the phase stability TiO2 at the nanoscale[J], Phys. Rev. B 2004,70, 235403-1-13.
    68. Barnard A S, Zapol P, Curtiss L A. Anatase and rutile surfaces with adsorbates representative of acidic and basic conditions [J], Surf. Sci. 2005,582,173-188.
    69. Arrouvel C, Digne M, Breysse M, Toulhoat H, Raybaud P. Effects of morphology on surface hydroxyl concentration:a DFT comparison of anatase-TiO2 and y-alumina catalytic supports[J], J. Catal.2004,222,152-166.
    70. Lazzeri M, Vittadini A, Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces[J], Phys. Rev.B 2001,63,155409-9.
    71. Gong X, Selloni A. Reactivity of anatase TiO2 nanoparticles:The role of the minority (001) surface[J], J. Phys. Chem.B 2005,109,19560-19562.
    72. Zhao Z, Li Z, Zhou Z. Surface properties and electronic structure of low-index stoichiometric anatase TiO2 surfaces[J], J. Phys. Condens. Matter.2010,22, 175008.
    73. Vittadini A, Selloni A, Rotzinger F P, Gratzel M. Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces[J], Phys. Rev. Lett.1998, 81,2954-2957.
    74. Ariga H, Taniike T, Morikawa H, Tada M, Min B K, Watanabe K, Matsumoto Y, Ikeda S, Saiki K, Iwasawa Y. Surface-Mediated Visible-Light Photo-oxidation on Pure TiO2(001)[J],J. Am. Chem. Soc.2009,131,14670-14672.
    75. Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Anatase TiO2 single crystals with a large percentage of reactive facets[J], nature 2008,453,638-644.
    76. Selloni A. Crystal growth-Anatase shows its reactive side[J], Nature Mater. 2008,7,613-615.
    77. Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant{001} Facets[J], J. Am. Chem. Soc.2009,131,4078-4083.
    78. Zhang H, Wang Y, Liu P, Han Y, Yao X, Zou J, Cheng H, Zhao H. Anatase TiO2 crystal facet growth:mechanistic role of hydrofluoric acid and photoelectrocatalytic activity[J], Appl. Mater. Interf.2011,3,2472-2478.
    79. Wen Q, Gong X, Yang H. On the unusual properties of anatase TiO2 exposed by high-reactive facets[J], J. Phys. Chem. Lett.2011,2,725-734.
    80. Shukri G, Kasai H. Density functional theory study of ethylene adsorption on clean anatase TiO2 (001) surface[J], Sur. Sci. 2014,619,59-66.
    81.曹艳凤.吸附-光催化复合材料的制备及其性能研究.[硕士学位论文]上海:上海师范大学,2013.
    82. Yang L, Luo S, Li Y, Xiao Y, Kang Q, Cai Q. High Efficient Photocatalytic Degradation of p-Nitrophenol on a Unique Cu2O/TiO2 p-n Heterojunction Network Catalyst[J], Environ. Sci. Technol.2010,44,7641-7646.
    83. Hu Y, Gao J. Direct Imaging and Probing of the p-n Junction in a Planar Polymer Light-Emitting Electrochemical Cell[J], J. Am. Chem. Soc.2011,133,2227-2231.
    84. Sang-Heon L, Cheol-Woo Y, Keon K. Characteristics and Electrochemical Performance of the TiO2-Coated ZnO Anode for Ni-Zn Secondary Batteries[J], J. Phys. Chem. C 2011,115,2572-2577.
    85. Zhang Z, Shao C, Li X, Wang C, Zhang M, Liu Y. Electrospun Nanofibers of p-Type NiO/n-Type ZnO Heterojunctions with Enhanced Photocatalytic Activity[J],Appl. Mater. Interf.2010,2,2915-2923.
    86. Agileo H, Francisco T, Ricardo G, Hector C. Preparation and characterization of the hybrid ZnS(en)0.5-CdS heterojunction[J], Mater. Lett.2014,115,147-150.
    87. Hua S, Li F, Fan Z, Gui J. Improved photocatalytic hydrogen production property over Ni/NiO/NeTiO2-x heterojunction nanocomposite prepared by NH3 plasma treatment[J], J. Power Sources 2014,250,30-39.
    88. Zheng L, Chen C, Zheng Y, Zhan Y, Cao Y, Lin X, Zheng Q, Wei K, Zhu J. Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis[J], J. Alloys Compd. 2014,584,180-184.
    89. Wang T, Tang J, Wu S, Fan X, He J. Preparation of ordered mesoporous WO3/TiO2 films and their performance as functional Pt supports for synergistic photoelectrocatalytic methanol oxidation[J], J. Power Sources 2014,248, 510-516.
    90. Lin Y, Ting-Ke T, Chu H. Photo-catalytic degradation of dimethyl disulfide on S and metal-ions co-doped TiO2 under visible-light irradiation[J], Appl. Catal. A 2014,469,221-228.
    91. Muhammad N, Segomotso B, Jiao Y, Chen F, Tian B, Zhang J. Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method[J], Chem. Eng. J.2014,236,388-397.
    92. Erping G, Wang W, Shang M, Xu J. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite[J], Phys. Chem. Chem. Phys.2011, 13,2887-2893.
    93. Necmettin K, Erdem S, Muge I, Ali Sems A, Osman O, Zafer Ziya O. Fabrication and gas sensing properties of C-doped and un-doped TiO2 nanotubes[J], Ceram. Int.2014,40,109-115.
    94. Li X, Jiang G, He G, Zheng W, Tan Y, Xiao W. Preparation of porous PPyATiO2 composites:Improved visible light photoactivity and the mechanism[J], Chem. Eng. J.2014,236,480-489.
    95. Wang D, Wang Y, Li X, Luo Q, An J, Yue H. Sunlight photocatalytic activity of polypyrrole-TiO2 nanocomposites prepared by'in situ'method[J], Catal. Commun.2008,9,1162-1166.
    96. Bian X, Lu X, Jin E, Kong L, Zhang W, Wang C. Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide[J], Talanta 2010,81,813-818.
    97. Lu X F, Zhao Q D, Liu X C, Wang D J, Zhang W J, Wang C, Wei Y. Preparation and characterization of polypyrrole/TiO2 coaxial nanocables[J], Macromol. Rapid Commun.2006,27,430-434.
    98. Zhang H, Zong R L, Zhao J C, Zhu Y F. Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI[J], Environ. Sci. Technol.2008,42,3803-3807.
    99. Zhang H, Zong R, Zhu Y. Photocorrosion Inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline[J], J. Phys. Chem. C 2009,113,4605-4611.
    100. Lin Y, Li D, Hu J, Xiao G, Wang J, Li W, Fu X. Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite[J], J. Phys. Chem. C 2012,116,5764-5772.
    101. Wang J, Ni X. Photoresponsive polypyrrole-TiO2 nanoparticles film fabricated by a novel surface initiated polymerization[J], Solid State Commun.2008,146, 239-244.
    102. Strandwitz N C, Nonoguchi Y, Boettcher S W, Stucky G D. In situ photopolymerization of pyrrole in mesoporous TiO2[J], Langmuir 2010,26, 5319-5322.
    103. Zhen W, Ni X Y. Oxidative polymerization of pyrrole photocatalyzed by TiO2 nanoparticles and interactions in the composites[J], J. Appl. Polym. Sci.2008,110, 109-116.
    104. Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D. Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban waste water[J], Appl. Catal.B 2014,114,369-378.
    105. Umadevi M, Parimaladevi R, Sangari M. Synthesis, characterization and photocatalytic activity of fluorine doped Tio2 nanoflakes synthesized using solid state reaction method[J], Spectrochimi. ACTa Part A 2014,120,365-369.
    106. Xia Y, Jiang Y, Li F, Xia M, Xue B, Li Y. Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2[J], Appl. Surf. Sci.2014,289,306-315.
    107. Yu J C, Zhang L, Zheng Z, Zhao J. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[J], Chem. Mater. 2003,15,2280-2286.
    108.蔡邦宏,赵西平,乐英红,高滋.NH4H2PO4掺杂改性纳米TiO2的光催化性能[J],分子催化2003,17,302-305.
    109.蔡邦宏,叶兴南,乐英红.高滋H3PO4改性纳米TiO2气相光催化降解正己烷[J],分子催化2004,18,136-139.
    110. Shi Q, Yang D, Jiang Z Y, Li J. Visible-light photocatalytic regeneration of NADH using P-doped TiO2 nanoparticles[J], J. Mol. Catal. B 2006,43,44-48.
    111. Gai Y, Li J, Li S S, Xia J B, Wei S H. Design of narrow-gap TiO2 for enhanced photoelectrochecmical activity:A passivated codoping approach[J], Phys. Rev. Lett.2009,102,036402.
    112. Li P, Ling X, Zheng C. Study the high photocatalytic activity of vanadium and phosphorus co-doped TiO2 from experiment and DFT calculations[J], Comput. Mater. Sci.2014,83,309-317.
    113.马云飞.非金属与稀土共搀杂高可见光活性二氧化钛的研究.[博士学位论文]上海:华东理工大学,2011.
    114. Xin B, Jing L, Ren Z, Wang B, Fu H. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2[J], J. Phys. Chem.B 2005,109,2805-2809.
    115. Hu C, Lan Y, Qu J, Hu X, Wang A. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azo dyes and bacteria [J], J. Phys. Chem. B 2006,110,4066-4072.
    116. Koh J K, Seo J A, Koh J H, Kim J H. Templated Synthesis of Ag Loaded TiO2 Nanostructures Using Amphiphilic Polyelectrolyte[J], Mater. Lett.2009,63, 1360-1362.
    117. Liu W J, Zhao X M, Cao L Y, Zou B, Zhang G, Lu L H, Cui H N. A facile method for fabrication of highly ordered hollow Ag/TiO2 nanostructure and its photocatalytic activity[J], Mater. Lett.2009,63,2456-2458.
    118. Lai Y K, Chen Y C, Zhuang H F, Lin C J. A facile method for synthesis of Ag/TiO2 nanostructures[J], Mater. Lett.2008,62,3688-3690.
    119. Song C, Wang D, Xu Y, Hu Z. Preparation of Ag-TiO2 hollow structures with enhanced photocatalytic activity[J], Mater. Lett.2011,65,908-910.
    120. Liu Y, Liu C Y, Wei J H, Xiong R, Pan C X, Shi J. Enhanced adsorption and visible-light-induced photocatalytic activity of hydroxyapatite modified Ag-TiO2 powders[J],Appl. Sur. Sci.2010,256,6390-6394.
    121. Liang Y, Wang C, Kei C, Hsueh Y, Cho W, Perng T. Photocatalysis of Ag-Loaded TiO2 Nanotube Arrays Formed by Atomic Layer Deposition[J], J. Phys. Chem. C 2011,115,9498-9502.
    122. Liu Z W, Hou W B, Pavaskar P, Aykol M, Cronin S B. Plasmon Resonant Enhancement of Photocatalytic Water Splitting Under Visible Illumination[J], Nano. Lett.2011.11,1111-1116.
    123. Wang H, You T, Shi W, Li J, Guo L. Au/TiO2/Au as a Plasmonic Coupling Photocatalyst[J], J. Phys. Chem. C2012,116,6490-6494.
    124. Gong X, Selloni A, Dulub O, Jacobson P, Diebold U. Small Au and Pt Clusters at the Anatase TiO2(101) Surface:Behavior at Terraces, Steps, and Surface Oxygen Vacancies[J], J. Am. Chem. Soc.2008,130,370-381.
    125. Wu B H, Guo C Y, Zheng N F, Xie Z X, Stucky G D. Nonaqueous production of nanostructured anatase with high-energy facets[J], J. Am. Chem. Soc.2008,130, 17563-17567.
    126. Han X G, Kuang Q, Jin M S, Xie Z X, Zheng L S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties[J], J. Am. Chem. Soc.2009,131,3152-3153.
    127. Kamisaka H,Yamashita K. The surface stress of the (110) and (100) surfaces of rutile and the effect of water adsorbents [J], Surf. Sci.2007,601,4824-4836.
    128. Gao X F, Jiang L. Water-repellent legs of water striders[J], nature 2004,432, 36-36.
    129. Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L. Directional water collection on wetted spider silk[J], Nature 2010.463.640-643.
    130. Li H, Liu J, Xie S H, Qiao M H, Dai W L, Lu Y F, Li H X. Vesicle-assisted assembly of mesoporous Ce-doped Pd nanospheres with a hollow chamber and enhanced catalytic efficiency[J],Adv. Funct. Mater.2008,18,3235-3241.
    131. Wang D W, Li F, Liu M, Lu G Q, Cheng H M.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[}],Angew. Chem. Int. Ed 2008,47,373-376.
    132. Gao Q, Wu X, Fan Y, Zhou X. Fabrication of hierarchically structured rutile T1O2 nanorods on micaparticles and their superhydrophilic coating without UV irradiation[J],Appl. Surf. Sci.2014,289,281-288.
    133. He F, Li J, Li T, Li G. Solvothermal synthesis of mesoporous TiO2:The effect of morphology, size and calcination progress on photocatalytic activity in the degradation of gaseous benzene[J], Chem. Eng. J.2014,237,312-321.
    134. Zhang X, Wang D K, Ruben S L D, Joao C, Da C D. Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment[J], Chem. Eng. J.2014,236,314-322.
    135. Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P. TiO2 nanotubes:Self-organized electrochemical formation, properties and applications[J], Curr. Opin. Solid State Mater. Sci.2007,11,3-18.
    136. Huo Y N, Yang X L, Zhu J, Li H X. Highly active and stable CdS-TiO2 visible photocatalyst prepared by in situ sulfurization under supercritical conditions [J], Appl. Catal.B 2011,106,69-75.
    137. Fu X L, Wang X X, Chen Z X, Zhang Z Z, Li Z H, Leung D Y C, Wu L, Fu X Z. Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation[J],Appl. Catal. B 2010,95,393-399.
    138. Zhang Y C, Du Z N, Li S Y, Zhang M. Novel synthesis andhigh visible light photocatalytic activity of SnS2 nanoflakesfrom SnCl2.2H2O and S powders[J], Appl. Catal.B 2010,95,153.
    139. Zhang Y C, Li J, Zhang M, Dionysiou D D. Size-Tunable Hydrothermal Synthesis of SnS2 Nanocrystals with High Performance in Visible Light-Driven Photocatalytic Reduction of Aqueous Cr(VI)[J], Environ. Sci. Technol.2011,45, 9324-9331.
    140. Li W J, Li D Z, Zhang W J, Hu Y, He Y H, Fu X Z. Microwave Synthesis of ZnxCd1-xS Nanorods and Their Photocatalytic Activity under Visible Light[J], J. Phys. Chem. C2010,114,2154-2159.
    141. Li W J, Li D Z, Meng S G, Chen W, Fu X Z, Shao Y. Novel Approach to Enhance Photosensitized Degradation of Rhodamine B under Visible Light Irradiation by the ZnxCdl-xS/TiO2 Nano-composites[J], Environ. Sci. Technol. 2011,45,2987-2993.
    142. Chen Z X, Li D Z, Zhang W J, Chen C, Li W J, Sun M, He Y H, Fu X Z. Low-temperature and template-free synthesis of ZnIn2S4 microsphere[J], Inorg. Chem.2008,47,9766-9772.
    143. Chen Z X, Li D Z, Zhang W J, Shao Y, Chen T W, Sun M, Fu X Z. Photocatalytic Degradation of Dyes by ZnIn2S4 Microspheres under Visible Light Irradiation [J], J. Phys. Chem. C 2009,113,4433.
    144. Zhang W J, Li D Z, Chen Z X, Sun M, Li W J, Lin Q, Fu X Z. Microwave hydrothermal synthesis of AgInS2 with visible light photocatalytic activity [J], Mater. Res. Bull.2011,46,975.
    145. Yan T J, Li L P, Li G S, Wang Y J, Hu W B, Guan X F. Porous SnIn4S8 microspheres in a new polymorph that promotes dyes degradation under visible light irradiation[J], J. Hazard. Mater.2011,186,272-279.
    146. Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation[J], J. Am. Chem. Soc.2008,130,7176.
    147. Zong X, Wu G P, Yan H J, Ma G J, Shi J Y, Wen F Y, Wang L, Li C. Photocatalytic H2 evolution on MoS2/CdS catalysts under visible light irradiation[J], J. Phys. Chem. C 2010,114,1963-1968.
    148. Zhang W, Wang Y B, Wang Z, Zhong Z Y, Xu R. Highly effcient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic sacrificial solution under visible light[J], Chem. Commun.2010,46,7631-7633.
    149. Zhang J, Yu J G, Zhang Y M, Li Q, Gong J R. Visible-Light Photocatalytic H2-Production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer[J], Nano Lett.2011,11,4774-4779.
    150. Shen S H, Guo L J, Chen X B, Ren F, Mao S S. Effect of Ag2S on solar-driven photocatalytic hydrogen evolution of nanostructured CdS[J], Int. J. Hydrogen Energy 2010,35,7110-7115.
    151.王文中,尚萌,尹文宗,任佳,周林.含铋复合氧化物可见光催化材料研究进展[J],无机材料学报2012,27,11-18.
    152. Fu H B, Pan C S, Yao W Q, et al. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6[J], J. Phys. Chem. B 2005,109,22432-22439.
    153. Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J], Angew. Chem. Int. Edit.2004,43,4463-4466.
    154. Zhang C, Zhu Y F. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts[J], Chem. Mater.2005,17,3537-3545.
    155. Deng F, Liu Y, Luo X, Chen D, Wu S, Luo S. Enhanced photocatalytic activity of Bi2WO6/TiO2 nanotube array composite under visible light irradiation[J], Sep. Purif. Technol.2013,120,156-161.
    156. Zhu S B, Xu T G, Fu H B, et al. Synergetic effect of Bi2WO6 photocatalyst with C6o and enhanced photoactivity under visible irradiation[J], Environ. Sci. Technol. 2007,41,6234-6239.
    157. Fu H B, Zhang S C, Xu T G, et al. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products[J], Environ. Sci. Technol.2008,42,2085-2091.
    158. Fu Y, Chang C, Chen P, Chu X, Zhu L. Enhanced photocatalytic performance of boron doped Bi2WO6 nanosheets under simulated solar light irradiation[J], J. Hazard. Mater.2013,254-255,185-192.
    159. Ge L, Liu J. Synthesis and photocatalytic performance of novel CdS quantum dots sensitized Bi2WO6 photocatalysts[J], Mater. Lett.2011,65,1828-1831.
    160. Lai K, Zhu Y, Lu J, Dai Y, Huang B. N- and Mo-doping Bi2WO6 in photocatalytic water splitting[J], Comput. Mater. Sci.2013,67,88-92.
    161. Sun Z, Li X, Guo S, Wang H, Wu Z. One-step synthesis of Cl-doped Pt(IV)/Bi2WO6 with advanced visible-light photocatalytic activity for toluene degradation in air[J], J. Colloid Interface Sci.2013,412,31-38.
    162. Tian G H, Chen Y J, Zhou W, et al. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts[J], J. Mater. Chem.2011,21,887-892.
    163. Chen Z, Qian L W, Zhu J, et al. Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity[J], Crystengcomm.2010,12,2100-2106.
    164. Wang C Y, Zhang H, Li F, et al. Degradation and mineralization of bisphenol a by mesoporous Bi2WO6 under simulated solar light irradiation[J], Environ. Sci. Technol.2010,44.6843-6848.
    165. Zhang Z J, Wang W Z, Shang M, et al. Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst[J], J. Hazard. Mater. 2010,177.1013-1018.
    166. Zhang L, Liu C M, Huang F Q, et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J], Appl. Catal. B 2006,68, 125-127.
    167.余长林,周晚琴.YU Jimmy C超声波辐射快速合成高光催化性能的BiOCl(Br)纳米片[J],石机化学学报2011,27,2033-2038.
    168. Feng Y, Li L, Li J, Wang J, Liu L. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene[J], J. Hazard. Mater. 2011,192,538-544.
    169. Huo Y, Zhang J, Miao M, Jin Y. Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances[J], Appl. Catal. B 2012,111-112,334-341.
    170. Wang Y, Shi Z, Fan C, Wang X, Hao X, Chi Y. Synthesis, characterization, and photocatalytic properties of BiOBr catalyst[J], J. Solid State Chem.2013,199, 224-229.
    171. Liu Z, Bi Y, Zhao Y, Huang X, Zhu Y. Synthesis and photocatalytic property of BiOBr/palygorskite composites[J], Mater. Res. Bull.2014,49,167-171.
    172. Jiang G, Wang R, Wang X, Xi X, Hu R, Zhou Y, Wang S, Wang T, Chen W. Novel Highly Active Visible-Light-Induced Photocatalysts Based on BiOBr with Ti Doping and Ag Decorating[J], ACSAppl. Mater. Interf.2012,4,4440-4444.
    173. Liang K, Zheng J, Henry H L, Rebecca J N, Xiao T, Martin O J, Peter P. Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts[J],J. Catal.2012,293,116-125.
    174. Zhang J, Xia J, Yin S, Li H, Xu H, He M, Huang L, Zhang Q. Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids[J], Colloids Surf. A 2013,420,89-95.
    175. Tu X, Luo S, Chen G, Li J. One-Pot Synthesis, Characterization, and Enhanced Photocatalytic Activity of a BiOBr-Graphene Composite[J], Chem. Eur. J.2012, 18,14359-14366.
    176. Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J], J. Am. Chem. Soc.1999,121,11459-11467.
    177. Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties [J], Chem. Mater.2001,13,4624-4628.
    178. Guan M L, Ma D K, Hu S W, et al. From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres:controlled synthesis and enhanced visible-light-responsive photocatalytic properties[J], Inorg. Chem.2011,50, 800-805.
    179. Reilly L M, Sankar G, Catlow C R A, Reilly L M, Sankar G, Catlow C R A. Following the formation of gamma-phase Bi2MoO6 catalyst by in situ XRD/XAS and thermogravimetric techniques[J], J. Solid State Chem.1999,148,178-185.
    180. Shimodaira Y, Kato H, Kobayashi H, Kudo A. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation[J], J. Phys. Chem. B 2006,110,17790-17797.
    181. Ricote J, Pardo L, Castro A, Millan P. Study of the process of mechanochemical activation to obtain aurivillius oxides with n=1[J], J. Solid State Chem.2001, 160,54-61.
    182. ManY, Zong R L, Zhu Y F. Preparation and Photoelectrochemical Properties of Bi2MoO6Films[J],Acta Phys. Chim. Sin.2007,23,1671-1676.
    183. Zhao X, Xu T, Yao W, Zhu Y, Photodegradation of dye pollutants catalyzed by gamma-Bi2MoO6 nanoplate under visible light irradiation[J], Appl. Surf. sci.2009, 255,8036-8040.
    184. Zhang L, Xu T, Zhao X, Zhu Y. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J], Appl. Catal.B 2010,98,138-146.
    185. Belver C, Adan C, Fernandez-Garcia M. Photocatalytic behaviour of Bi2MoO6 polymetalates for rhodamine B degradation[J], Catal. Today 2009,143,274-281.
    186. Yin W Z, Wang W Z, Sun S M. Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation[J], Catal. Commun.2010,11,647-650.
    187.任佳.新型纳米可见光催化材料的合成及其环境净化性能研究.[博士学位论文]上海:中国科学院研究生院,2011.
    1. ZhuY J, Wang W W, Qi R J, Hu X L. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids[J], Angew. Chem. Int. Ed.2004,43,1410-1414.
    2. Polshettiwar V, Nadagouda M N, Varma R S. Microwave-assisted chemistry, A rapid and sustainable route to synthesis of organics and nanomaterials[J], Aust. J. Chem.2009,62,16-26.
    3. Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry[J], Chem. Soc. Rev.2008,37,123-150.
    4. Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J], Chem. Rev.1999,99,2071-2083.
    5. Xu J S, Zhu Y J, Chen F. Microwave-assisted solvothermal ionic liquid rapid synthesis of aluminum fluorohydroxide single-crystalline octahedral [J], Mater. Lett.2013,94,104-107.
    6. Jia N, Li S M, Ma M G, Sun R C. Microwave-assisted ionic liquid preparation and characterization of cellulose/calcium silicate nanocomposites in ethylene glycol[J], Mater. Lett.2011,65,918-921.
    7. Li S K, Guo X, Wang Y, Huang F Z, Shen Y H, Wang X M. Rapid synthesis of flower-like Cu2O architectures in ionic liquids by the assistance of microwave irradiation with high photochemical activity[J], Dalton Transactions 2011,40, 6745-6750.
    8. Li X Y, Liu D P, Song S Y, Wang X, Ge X, Zhang H J. Rhombic dodecahedral Fe3O4, Ionic liquid-modulated and microwave-assisted synthesis and their magnetic properties [J], Cryst. Eng. Commun.2011,13,6017-6020.
    9. Ma M G, Qing S J, Li S M, Zhu J F, Fu L H, Sun R C. Microwave synthesis of cellulose/CuO nanocomposites in ionic liquid and its thermal transformation to CuO[J], Carbohydr. Polym.2013,91,162-168.
    10. Abhishek N D, Vaibhav K P, Dipak K R. Ionic liquid promoted facile and green synthesis of 1,8-dioxo-octahydroxanthene derivatives under microwave irradiation[J], J. Saudi Chem. Soc.2014,18,69-76.
    11. Cao S W, Zhu Y J, Cheng G F, Huang Y H. ZnFe2O4 nanoparticles, Microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol[J], J. Hazard. Mater.2009,171,431-435.
    12. Ding K L, Miao Z J, Liu Z M, Zhang Z F, Han B X, An G M, et al. Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwaveassisted process[J],J. Am. Chem. Soc.2007,129,6362-6363.
    13. Xu J S, Zhu Y J. Microwave-assisted ionic liquid solvothermal rapid synthesis of hollow microspheres of alkaline earth metal fluorides (MF2, M= Mg, Ca, Sr)[J], Cryst. Eng. Commun.2012,14,2630-2634.
    14. Miao Y C, Pan G F, Huo Y N, Li H X. Aerosol-spraying preparation of Bi2MoO6, A visible photocatalyst in hollow microspheres with a porous outer shell and enhanced activity[J], Dyes and Pigments 2013,99,382-389.
    15. Ge Q H, Wang P, Wan C F, Chung T S. Polyelectrolyte-promoted forwardosmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment[J], Environ. Sci. Technol.2012,46,6236-6243.
    16. Liu Z S, Bi Y H, Zhao Y L, Huang X, ZhuY B. Synthesis and photocatalytic property of BiOBr/palygorskite composites[J], Mater. Res. Bull.2014,49, 167-171.
    17. Deng H, Wang J, Peng Q, Wang X, Li Y. Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes[J], Chem. Eur. J.2005,11, 6519-6524.
    18. Huang W L, Zhu Q S. Electronic structures of relaxed BiOX (X=F, Cl, Br, I) photocatalysts [J], Comput. Mater. Sci.2008,43,1101-1108.
    19. Wang Y, Shi Z P, Fan C M, Wang X W, Hao X G, Chi Y Q. Synthesis, characterization, and photocatalytic properties of BiOBr catalyst[J], J. Solid State Chem.2013,199,224-229.
    20. Xu J, Li L, Guo C S, Zhang Y, Wang S F. Removal of benzotriazole from solution by BiOBr photocatalysis under simulated solar irradiation[J], Chem. Eng. J.2013,221,230-237.
    21. Huo Y N, Zhang J, Miao M, Jin Y. Solvothermal Synthesis of Flower-like BiOBr Microspheres with Highly Visible-Light Photocatalytic Performances[J], Appl. Catal. B 2012,111-112,334-341.
    22. Zhang X, Ai Z H, Jia F L, Zhang L Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres[J], J. Phys. Chem. C 2008,112,747-753.
    23. Henle J, Simon P, Frenzel A, Scholz S, Kaskel S. Nanosized BiOX (X=Cl, Br, I) particles synthesized in reverse microemulsions[J], Chem. Mater.2007,19, 366-373.
    24. Deng Z G, Chen D, Peng B, Tang F. From bulk metal Bi to two-dimensional well-crystallized BiOX (X= Cl, Br) micro- and nanostructures, synthesis and characterization[J], Cryst. Growth Des.2008,8,2995-3003.
    25. Xia J, Yin S, Li H, Xu H, Xu L, Xu Y. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J], Dalton Trans.2011,40,5249-5258.
    26. Cheng H, Huang B, Wang Z, Qin X, Zhang X, Dai Y. One-pot miniemulsion-mediated route to BiOBr hollow microspheres with highly efficient photocatalytic activity[J], Chem. Eur. J.2011,17,8039-8043.
    27. Zhang D Q, Wen M C, Jiang B, Li G S, Yu J C. Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment[J], J. Hazard. Mater.2012, 211-212,104-111.
    28. Feng Y C, Li L, Li J W, Wang J F, Liu L. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene[J], J. Hazard. Mater. 2011,192,538-544.
    29. Shi X J, Chen X, Chen X L, Zhou S M, Lou S Y, Wang Y Q, Yuan L. PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity[J], Chem. Eng. J.2013,222,120-127.
    30. Zhang J, Xia J X, Yin S, Li H M, Xu H, He M Q, Huang L Y, Zhang Q. Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids[J], Colloids Surf. A 2013,420,89-95.
    31. Zhu J F, Zhu Y J, Ma M G, Yang L X, Gao L. simultaneous and rapid microwave synthesis of polyacrylamide-metal sulfide (Ag2S, Cu2S, HgS) nanocomposites[J], J. Phys. Chem. C 2007,111,3920-3926.
    32. Jiang Y, Zhu Y J, Cheng G F. Synthesis of Bi2Se3 nanosheets by microwave heating using an ionic liquid[J], Cryst. Growth. Des.2006,6,2174-2176.
    33. Tang Q L, Wang K W, Zhu Y J, Chen F. Single-step rapid microwave-assisted synthesis of polyacrylamide-calcium phosphate nanocomposites in aqueous solution[J], Mater. Lett.2009,63,1332-1334.
    34. Xu J S, Zhu Y J. Y4Al2O9 Hierarchically Nanostructured Microspheres Assembled with Nanosheets, Microwave-solvothermal Synthesis Combined with Thermal Treatment and Photocatalytic Property[J], Mater. Lett.2011,65, 2793-2796.
    35. Wang W W, Zhu Y J. Shape-controlled synthesis of zincoxide by microwave heating using an imidazolium salt[J], Inorg. Chem. Commun.2004,7,1003-1005.
    36. Hu X L, Zhu Y J. Sonochemical and microwave-assisted synthesis of linkedsingle-crystalline ZnO rods[J], Mater. Chem. Phys.2011,88,421-426.
    37. Lian J B, Duan X C, Ma J M, Peng P, Kim T, Zheng W J. Hematite (a-Fe2O3) with Various Morphologies, Ionic Liquid-Assisted Synthesis, Formation Mechanism, and Properties[J],ACS Nano.2009,3,3749-3761.
    38. Chang X F, Huang J, Cheng C, Sui Q, Sha W, Ji G B, Deng S B, Yu G. BiOX (X =Cl,Br,I) photocatalysts prepared using NaBiO3 as the Bi source, Characterization and catalytic performance [J], Catal. Commun.2010,11, 460-464.
    39. Zhang J, Shi F J, Lin J, Chen D F, Gao J M, Huang Z X, Ding X X, Tang C C. Self-Assembled 3-D Architectures of BiOBr as a Visible Light-Driven Photocatalyst[J], Chem. Mater.2008,20,2937-2941.
    40. Ai Z H, Ho W K, Lee S C, Zhang L Z. Efficient Photocatalytic Removal of NO in Indoor Air with Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light [J], Environ. Sci. Technol.2009,43,4143-4150.
    41. Fang Y F,Ma W H, Huang Y P, Cheng G W. Exploring the Reactivity of Multicomponent Photocatalysts, Insight into the Complex Valence Band of BiOBr[J], Chem. Eur. J.2013,19,3224-3229.
    42. Zheng W J, Liu X D, Yan Z Y, Zhu L J. Ionic Liquid-Assisted Synthesis of Large-Scale TiO2 Nanoparticles with Controllable Phase by Hydrolysis of TiCl4[J], ACS Nano 2009,3,115-122.
    43. Taubert A. CuCl Nanoplatelets from an Ionic Liquid Crystal Precursor. Angew[J], Chem. Int. Ed.2004,43,5380-5382.
    44. Nakashima T, Kimizuka N. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids[J], J. Am. Chem. Soc.2003,125,6386-6387.
    45. Zhou Y, Schattka J H, Antonietti M. Room-Temperature Ionic Liquids as Template to Monolithic Mesoporous Silica with Wormlike Pores via a Sol-Gel Nanocasting Technique[J], Nano. Lett.2004,4,477-481.
    46. Zhou Y, Antonietti M. Synthesis of Very Small TiO2 Nanocrystals in a Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates[J], J. Am. Chem. Soc.2003,125,14960-14961.
    47. Kaper H, Endres F, Djerdj I, Antonietti M, Smarsly B M, Maier J, Hu Y S. Direct Low-Temperature Synthesis of Rutite Nanostructures in Ionic Liquids [J], Small 2007,10,1753-1763.
    48. Tian G H, Chen Y J, Zhou W, Pan K, Dong Y Z, Tian C G, Fu H G. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts[J], J. Mater. Chem.2011,21, 887-892.
    49. Zhang L, Cao X F, Chen X T, Xue Z L. BiOBr hierarchical microspheres, Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties[J], J. Colloid Interface Sci.2011,354,630-636.
    1. Ge Q H, Wang P, Wan C F, Chung T S. Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment[J], Environ. Sci. Technol.2012,46,6236-6243.
    2. Huo Y N, Zhang J, Miao M, Jin Y. Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances[J], Appl. Catal.B 2012,111-112,334-341.
    3. Park Y, Lee S H, Kang S O, Choi W Y. Organic dye-sensitized TiO2 for the redox conversion of water pollutants under visible light[J], Chem. Commun.2010, 46,2477-2479.
    4. Liu Z Y, Zhang X T, Nisimoto S, Murakami T, Fujishima A. Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays[J], Environ. Sci. Technol.2008,42,8547-8551.
    5. Wang J, Uma S, Klabunde K J. Visible light photocatalysis in transition metal incorporated titania-silica aerogels[J],Appl. Catal.B 2004,48,151-154.
    6. Zhu S Y, Liang S J. Gu Q, Xie L Y, Wang J X, Ding Z X, Liu P. Effect of Au supported TiO2 with dominant exposed{001}facets on the visible-light photocatalytic activity[J], Appl. Catal. B 2012,119-120,146-155.
    7. Bian Z F, Zhu J, Wang S H, Cao Y, Qian X F, Li H X. Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase[J], J. Phys. Chem. C 2008,112,6258-6262.
    8. Huo Y N, Yang X L, Zhu J, Li H X. Highly active and stable CdS-TiO2 visible photocatalyst prepared by in situ sulfurization under supercritical conditions[J], Appl. Catal. B 2011.106,69-75.
    9. Behpour M, Atouf V. Study of the photocatalytic activity of nanocrystalline S, N-codoped TiO2 thin films and powders under visible and sun light irradiation[J], Appl. Surf. Sci.2012,258,6595-6601.
    10. Kako T, Zou Z G, Katagiri M, Ye J H. Decomposition of organic compounds over NaBiO3 under visible light irradiation[J], Chem. Mater.2007,19,198-202.
    11. Hernandez-Alonso M D, Fresno F, Suarez S, Coronado J M. Development of alternative photocatalysts to TiO2, Challenges and opportunities[J], Energy. Environ. Sci.2009,2,1231-1257.
    12. Huo Y N, Miao M, Zhang Y, Zhu J, Li H X. Aerosol-spraying preparation of a mesoporous hollow spherical BiFeO3 visible photocatalyst with enhanced activity and durability[J], Chem. Commun.2011,47,2089-2091.
    13. Zhang LW, Xu T G, Zhao X, Zhu Y F. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J], Appl. Catal.B 2010,98,138-146.
    14. Li H H, Liu C Y, Li K W, Wang H. Preparation, characterization and photocatalytic properties of nanoplate Bi2MoO6 catalysts[J], J. Mater. Sci.2008, 43,7026-7034.
    15. Yin W Z, Wang W Z, Sun S M. Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation[J], Catal. Commun.2010,11,647-650.
    16. Xie L J, Ma J F, Xu G J. Preparation of a novel Bi2MoO6 flake-like nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine B[J], Mater. Chem. Phys.2008,110,197-200.
    17. Le M T, Craenenbroeck J V, Driessche I V, Hoste S. Bismuth molybdate catalysts synthesized using spray drying for the selective oxidation of propylene[J],Appl. Catal. A 2003,249,355-364.
    18. Tian G H, Chen Y J, Zhou W, Pan K, Dong Y Z, Tian C G, Fu H G. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts [J], J. Mater. Chem.2011,21, 887-892.
    19. Malys M, Fafilek G, Pirovano C, Vannier R N. Redox stability of phases based on bismuth oxide studied by voltammetry on microsamples[J], Solid State Ionics 2005,176,1769-1773.
    20. Zhao X, Qu J H, Liu H J, Hu C. Photoelectrocatalytic degradation of triazine-containing azo dyes at γ-Bi2MoO6 film electrode under visible light irradiation(λ> 420 nm)[J], Environ. Sci. Technol.2007,41,6802-6807.
    21. Dai G P, Yu J G, Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p-n junction BiOI/TiO2 nanotube Arrays[J], J. Phys. Chem. C 2011,115,7339-7346.
    22. Maczka M, Macalik L, Hermanowicz K, Kepinski L, Hanuza J. Synthesis and phonon properties of nanosized aurivillius phase of Bi2MoO6[J], J. Raman. Spectrosc.2010,41,1289-1296.
    23. Gruar R, Tighe C J, Reilly L M, Sankar G, Darr J A. Tunable and rapid crystallisation of phase pure Bi2MoO6 (koechlinite) and Bi2Mo3O12 via continuous hydrothermal synthesis[J], Solid. State. Sci.2010,12,1683-1686.
    24. Hardcastle F D, Wachs I E. Molecular structure of molybdenum oxide in bismuth molybdates by Raman spectroscopy[J], J. Phys. Chem.1991,95,10763-10772.
    25. Vioux A. Nonhydrolytic sol-gel routes to oxides[J], Chem, Mater.1997,9, 2292-2299.
    26. Arnal P, Corriu R J P, Lecelercq D, Mutin P H, Vioux A. A solution chemistry study of nonhydrolytic sol-gel routes to titania[J], Chem. Mater.1997,9, 694-698.
    27. Mondal J U, Almaraz E, Bhat N G. Six-coordinate monooxo molybdenum(VI) complexes with N-4-diethylaminosalicylidene-No-4-nitrobenzoyl hydrazine and catechol ligands, preparation and spectroscopic properties[J], Inorg. Chem. Commun.2004,7,1195-1197.
    28. Chen Y Q, He H B, Liu C, Lu X H. Thermal decomposition of glucose and sucrose by kinetics analysis[J], Chinese J. Process. Eng.2010,10,720-725.
    29. Li H X, Bian Z F, Zhu J, Zhang D Q, Li G S, Huo Y N, Li H, Lu Y F. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity[J], J. Am. Chem. Soc.2007,129,8406-8407.
    30. Li X K, Ye J H. Photocatalytic degradation of rhodamine B over Pb3Nb4O13/fumed SiO2 composite under visible light irradiation[J], J. Phys. Chem. C 2007,111,13109-13116.
    31. Li X, Zhu J, Li H X. Comparative study on the mechanism in photocatalytic degradation of different-type organic dyes on SnS2 and CdS[J], Appl. Catal. B 2012,123-124,174-181.
    1. He F, Li J, Li T, Li G. Solvothermal synthesis of mesoporous TiO2, The effect of morphology, size and calcination progress on photocatalytic activity in the degradation of gaseous benzene[J], Chem. Eng. J.2014,237,312-321.
    2. Shimodaira Y, Kato H, Kobayashi H, Kudo A. Photophysical Properties and Photocatalytic Activities of Bismuth Molybdates under Visible Light Irradiation[J], J. Phys. Chem. B 2006,110,17790-17797.
    3. Ricote J, Pardo L, Castro A, Millan P. Study of the Process of Mechanochemical Activation to Obtain Aurivillius Oxides with n=1[J], J. Solid State Chem.2001, 160,54-61.
    4. Man Y, Zong R L, Zhu Y F. Preparation and Photoelectrochemical Properties of Bi2Mo06 Films[J], Acta. Physico-Chimica. Sinica.2007,23,1671-1676.
    5. Zhao X, Xu T, Yao W, Zhu Y. Photodegradation of dye pollutants catalyzed by γ-Bi2MoO6 nanoplate under visible light irradiation[J], Appl. Surf. Sci.2009,255, 8036-8040.
    6. Zhang L, Xu T, Zhao X, Zhu Y. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J], Appl. Catal.B 2010,98,138-146.
    7.王文中,尚萌,尹文宗,任佳,周林.含铋复合氧化物可见光催化材料研究进展[J],无机材料学报2012,27,11-18.
    8. Zhou F, Shi R, Zhu Y. Significant enhancement of the visible photocatalytic degradation performances of γ-Bi2MoO6 nanoplate by graphene hybridization[J], J. Mol. Catal.2011,340,77-82.
    9. Xu A W, Gao Y, Liu H Q. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles[J], J. Catal. 2002,207,151-157.
    10. Li F B, Li X Z, Hou M F, Cheah K W, Choy W C H. Enhanced photocatalytic activity of Ce3+-TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control[J], Appl. Catal. A 2005,285,181-189.
    11. Liang C H, Li F B, Liu C S, Lii J L, Wang X G. The enhancement of adsorption and photocatalytic activity of rare earth ions doped TiO2 for the degradation of Orange I[J], Dyes and Pigments 2008,76,477-484.
    12. Rengaraj S, Venkataraj S, Yeon J W, Kim Y, Li X Z, Pang G K H. Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination[J], Appl. Catal. B 2007,77,157-165.
    13. Xu H, Wu C, Li H, Chu J, Sun G, Xu Y, Yan Y. Synthesis, characterization and photocatalytic activities of rare earth-loaded BiVO4 catalysts[J], Appl. Surf. Sci. 2009,256,597-602.
    14. Cristiana D V, Gianfranco P. Reduced and n-type doped TiO2:Nature of Ti3+ species[J], J. Phys. Chem. C 2009,113,20543-20552.
    15. El-Bahy Z, Ismail A, Mohamed R. Enhancement of titania by doping rare earth for photogradation of organic dye (Direct Blue)[J], J. Hazard. Mater.2009,166, 138-143.
    16. Tian G, Chen Y, Zhou W, Pan K, Dong Y, Tian C, Fu H. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts [J], J. Mater. Chem.2011,21, 887-892.
    17. Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York,1980, Chap.4.
    18. Ramesham R. Determination of flatband potential for boron doped diamond electrode in 0.5 M NaCl by AC impedance spectroscopy[J], Thin Solid Films 1998,322,158-166.
    19. Le M T, Van Craenenbroeck J, Van Driessche I, Hoste S. Bismuth molybdate catalysts synthesized using spray drying for the selective oxidation of propylene[J], Appl. Catal A 2003,249,355-364.
    20. Malathy P, Vignesh K, Rajarajan M, Suganthi A. Enhanced photocatalytic performance of transition metal doped BiaO3 nanoparticles under visible light irradiation[J], Ceram. Int.2014,40,101-107.
    21. Guo R, Fang L, Dong W, Zheng F, Shen M. Enhanced Photocatalytic Activity and Ferromagnetism in Gd Doped BiFeO3 Nanoparticles[J], J. Phys. Chem. C 2010,114,21390-21396.
    22. Reilly L M, Sankar G, Catlow C R A. Following the Formation of γ-Phase Bi2MoO6 Catalyst by in Situ XRD/XAS and Thermogravimetric Techniques [J], J. Solid State Chem.1999,148,178-185.
    23. Hao X, Qu J, Liu H, Hu C. Photoelectrocatalytic Degradation of Triazine-Containing Azo Dyes at γ-Bi2MoO6 Film Electrode under Visible Light Irradiation (λ> 420 Nm)[J], Environ. Sci. Technol.2007,41,6802-6807.
    24. Dai G, Yu J, Liu G. Synthesis and Enhanced Visible-Light Photoelectrocatalytic Activity of p-n Junction BiOI/TiO2 Nanotube Arrays[J], J. Phys. Chem. C 2011, 115,7339-7346.
    25. Borchert H, Borchert Y, Kaichev V V, Prosvirin I P, Alikina G M, Lukashevich A I, Zaikovskii V I, Moroz E M, Paukshtis E A, Bukhtiyarov V I, Sadykov V A. Nanostructured, Gd-Doped Ceria Promoted by Pt or Pd, Investigation of the Electronic and Surface Structures and Relations to Chemical Properties[J], J. Phys. Chem. B 2005,109,20077-20086.
    26. Fang J, Wang F, Qian K, Bao H Z, Jiang Z Q, Huang W X. Bifunctional N-dopedmesoporousTiO2 photocatalysts[J], J. Phys. Chem. C 2008,112, 18150-18156.
    27. Li H, Liu C, Li K, Wang H. Preparation, characterization and photocatalytic properties of nanoplate Bi2MoO6 catalysts[J], J. Mater. Sci.2008,43,7026-7034.
    28. Xu H, Li H, Xu L, Wu C, Sun G, Xu Y, Chu J. Enhanced Photocatalytic Activity of Ag3VO4 Loaded with Rare-Earth Elements under Visible-Light Irradiation[J], J. Am. Chem. Soc.2009.48.10771-10778.
    29.叶良修.半导体物理学(上册)第二版[M],北京:高等教育出版社.2007.
    30. Li X, Zhu J, Li H. Comparative study on the mechanism in photocatalytic degradation of different-type organic dyes on SnS2 and CdS[J]. Appl. Catal. B 2012,123-124,174-181.
    31. Miao Y C, Pan G F, Huo Y N, Li H X. Aerosol-spraying preparation of Bi2Mo06: A visible photocatalyst in hollow microspheres with a porous outer shell and enhanced activity[J], Dyes and Pigments 2013,99,382-389.
    32. Matic K, Kristina Z, Luka S, Miran C, Goran D. Highly Efficient TiO;-Based Microreactor for Photocatalytic Applications[J],ACS Appl. Mater. Interf.2013,5, 9088-9094.
    33. Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press. New York,1980, Chap.4.
    34. Bard A J, Faulkner L R. Electrochemical Methods Fundamentals and Applications; John Wiley & Sons, New York,1980.
    35. Allen P L, Hickling A. Electrochemistry of sulfur. Part 1. Overpotential in the discharge of the sulfide ion[J]. Trans. Faraday Soc.1957,53,1626-1635.
    36. Weast R C. Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL, 1988.
    37. Gerischer H, Ranke W, Naturforsch Z.1969,24a,463 and unpublished results.
    38. Gerischer H, Willig F. Reaction of excited dye molecules at electrodes[M], Chapter 2,37-38.
    39. Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties[J], J. Am. Chem. Soc.1999,121,11459-11467.
    40. Jacqueline B, Mona T, Hynd R, ReneA D K. Enhanced yield of photoinduced electrons in doped silver halide crystals[J], Lat. nature 1999,402,865-867.
    41. Huo Y N, Zhang J, Miao M, Jin Y. Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances[J], Appl. Catal. B 2012,111-112,334-341.
    1. Sun Y Y, Liu G H, Chen Y J, Zhou W, Pan K, Dong Y Z, Tian C G, Fu H G. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts[J], J. Mater. Chem.2011, 21,887-892.
    2. Yin W Z, Wang W Z, Sun S M. Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation[J], Catal. Commun. 2010,11,647-650.
    3. Cruz A M, Alfaro S O. Synthesis and characterization of γ-Bi2MoO6 prepared by co-precipitation, photoassisted degradation of organic dyes under vis-irradiation[J], J. Mol. Catal. A 2010,320,85-91.
    4. Cuellar E L, Cruza A M, Rodrigueza K H, Mendez U O. Preparation of γ-Bi2MoO6 thin films by thermal evaporation deposition and characterization for photocatalytic applications[J], Catal. Today 2011,166,140-145.
    5. Zhang L W, Xua T G, Zhao X, Zhu Y F. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities[J],Appl. Catal. B 2010,98,138-146.
    6. Zhang M Y, Shao C L, Zhang P, Su C Y, Zhang X, Liang P P. Bi2MoO6 microtubes, Controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity [J], J. Hazard. Mater.2012,225-226,155-163.
    7. Shang M, Wang W Z, Ren J, Sun S M, Zhang L. Nanoscale Kirkendall effect for the synthesis of Bi2MoO6 boxes via a facile solution-phase method [J], Nanoscale 2011,3,1474-1476.
    8. Miao Y C, Pan G F, Huo Y N, Li H X. Aerosol-spraying preparation of Bi2MoO6, A visible photocatalyst in hollow microspheres with a porous outer shell and enhanced activity[J], Dyes and Pigments 2013,99,382-389.
    9. Xu Y S, Zhang Z J, Zhang W D. Facile preparation of heterostructured Bi2O3/Bi2MoO6 hollow microspheres with enhanced visible-light-driven photocatalytic and antimicrobial activity[J], Mater. Res. Bull.2013,48, 1420-1427.
    10. Zhang P, Shao C L, Zhang M Y, Guo Z C, Mu J B, Zhang Z Y, Zhang X, Liu Y C. Bi2MoO6 ultrathin nanosheets on ZnTiO3 nanofibers, A 3D open hierarchical heterostructures synergistic system with enhanced visible-light-driven photocatalytic activity[J], J. Hazard. Mater.2012,217-218,422-428.
    11. Zhang F J, Zhu S F, Xie F Z, Zhang J, Ze-Da M. Plate-on-plate structured Bi2Mo6/Bi2WO6 heterojunction with high-efficiently gradient charge transfer fordecolorization of MB[J],Sep. Sci. Technol.2013,113,1-8.
    12. Li N. Modification of TiO2 nanorods by Bi2MoO6 nanoparticles for high performance visible-light photocatalysis[J], J. Alloys. Compd.2011,509, 9770-9775.
    13. Xu Y S, Zhang W D. Anion exchange strategy for construction of sesame-biscuit-like Bi2O2CO3/Bi2MoO6 nanocomposites with enhanced photocatalytic activity[J], Appl. Catal.B 2013,140-141,306-316.
    14. Zhou F, Shi R, Zhu Y F. Significant enhancement of the visible photocatalytic degradation performancesof γ-Bi2MoO6 nanoplate by graphene hybridization[J], J. Mol. Catal. A 2011,340,77-82.
    15. Zhao X. Photocatalytic reduction of bromate at C6o modified Bi2MoO6 under visible light irradiation[J],Appl.Catal.B 2011,106,63-68.
    16. Lai K. Effects of oxygen vacancy and N-doping on the electronic and photocatalytic properties of Bi2MO6 (M=Mo, W)[J], J. Solid State Chem.2012, 187,103-108.
    17. Deng H, Wang J W, Peng Q, Wang X, Li Y D. Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanobubes[J], Chem. Eur. J.2005,11, 6519-6524.
    18. Huang W L, Zhu Q S. Electronic structures of related BiOX (X=F, Cl, Br, I) photocatalysts[J], Comput. Mater. Sci.2008,43,1101-1108.
    19. Tada H, Mitsui T, Kiyonage T, Akita T, Tanaka K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J], Nanostruct. Mater.2006, 5,782-786.
    20. Hernandez-Alonso M D, Fresno F, Suarez S, Coronado J M. Development of alternative photocatalysts to TiO2, challenges and opportunities[J], Energy Environ. Sci.2009,2,1231-1257.
    21. Zhang L, Cao X F, Chen X T, Xue Z L. BiOBr hierarchical microspheres, Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties[J], J. Colloid Interface Sci.2011,354,630-636.
    22. Zhang D Q, Wen M C, Jiang B, Li G S, Yu J C. Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment[J],J. Hazard. Mater.2012, 211-212,104-111.
    23. Zhao X, Qu J, Liu H, Hu C. Photoelectrocatalytic Degradation of Triazine-Containing Azo Dyes at γ-Bi2MoO6 Film Electrode under Visible Light Irradiation (λ> 420 nm)[J], Environ. Sci. Technol.2007,41,6802-6807.
    24. Dai G, Yu J, Liu G. Synthesis and Enhanced Visible-Light Photoelectrocatalytic Activity of p-n Junction BiOI/TiO2 Nanotube Arrays[J],J. Phys. Chem. C 2011, 115,7339-7346.
    25. Tu X M, Luo S L, Chen G X, Li J H. One-Pot Synthesis, Characterization, and Enhanced Photocatalytic Activity of a BiOBr-Graphene Composite[J], Chem. Eur. J.2012,18,14359-14366.
    26. Feng Y C, Li L, Li J W, Wang J F, Liu L. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene[J], J. Hazard. Mater.2011, 192,538-544.
    27. Yu J, Zhang L, Zheng Z, Zhao J. Synthesis and characterization of phosphated mesoporous Titanium dioxide with high photocatalytic activity[J], Chem. Mater. 2003,15,2280-2286.
    28. Peng T, Zhao D, Song H, Yan C. Preparation of lanthanadoped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity[J], J. Mol. Catal. A 2005,238,119-122.
    29. Liu Z S, Bi Y H, Zhao Y L, Huang X, Zhu Y B. Synthesis and photocatalytic property of BiOBr/palygorskite composites[J], Mater. Res. Bull.2014,49, 167-171.
    30. Maczka M, Macalik L, Hermanowicz K, Kepinski L, Hanuza J. Synthesis and phonon properties of nanosized Aurivillius phase of Bi2MoO6[J], J. Raman Spectrosc.2010,41,1289-1296.
    31. Yu J C, Yu J Q Ho W K, Jiang Z T, Zhang L Z. Effects of F-doping on the photo-catalytic activity and microstructures of nanocrystalline TiO2 powders[J], Chem. Mater.2002,14,3808-3816.
    32. Jiang J, Zhang X, Sun P B, Zhang L Z. ZnO/BiOI heterostructures, photoinduced charge-transfer property and enhanced visible-light photocatalytic activity[J], J. Phys. Chem. C 2011,115,20555-20564.
    33. Xiang Q J, Yu J G, Jaroniec M. Preparation and enhanced visible-light photo-catalytic H2-production activity of graphene/C3N4 composites[J], J. Phys. Chem.C 2011,115,7355-7363.
    34. Zhang J, Xia J X, Yin S, Li H M, Xu H, He M Q, Huang L Y, Zhang Q. Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids[J], Colloids Surf. A 2013,420,89-95.
    35. Kong L, Jiang Z, Lai H, Nicholls R J, Xiao T C, Jones M O, Edwards P. Unusual reactivity of visible-light-responsive AgBr-BiOBr heteroj unction photocatalysts[J], J. Catal.2012,293,116-125.
    36. Shi X J, Chen X, Chen X L, Zhou S M, Lou S Y, Wang Y Q, Yuan L. PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity[J], Chem. Eng. J.2013,222,120-127.
    37. Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York,1980, Chap.4.
    38. Cao J, Xu B Y, Lin H L, Luo B D, Chen S F. Chemical etching preparation of BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal[J], Chem. Eng. J.2012,185-186,91-99.
    39. Li H X, Bian Z F, Zhu J, Zhang D Q, Li G S, Huo Y N, et al. Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity[J], J. Am. Chem. Soc.2007,129,8406-8407.
    40. Li G T, Wong K H, Zhang X W, Hu C, Yu J C, Chan R C Y, Wong P K. Degradation of acid orange 7 using magnetic AgBr under visible light, the roles of oxidizing species[J], Chemosphere 2009,76,1185-1191.
    41. Zhang L S, Wong K H, Yip H Y, Hu C, Yu J C, Chan C Y, Wong P K. Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light, the role of diffusing hydroxyl radicals[J], Environ. Sci. Technol.2010,44,1392-1398.
    42. Yin M C, Li Z S, Kou J H, Zou Z G Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system[J], Environ. Sci. Technol.2009,43,8361-8366.
    43. Zhang N, Liu S Q, Fu X Z, Xu Y J. Synthesis of M@TiO2 (M=Au, Pd Pt) core-shell nanocomposites with tunable photoreactivity[J], J. Phys. Chem. C 2011, 115,9136-9145.
    44. Ishibashi K, Fujishima A, Watanabe T, Hashimoto K. Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique[J], Electrochem. Commun.2002,2,207-210.
    45. Xiao Q, Si Z C, Zhang J, Xiao C, Tan X K. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline[J], J. Hazard. Mater.2008,150,62-67.
    46. Bard A J, Faulkner L R. Electrochemical Methods Fundamentals and Applications; John Wiley & Sons, New York,1980.
    47. Allen P L, Hickling A, Electrochemistry in sulphur, Part i. Overpotential in the discharge of the sulfide ion[J], Trans. Faraday Soc.1957,53,1626-1635.
    48. Li X, Zhu J, Li H X. Comparative study on the mechanism in photocatalytic degradation of different-type organic dyes on SnS2 and CdS[J], Appl. Catal. B 2012,123-124,174-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700