用户名: 密码: 验证码:
纳米结构晶态碳基材料可控制备及电化学储能特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,随着传统能源的日渐耗竭与环境污染的日益严重,新型能源材料及其相应装置的研究已引起全社会的广泛关注。超级电容器作为介于传统电容器和二次电池的一种新型能量储存与转换装置,以其高的比容量、稳定的循环寿命、宽的工作电压视窗和高的功率密度等特点,在便携式仪器、动力混合汽车电源、信息技术等领域具有重要的商业前景和价值。其中,电极材料是影响超级电容器电化学性能最为关键的因素之一。在各种电极材料中,碳材料由于其优异的循环稳定性已被用作电极材料应用在商业电容器中。但传统的碳电极材料(如:活性碳,碳纳米管)低的比电容仍限制了其能量密度的提高。为了提高碳电极材料的比电容,本论文选用不同的碳的前驱体,根据基团相互作用原理设计合成出一系列的具有独特结构的纳米碳材料。本论文主要的研究内容如下:
     1.采用溶液-固体路线以葡萄糖为碳源合成出高比表面积多孔晶态纳米碳材料(PGC),并对其电化学性能进行了系统的研究。电化学测试结果表明,PGC样品作为超级电容器电极材料表现出很好的电化学性能。PGC材料优异的电化学特性主要归因于其独特的微观结构。其中,多孔结构有利于电解液离子的传输,而优异的导电性有利于电子在大电流充放电过程中的传递。
     2.采用一步水热的方法以氧化石墨和尿素为原材料合成出具有高含氮量的氮掺杂石墨烯(NGS),并对其电化学性能进行了测试。通过一系列实验证实NGS材料的比表面积、氮的含量和类型都可通过改变实验条件来进行调控。当水热温度为180℃、水热时间为12h、氧化石墨与尿素质量比为300:1时制备的NGS材料展示了最好的电容特性。在水系电解液(6M KOH)中,电流密度为0.2A/g时,NGS材料的比电容高达326F/g。经过5000次充放电循环后,NGS材料的比电容为保持初始电容的99.9%。当以NGS材料为电极组装成对称电容器时,在功率密度为7980kW/kg下其能量密度为25.02Wh/kg。在实验过程中,我们发现氮的掺杂类型对NGS材料的电化学性能有很重要的影响。其中,吡啶氮和吡咯氮可与电解液离子发生氧化还原反应产生法拉第准电容;而四元氮可有效的改善材料的导电性从而有利于电子的快速传输。
     3.采用配位/热解碳化方法制备出氮掺杂多孔晶态纳米碳材料(NPGC),并研究了不同碳化温度和不同三聚氰胺加入量对NPGC材料微观结构和电容特性的影响。测试结果表明NPGC材料具有大的比表面积、优良的导电性、以及高的氮含量。并且NPGC材料展示了较好的电容特性。在电流密度为1A/g下,比电容值可达到293F/g。经循环5000次后,其比电容仍为初始比电容的99.5%。
     4.采用水热配位-ZnCl2活化的路线以生物衍生物壳聚糖为含氮的碳源制备出硼氮分别掺杂的多孔石墨化纳米碳材料(BNGC)。在合成过程中,首先,壳聚糖与Fe3+离子(固氮剂/石墨化催化剂前驱体)进行配位得到壳聚糖-Fe前驱体,随后将硼源加入到壳聚糖-Fe溶液中在180℃进行水热反应,在此过程中,H3BO3转化为B2O3气体,它们与壳聚糖-Fe上剩余的含氧基团进行反应得到分开掺杂的硼、氮碳材料。在经过氯化锌活化和酸处理后,具有大的比表面积、优良的导电性、硼氮的分别掺杂的BNGC样品被合成出来。BNGC样品独特的微观结构和硼氮的分别掺杂使得其具有高的比电容(313F/g,1A/g)、优异的倍率特性、较好的电化学循环稳定性、库伦效率、高的能量密度和功率密度。
     5.采用同步ZnCl2活化和石墨化的方法以椰壳为碳源合成了多孔层状晶态纳米碳材料(PNGS)。在合成过程中,首先将石墨催化剂前驱体(FeCl3)和活化剂(ZnCl2)同时引入到椰壳的骨架中形成椰壳-Fe3+复合体。将此复合体经过碳化和去催化剂后,得到PGNS材料。所合成的PGNS样品具有高的比表面积和较好的导电性。当其做为超级电容器电极材料时,展示了优异的电容特性。在水系电解液中,PGNS样品具有高的比电容和优异的电化学循环稳定性。而在有机系电解液中,PGNS样品同样也展示了好的电化学性能:在功率密度为10kW/kg时,PGNS样品能量密度可高达54.7Wh/kg。
With the depletion of the conventional energy sources and the severity of theenvironmental pollution in the twenty-first century, the researches of the new energymaterials and devices have been attracted considerable attentions in whole society. As akind of energy storage and conversion device, supercapacitors, which bridge the gapbetween the traditional capacitors and batteries, have received currently much interestbecause their wide range of applications in as portable electronics, hybrid electricvehicles, and pulsing techniques based on their virtues of the high specific capacitance,reliable cycle life, wide operating voltage, high energy and power density. Electrodematerial is the key that affected the electrochemical performance of supercapacitors.Among various electrode materials, carbon materials are the main electrode materialsfor commercial supercapacitors due to their high cycle stability. However, the lowcapacitance of traditional carbon-based electrode materials (activated carbons andcarbon nanotubes) still limited the improvement of their energy density. According tothe group interaction, we have designed and prepared a series of advanced carbonelectrode materials with special microstructures from different carbon resources forsupercpacitors. The main contents in this paper have been shown as follows:
     1. Porous crystalline carbons (PGC) were synthesized via a simple “Solution-Solid”route and their application as advanced electrode materials for supercapacitor were alsodemonstrated. The electrochemical tests prove that the PGC sample shows capacitivebehavior. The outstanding performance of the PGC sample is attributed to its specialmicrostructure. That is, the porous structure and high conductivity are favor forion-charge transport during the high galvanostatic charge-discharge process.
     2. An easy and effective one-step hydrothermal process was developed to preparenitrogen-doped grapheme (NGS) by a hydrothermal reaction of GO with urea. A seriesof experiments indicate that the surface area, nitrogen content and type of NGS materials could be controlled by adjusting the experiment conditions. The as-made NGSsample (mass ratio of urea/GO is300:1, hydrothermal temperature:180oC,hydrothermal time:12h) exhibits the best capacitive performance: high capacitance (326F/g,0.2A/g), superior cycling stability (maintaining initial capacity) after2000cycles.Most importantly, in a two-electrode symmetric capacitor, the energy density of25.02Wh/kg should be achieved at power density of7980W/kg. The experimental resultsfurther demonstrated that the types of nitrogen play an important role in the capacitivebehaviors. In detail, the pyridinic-N and pyrrolic-N could provide pseudo-capacitanceby the redox reaction, while quaternary-N could improve the conductivity of the NGSthat is favorable to the electrons transport.
     3. Nitrogen-doped porous crystalline carbon (NPGC) was prepared by means of asimple coordination-pyrolysis combination route, the effect of different carbonizedtemperature and different melamine content on the microstructure was also studied. Thetests indicated that the NPGC material has large surface area, well conductivity and highnitrogen content. The unusual structure of NPGC sample endows its superior capacitiveproperty. NPGC-2-900sample has high specific capacitance of293F/g at1A/g. Afterconsecutive5000cycles, the specific capacitance of NPGC-2-900still maintains theinitial capacity.
     4. The separated boron and nitrogen co-doping porous graphitic carbon (BNGC) wasfabricated though a hydrothermal coordination-ZnCl2activation process from nitrogen-containing chitosan. In this synthesis, chitosan was first coordinated with Fe3+ions toobtain the chitosan-Fe precursor. Followed by the hydrothermal reaction, H3BO3wasconverted into B2O3steam, which reacts with residual oxygen groups of chitosan-Fe.After that, the boron atoms doped into the skeleton of to get the separated B and Nco-doping polymerized carbon. After ZnCl2activation and removal of Fe catalyst withhydrochloric acid, the BNGC with high surface area was synthesized. Benefiting fromthe structure of BNGC samples and isolated boron and nitrogen co-doping, the BNGC sample exhibits high specific capacitance (313F/g,1A/g), well electrochemicalstability, high coulombic efficiency, high energy and power densities.
     5. The porous layered crystalline nanocarbon (PGNS) has been synthesized throughan effective simultaneous activation-graphitization route by using a renewable andinexpensive coconut shell. In the preparation, the graphitization catalyst precursor(FeCl3) and activating agent (ZnCl2) are simultaneously introduced into the frameworkof the coconut shell to get the coconut shell-Fe precursor. Following pyrolysis andremoval of the catalyst, the PGNS material obtained. The as-prepared PNGS sample hashigh surface area and well conductivity. The PNGS exhibits excellent capacitivebehavior. In aqueous electrolyte, PNGS sample has high specific capacitance, superiorcycle durability and Coulombic efficiency. Remarkably, in an organic electrolyte, PGNSalso shows outstanding electrochemical performance: an energy density of up to54.7Wh/kg can be achieved at a high power density of10kW/kg.
引文
[1] P. Simon, Y.Gogotsi. Materials for electrochemical capacitors[J]. Nat. Mater.,2008,7,845-854.
    [2] B. E. Conway. Transition from "supercapacitor" to "battery" behavior inelectrochenical enery storage[J]. J. Electrochem. Soc,1991,38,1539-1548P.
    [3] I. A. Hochbaum, P. D. Yang. Semiconductor anowires for energy conversion[J].Chem. Rev.,2010,110,527-546.
    [4] N. S. Choi, Z. H. Chen, S. A. Freunberger, X. L. Ji, Y. K. Sun, K. Amine, G.Yushin, L. F. Nazar, J. Cho, P. G. Bruce. Challenges facing lithium batteries andelectrical double-layer capacitors[J]. Angew. Chem. Int. Ed.,2012,51,9994-10024.
    [5] R. K tz, M. Carlen. Principles applications of electrochemical capacitors[J].Electrochim. Acta,2000,45,2483-2498.
    [6] G. Wang, L. Zhang, J. Zhang. A review of electrode materials for electrochemicalsupercapacitors[J]. Chem. Soc. Rev.,2012,41,797-828.
    [7] J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou. Recent advances in metaloxide-based electrode architecture design for electrochemical energy storage[J].Adv. Mater.,2012,24,5166-5180.
    [8] Z. Chen, J. Wen, C. Yan, L. Rice, H. Sohn, M. Shen, M. Cai, B. Dunn, Y. Lu,High-performance supercapacitors based on hierarchically porous graphiteparticles[J]. Adv. Energy Mater.,2011,4,1551-1556.
    [9] J. R. Miller, P. Simon. Materials science-electrochemical capacitors for energymanagement[J]. Science,2008,321,651-652.
    [10] C. Liu, F. Li, L. P. Ma, H. M. Cheng. Advanced materials for energy storage[J].Adv. Energy Mater.,2010,22, E28-62.
    [11] W. Jillek, W. K. C. Yung. Embedded components in printed circuit boards: aprocessing technology review[J]. Int. J. Adv. Manuf. Technol.,2005,25,350-360.
    [12] R. B. van Dover, L. F. Schneemeyer, R. M. Fleming. Discovery of a usefulthin-film dielectric using a composition-spread approach[J]. Nature,1998,392,162-164.
    [13] B. Lehner, G. Czisch, S. Vassolo. The impact of global change on the hydropowerpotential of Europe: a model-based analysis[J]. Energy Policy,2005,33,839-855.
    [14] X. Li, T Gu, B.WEI. Dynamic and galvanic stability of stretchablesupercapacitors[J]. Nano Lett.,2012,12,6366-6371.
    [15] M. M. Titirici, R. J. White, C. Falcoa. Black perspectives for a green future:hydrothermal carbons for environment protection and energy storage[J]. EnergyEnviron. Sci.,2012,5,6796-6822.
    [16] V. Presser, C. R. Dennison, J. Campos, K. W. Knehr, E. C. Kumbur. Y. Gogoisi.The electrochemical flow capacitor: A new concept for rapid energy storage andrecovery[J]. Adv. Energy Mater.,2012,2,895-902.
    [17] C. Arbizzani, M. Mastragostino, F. Soavi. New trends in electrochemicalsupercapacitors[J]. J. Power Sources,2001,100,164-170.
    [18] M. Winter, R. J.Brodd. What are batteries, fuel cells, and supercapacitors[J].Chem. Rev.,2004,104,4245-4269.
    [19] A. Burke. Ultracapacitors: why, how, and where is the technology[J]. J. PowerSources,2000,91,37-50.
    [20] J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X. W. Lou. Recent advances in metaloxide-based electrode architecture design for electrochemical energy storage[J].Adv. Mater.,2012,24,5166-5180.
    [21] C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen, Lou. Ultrathin mesoporous NiCo2O4nanosheets supported on Ni Foam as advanced electrodes for supercapacitors[J].Adv. Funct. Mater.,2012,22,4592-4597.
    [22] J. P. Zheng, P. J. Cygan, T. R. J ow. Hydrous ruthenium oxide as an electrodematerial for electrochemical capaciors[J]. J. Electrochem. Soc,1995,142,2699-2703P.
    [23] H. Y. Wu, H. W. Wang. Electrochemical synthesis of Nickel Oxide nanoparticulatefilms on nickel foils for high-performance electrode materials ofSupercapacitors[J]. Int. J. Electrochem. Sci.,2012,7,4405-4417.
    [24] C. Q. Shang, S. M. Dong, S. Wang, D. D Xiao, P. X. Han, X. G. Wang, L. Gu, G.L. Cui. Coaxial NixCo2x(OH)6x/TiN nanotube arrays as supercapacitorelectrodes[J]. ACS Nano,7,5430-5436.
    [25] P. H. Yang, X. Xiao, Y. Z. Li, Y. Ding, P. F. Qiang, X. H. Tan, W. J. Mai, Z. Y. Lin,W. Z.Wu, T. Q. Li, H. Y. Jin, P. Y. Liu, J. Zhou, C. P. Wong, Z. L. Wang.Hydrogenated ZnO core-shell nanocables for flexible supercapacitors andself-powered systems[J]. ACS Nano,7,2617-2626.
    [26] L. L. Zhang, X. S.Zhao. Carbon-based materials as supercapacitor electrodes[J].Chem. Soc. Rev.,2009,38,2520-2531.
    [27] L. Hao, X. L. Li, L. J. Zhi. Carbonaceous electrode materials forsupercapacitors[J]. Adv. Mater.,2013,25,3899-3904.
    [28] A. Burke. R&D considerations for the performance and application ofelectrochemical capacitors[J]. Electrochim. Acta,2007,53,1083-1091.
    [29] W. Tang, L. L. Liu, S. Tian, L. Li, Y. B. Yue, Y. P. Wu, K. Zhu. Aqueoussupercapacitors of high energy density based on MoO3nanoplates as anodematerial[J]. Chem. Commun.,2011,47,10058-10060.
    [30] P. Guillemet, Y. Scudeller, T. Brousse. Multi-level reduced-order thermalmodeling of electrochemical capacitors[J]. J. Power Sources,2006,157,630-637.
    [31] C. Guan, X. Xia, N. Meng. Hollow core–shell nanostructure supercapacitorelectrodes: gap matters[J]. Energy Environ. Sci.,2012,5,9085-9090.
    [32] X. Li, T. Gu, B. Wei. Dynamic and galvanic stability of stretchablesupercapacitors[J]. Nano Lett.,2012,12,6366-6371.
    [33] J. Chmiola, C. Largeot, P. L. Taberna. Monolithic carbide-derived carbon filmsfor micro-supercapacitors[J]. Science,2010,328:480-483.
    [34] L. F. Chen, Z. H. Huang, H. W. Liang, W. T. Yao, Z. Y. Yu, S. H.Yu. Flexibleall-solid-state high-power supercapacitor fabricated with nitrogen-doped carbonnano ber electrode material derived from bacterial cellulose[J]. Energy Environ.Sci.,2013,6,3331-3338.
    [35] H. M. Du, L. F.Jiao, K. Z. Cao, Y. J. Wang, H. T. Yuan. Polyol-mediated synthesisof mesoporous α Ni(OH)2with enhanced supercapacitance[J]. ACS Appl. Mater.Interfaces,2013,5,6643-6648.
    [36] W. Gao, N. Singh. L. Song. Direct laser writing of micro-supercapacitors onhydrated graphite oxide films[J]. Nat. Nanotechnol.,2011,6,496-500.
    [37] Z. Chen, J. Wen, C. Z. Yan, L. Rice, H. Sohn, M. Q. Shen, M. Cai, B. Dunn, Y.F. Lu. High-Performance Supercapacitors based on hierarchically porousgraphite particles[J]. Adv. Energy Mater.,2011,1,551-556.
    [38] M. Kaus, J. Kowal, D.U. Sauer. Modelling the effects of charge redistributionduring self-discharge of supercapacitors[J]. Electrochim. Acta,2010,55,7516-7523.
    [39] A. Rudge, I. Raistrick, S. Gottesfeld, J. P. Ferraris. A study of the electrochemicalproperties of conducting polymer for application in electrochemical capacitors[J].Electrochim. Acta.,1994,39,273-287.
    [40] L. Wei, G. Yushin, Nanostructured activated carbons from natural precursors forelectrical double layer capacitors[J]. Nano Energy,2012,1,552-565.
    [41] B. E. Conway, V. Birss, J. Wojtowicz. The role and utilization ofpseudocapacitance for energy storage by supercapacitors[J]. J. Power Sources.1997,66,1-14.
    [42] J. P. Liu, J. Jiang, M. Bosman, H. J. Fan. Three-dimensional tubular arrays ofMnO2-NiO nano akes with high areal pseudocapacitance[J]. J. Mater. Chem.,2012,22,2419-2426.
    [43] M. Toupin, T. Brousse, D. Belanger. Influence of microstructure on the chargestorage properties of chemically synthesized manganese dioxide[J]. Chem. Mater.,2002,14,3946-3952.
    [44] S. Bose, T. Kuila, A. K. Mishra, R. Rajasekar, N. H. Kim, J. H. Lee. Carbon-basednanostructured materials and their composites as supercapacitor electrodes[J]. J.Mater. Chem.,2012,22,767-784.
    [45] D. L. Boose. Electrolytic capacitor having carbon paste electrodes:U.S.3536963[P].1970-10-27.
    [46] B. E. Conway, W. G. Pell, Double-layer and pseudocapacitance types ofelectrochemical capacitors and their applications to the development of hybriddevices[J]. J. Solid State Electrochem.,2003,7,637-644.
    [47] T. B. Atwater, P. J. Cygan, F. C. Leung. Man portable power needs of the21stcentury: I. Applications for the dismounted soldier. II. Enhanced capabilitiesthrough the use of hybrid power sources[J]. J. Power Sources,2000,91,27-36.
    [48] I. B. Weinstoek, Recent advances in the US department of energy is energystorage technology research and development programs for hybrid electric andelectric vehicles[J]. J. Power Sources,2002,110,471-475.
    [49] D.Y. Jung, Y. H. Kim, S. W. Kim, S. H. Lee. Development of ultracapacitormodules for42V automotive electrical systems[J]. J. Power Sources,2003,114,366-372.
    [50] L. P. Jarvis, T. B. Aiwater, P. J. Cygan, Fuel cell/electrochemical capacitor hybridfor intermittent high power applications[J]. J. Power Sources,1999,79,60-67.
    [51] C. Z. Yuan, B. Gao, L. F. Shen, S. D. Yang, L. Hao, X. J. Lu, F. Zhang, L. J.Zhang and X. G. Zhang. Hierarchically structured carbon-based composites:Design, synthesis and their application in electrochemical capacitors[J].Nanoscale,2011,3,529-545.
    [52] Y. Zhang, H. Feng, X. B. Wu, L. Z. Wang, A. Q. Zhang, T. C. Xia, H. C. Dong,X. F. Li, L. S. Zhang. Progress of electrochemical capacitor electrode materials:A review[J]. Int. J. Hydrogen Energy.,2009,34,4889-4899.
    [53] C. C. Hu, K. H. Chang, M. C. Lin. Design and tailoring of the nanotubulararrayed architecture of hydrous RuO2for next generation supercapacitors[J].Nano Lett.,2006,6,2690-2695.
    [54] X. Zhao, B. M. Sánchez, P. J. Dobson, P. S. Grant. The role of nanomaterials inredox-based supercapacitors for next generation energy storage devices[J].Nanoscale,2011,3,839-855.
    [55] H. Jiang, J. Ma, C. Z. Li. Mesoporous carbon incorporated metal oxidenanomaterials as supercapacitor electrodes[J]. Adv. Mater.,2012,24,4197-4202.
    [56] X. P. Dong, W. H. Shen, J. L. Gu, L. M. Xiong, Y. F. Zhu, H. Li, J. L. Shi.MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemicalcapacitors[J]. J. Phys. Chem. B,2006,110,6015-6019.
    [57] H. Jiang, T. Zhao, C. Z. Li, J. Ma. Functional mesoporous carbon nanotubes andtheir integration in situ with metal nanocrystals for enhanced electrochemicalperformances[J]. Chem. Commun.,2011,47,8590-8592.
    [58] H. Jiang, L. P. Yang, C. Z. Li, C. Y. Yan, P. S. Lee, J. Ma. High-rateelectrochemical capacitors from highly graphitic carbon–tipped manganeseoxide/mesoporous carbon/manganese oxide hybrid nanowires[J]. Energy Environ.Sci.,2011,4,1813-1819.
    [59] C. bizzani, M. Mastragostino, L. Meneghello, Polymer-based redoxsupereapaeitors: A comparative study[J]. Electrochim. Acta,1996,41(l),21-28.
    [60] L. L. Zhang, S. Li, J. T. Zhang, P. Z. Guo, J. T. Zheng, X. S. Zhao. Enhancementof electrochemical performance of macroporous carbon by surface coating ofpolyaniline[J]. Chem. Mater.,2010,22,1195-1202.
    [61] J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang and F. Wei, Preparation of agraphene nanosheet/polyaniline composite with high speci c capacitance[J].Carbon,2010,48,487-493.
    [62] J. J. Xu, K. Wang, S. Z. Zu, B. H. Han, Z. X. Wei. Hierarchical nanocompositesof polyaniline nanowire arrays on graphene oxide sheets with synergistic effectfor energy storage[J]. ACS Nano,2010,9,5019-5026.
    [63] Mitani S., S.-I. Lee, S.-H. Yoon, Y. Korai, I. Mochida, Activation of raw pitchcoke with alkali hydroxide to prepare high performance carbon for electric doublelayer capacitor[J]. J. Power Sources,2004,133,298-301.
    [64] T. A. Centeno, O. Sereda, F. Stoeckli. Capacitance in carbon pores of0.7to15nm: a regular pattern[J]. Phys. Chem. Chem. Phys.,2011,13,12403-12406.
    [65] S. Kondrat, C. R. Pérez, V. Presser, Y. Gogotsi, A. A. Kornyshev. Effect of poresize and its dispersity on the energy storage in nanoporous supercapacitors[J].Energy Environ. Sci.,2012,5,6474-6479.
    [66] J. Chmiola, G. Yushin, Y. Gogotsi. Anomalous increase in carbon capacitance atpore sizes less than1nanometer[J]. Science,2006,313,1760-1763.
    [67] C. Largeot, C. Portet, J. Chmiola. Relation between the ion size and pore size foran electric double-layer capacitor[J]. J. Am. Chem. Soc.,2008,130,2730-2731.
    [68] J. M. Shen, A. Liu, Y. Tu, G. S. Foo, C. Yeo, M. B. C. Park, R. Jiang, Y. Chen.How carboxylic groups improve the performance of single-walled carbonnanotube electrochemical capacitors[J]? Energy Environ. Sci.,2011,4,4220-4229.
    [69] A. Stein, Z. Y. Wang, M. A. Fierke. Functionalization of porous carbon materialswith designed pore architecture functionalization of porous carbon materials withdesigned pore architecture[J]. Adv. Mater.,2009,21,265-293.
    [70] H. Bai, C. Li, G. Q. Shi. Functional composite materials based on chemicallyconverted graphene[J]. Adv. Mater.,2011,23,1089-1115.
    [71] L. M. Dai, D. W. Chang, J. B. Baek, W. Lu, Carbon nanomaterials for advancedenergy conversion and storage[J]. Small,2012,8,1130-166.
    [72] S. Bose, T. Kuila, A. K. Mishra, R. Rajasekar, N. H. Kim, J. H. Lee.Carbon-based nanostructured materials and their composites as supercapacitorelectrodes[J]. J. Mater. Chem.,2012,22,767-784.
    [73] C. Portet, G. Yushin, Y. Gogotsi. Electrochemical performance of carbon onions,nanodiamonds, carbon black and multiwalled nanotubes in electrical double layercapacitors[J]. Carbon,2007,45,2511-2518.
    [74] H. Shi. Activated carbons and double layer capacitance[J]. Electrochim. Acta,1994,41,1633-1639.
    [75] G. H. Yuan, Z. H. Jiang, A. Aramata,Y. Z. Gao. Electrochemical behavior ofactivated-carbon capacitor material loaded with nickel oxide[J]. Carbon,2005,43,2913-2917.
    [76] Q. Deyang. Studies of the activated carbons used in double-layer supercapacitors[J]. J. Power Sources,2002,109,403-411.
    [77] C. Kim, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, Y. J. Kim, M. Endo,S. C. Yang. Self-sustained thin webs consisting of porous carbon nanofibers forsupercapacitors via the electrospinning of polyacrylonitrile solutions containingzinc chloride [J]. Adv. Mater.,2007,19,2341-2346.
    [78] W. B. Lu, M. Zu, J. H. Byun, B. S. Kim, T. W. Chou. State of the art of carbonnanotube fibers: opportunities and challenges[J]. Adv. Mater.,2012,24,1805-1833.
    [79] V. Barranco, M. A. L. Rodenas, A. L. Solano, A. Oya, F. Pico, J. Ibaňez, F. A.Rueda, J. M. Amarilla, J. M. Rojo. Amorphous carbon nano bers and theiractivated carbon nano bers as supercapacitor electrodes[J]. J. Phys. Chem. C2010,114,10302-10307.
    [80] M. K. Seo, S. J. Park. Electrochemical characteristics of activated carbonnanofiber electrodes for supercapacitors[J]. Materials Science and Engineering B,2009,164,106-111.
    [81] X. C. Zhao, A. Q. Wang, J. W. Yan, G. Q. Sun, L. X. Sun, T. Zhang. Synthesisand electrochemical performance of heteroatom-incorporated ordered mesoporouscarbons[J]. Chem. Mater.,2010,22,5463-5473.
    [82] K. Zhang, B. T. Ang, L. L. Zhang, X. S. Zhao, J. S. Wu. Pyrolyzed grapheneoxide/resorcinol-formaldehyde resin composites as high-performancesupercapacitor electrodes[J]. J. Mater. Chem.,2011,21,2663-2670.
    [83] Y. Y. Lv, F. Zhang, Y. Q. Dou, Y. P. Zhai, J. X. Wang, H. J. Liu, Y. Y. Xia, B.Tu, D. Y. Zhao. A comprehensive study on KOH activation of orderedmesoporous carbons and their supercapacitor application[J]. J. Mater. Chem.,2012,22,93-99.
    [84] H. J. Liu, J. Wang, C. X. Wang, Y. Y. Xia. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carboncomposites and its electrochemical performance in supercapacitor[J]. Adv. EnergyMater.,2011,1,1101-1108.
    [85] H. J Liu, X. M. Wang, W. J. Cui, Y. Q. Dou, D. Y. Zhao, Y. Y. Xia. Highlyordered mesoporous carbon nano ber arrays from a crab shell biological templateand its application in supercapacitors and fuel cells[J]. J. Mater. Chem.,2010,20,4223-4230.
    [86] C. H. Huang, Q. Zhang, T. C. Chou, C. M.Chen, D. S. Su, R. A. Doong.Three-dimensional hierarchically ordered porous carbons with partially graphiticnanostructures for electrochemical capacitive energy storage[J]. ChemSusChem,2012,5,563-571.
    [87] Q. Zhang, J. P. Rong, B. Q. Wei. A divided potential driving self-dischargeprocess for single-walled carbon nanotube based supercapacitors[J]. RSC Adv.,2011,1,989-994.
    [88] X. H. Zhong, Y. L. Li, Y. K. Liu, X. H. Qiao, Y. Feng, J. Liang, J. Jin, L. Zhu, F.Hou, J. Y. Li. Continuous multilayered carbon nanotube yarns[J]. Adv. Mater.,2010,22,692-696.
    [89] Z. j. Fan, J. Yan, L. J. Zhi, Q. Zhang, T. Wei, J. Feng, M. L. Zhang, W. Z. Qian,F. Wei. A Three-dimensional carbon nanotube/graphene sandwich and itsapplication as electrode in supercapacitors[J]. Adv. Mater.,2010,22,3723-3728.
    [90] K. H. An, W. S. Kim, Y. S. Park. Supercapacitors using single-walled carbonnanotube electrodes[J]. Adv. Mater.,2001,13,497-500.
    [91] M. M. Shaijumon, F. S. Ou, L. Ci, P. M. Ajayan, Synthesis of hybrid nanowirearrays and their application as high power supercapacitor electrodes[J]. Chem.Commun.,2008,44,2373-2375.
    [92] L. L. Zhang, R. Zhou, X. S. Zhao. Graphene-based materials as supercapacitorelectrodes[J]. J. Mater. Chem.,2010,20,5983-5992.
    [93] X. T. Zhang, Z. Y. Sui, B. Xu, S. F. Yue, Y. J. Luo, W. C. Zhan, B. Liu.Mechanically strong and highly conductive graphene aerogel and its use aselectrodes for electrochemical power sources[J]. J. Mater. Chem.,2011,21,6494-6497.
    [94] Y. Q. Sun, Q. Wu, G. Q. Shi. Supercapacitors based on self-assembled grapheneorganogel[J]. Phys. Chem. Chem. Phys.,2011,13,17249-17254.
    [95] M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, R. S. Ruoff. Graphene-basedultracapacitors[J]. Nano Lett.,2008,8,3498-3502.
    [96] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitordevices based on graphene materials[J]. J. Phys. Chem. C,2009,113,13103-13107.
    [97] X. W.Yang, J. W. Zhu, L. Qiu, D. Li. Bioinspired Effective Prevention ofRestacking in Multilayered Graphene Films: Towards the Next Generation ofHigh-Performance Supercapacitors[J]. Adv. Mater.,2011,23,2833-2838.
    [98] Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. L. Feng, K. Müllen.Three-dimensional nitrogen and boron co-doped graphene for high-performanceall-solid-state supercapacitors[J]. Adv. Mater.,2012,24,5130-5135.
    [99] J. P. Paraknowitsch, A. Thomas. Doping carbons beyond nitrogen: an overviewof advanced heteroatom doped carbons with boron, sulphur and phosphorus forenergy applications[J]. Energy Environ. Sci.,2013,6,2839-2855.
    [100] D. S. Yuan, F. L. Zeng, J. Yan, X. L.Yuan, X. J.Huang, W. J. Zou. A novelroute for preparing graphitic ordered mesoporous carbon as electrochemicalenergy storage material[J]. RSC Adv.,2013,3,5570-5576.
    [101] Y. Y. Li, Z. S. Li, P. K. Shen. Simultaneous formation of ultrahigh surface areaand three-dimensional hierarchical porous graphene-like networks for fast andhighly stable supercapacitors[J]. Adv. Mater.,2013,25,2474-2480.
    [102] D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng.3D aperiodic hierarchicalporous graphitic carbon material for high-rate electrochemical capacitive energystorage[J]. Angew. Chem. Int. Ed.,2008,2,379-382.
    [103] J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava,M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai, P. M. Ajayan. Ultrathin planargraphene supercapacitors[J]. Nano Lett.,2011,11,1423-1427.
    [104] Y. W. Zhu, S. T. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira,A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S.Ruoff. Carbon-based supercapacitors produced by activation of graphene[J].Science,2011,332,1537-1541.
    [105] R. F. Service. New ‘supercapacitor’ promises to pack more electricalpunch[J]. Science,2006,313,902-905.
    [106] C. J Cui, W. Z. Qian, Y. T. Yu, C. Y. Kong, B. Yu, L. Xiang, F. Wei. Highlyelectroconductive mesoporous graphene nanofibers and their capacitanceperformance at4V[J]. J. Am. Chem. Soc.,2014,136,2256-2259.
    [107] C. G. Liu, Z. N. Yu, D. Neff, A. Zhamu, B. Z. Jang. Graphene-basedsupercapacitor with an ultrahigh energy density[J]. Nano Lett.,2010,10,4863-4868.
    [108] H. Zhang,G. P. Cao, Y. S.Yang. Carbon nanotube arrays and their compositesfor electrochemical capacitors and lithium-ion batteries[J]. Energy Environ. Sci.,2009,2,932-943.
    [109] C. M. Chen, Q. Zhang, M. G. Yang. Structural evolution during annealing ofthermally reduced graphene nanosheets for application in supercapacitors[J].Carbon,2012,50,3572-3584.
    [110] K. Xie, X. T. Qin, X. Z. Wang, Y. N. Wang, H. S. Tao, Q. Wu, L. J. Yang, Z. Hu.Carbon nanocages as supercapacitor electrode materials[J]. Adv. Mater.,2012,24,347-352.
    [111] R. R. Salunkhe, B. P. Bastakoti, C. T. Hsu, N. Suzuki, J. H. Kim, S. X. Dou, C.C. Hu, Y. Yamauchi. Direct growth of cobalt hydroxide rods on nickel foam andits application for energy storage[J]. Chem. Eur. J.,2014,20,3084-3088.
    [112] Y. F. Zhao, W. Ran, D. B. Xiong, L. Zhang, J. Xu, F. M. Gao. Synthesis ofSn-doped Mn3O4/C nanocomposites as supercapacitor electrodes withremarkable capacity retention[J]. Mater. Lett.,2014,118,80-83.
    [113] Y. F. Zhao, W. Ran, D. B. Xiong, L. Zhang, J. Xu, F. M. Gao. Electrochemicalanchoring of dual doping polypyrrole on graphene sheets partially exfoliatedfrom graphite foil for high-performance supercapacitor electrode[J]. J. PowerSource,2014,249,48-58.
    [114] Y. P. Zhai, Y. Q. Dou, D. Y. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai. Carbonmaterials for chemical capacitive energy Storage[J]. Adv. Mater.2011,23,4828-4850.
    [115] D. H. Long, W. Li, L. C. Ling, J. Miyawaki, I. Mochida and S. H.Yoon.Preparation of nitrogen-doped graphene sheets by a combined chemical andhydrothermal reduction of graphene oxide[J]. Langmuir,2010,26,16096-16102.
    [116] D. H. Deng, X. L. Pan, L. Yu, Y. Cui, Y. P. Jiang, J.Qi, W. X. Li, Q. Fu, X. C.Ma, Q. K. Xue, G. Q. Sun, X. H. Bao. Toward N-doped graphene viasolvothermal synthesis[J]. Chem. Mater.,2011,23,1188-1193.
    [117] J. Yan, T. Wei, B. Shao. Electrochemical properties of graphene nanosheet/carbonblack composites as electrodes for supercapacitors[J]. Carbon,2010,48,1731-1737.
    [118] Y. C. Qiu, Y. H. Zhao, X. W. Yang, W. F. Li, Z. H. Wei, J. W. Xiao, S. F. Leung,Q. F. Lin, H. K. Wu, Y. G. Zhang, Z. Y. Fan, S. H.Yang. Three-dimensionalmetal/oxide nanocone arrays for high-performance electrochemicalpseudocapacitors[J]. Nanoscale,2014,6,3626-3631.
    [119] Z. Fan, Y. Liu, J. Yan. Template-directed synthesis of pillared-porous carbonnanosheet srchitectures: High-performance electrode materials for super-capacitors[J]. Adv. Energy Mater.,2012,2,419-424.
    [120] X. Q. Wang, C. G. Liu, D. Neff, P. F. Fulvio, R. T. Mayes, A. Zhamu, Q. Fang,G. R. Chen, H. M. Meyer, B. Z. Jang, S. Dai. Nitrogen-enriched orderedmesoporous carbons through direct pyrolysis in ammonia with enhancedcapacitive performance[J]. J. Mater. Chem. A,2013,1,7920-7926.
    [121] Y. H. Yang, J. H. Cui, M. T. Zheng, C. F. Hu, S. Z. Tan, Y. Xiao, Q. Yang, Y. L.Liu. One-step synthesis of amino-functionalized fluorescent carbonnanoparticles by hydrothermal carbonization of chitosan[J]. Chem. Commun.,2012,48,380-382.
    [122] J. W. Park, S. J. Park, O. S. Kwon, C. Lee, J. Jang, In situ synthesis ofgraphene/polyselenophene nanohybrid materials as highly flexible energystorage electrodes[J]. Chem. Mater.,2014,26,23542360.
    [123] H. L. Guo, Q. M. Gao. Boron and nitrogen co-doped porous carbon and itsenhanced properties as supercapacitor[J]. J. Power Source,2009,186,551-556.
    [124] E. Iyyamperumal, S. Y. Wang, L. M. Dai. Vertically aligned BCN nanotubeswith high capacitance[J]. ACS Nano,2012,6,5259-5265.
    [125] Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S. Z. Qiao. Two-step boron and nitrogendoping in graphene for enhanced synergistic catalysis[J]. Angew. Chem. Int. Ed.,2013,52,3110-3116.
    [126] Y. Zhao, L. J. Yang, S. Chen, X. Z. Wang, Y. W. Ma, Q. Wu, Y. F. Jiang, W. J.Qian, Z. Hu. Can boron and nitrogen co-doping improve oxygen reductionreaction activity of carbon nanotubes[J]? J. Am. Chem. Soc.,2013,135,1201-1204.
    [127] S. L. Xiong, C. Z. Yuan, X. J. Zhang, Y. T. Qian. Mesoporous NiO with varioushierarchical nanostructures by quasi-nanotubes/nanowires/nanorods self-assembly: controllable preparation and application in supercapacitors[J].CrystEngComm,2011,13,626-632.
    [128] S. H. Yoon, E. Kang, J. K. Kim, C. W. Lee, J. Lee.Development ofhigh-performance supercapacitor electrodes using novel ordered mesoporoustungsten oxide materials with high electricalconductivity[J]. Chem. Commun.,2011,47,1021-1023.
    [129] Q. Wu, H. S. Tao, K. Xie, N. Liu, L. S. Yu, Z. Hu. Modi ed redox synthesis andelectrochemical properties of potassium manganese oxide nanowires[J]. J. Mater.Chem.,2011,21,17904-17908.
    [130] Z. H. Wen, X. C. Wang, S. Mao, Z. Bo, H. Kim, S. M. Cui, G. H. Lu, X. L.Feng, J. H. Chen. Crumpled nitrogen-doped graphene nanosheets with ultrahighpore volume for high-performance supercapacitor[J]. Adv. Mater.,2012,24,5610-5616.
    [131] H. M. Sun, L. Y, Cao, L. H. Lu. Bacteria promoted hierarchical carbon materialsfor high-performance supercapacitor[J]. Energy Environ. Sci.,2012,5,6206-6213.
    [132] C. M. Chen, Q. Zhang, C. H. Huang, X. C. Zhao, B. S. Zhang, Q. Q. Kong, M.Z. Wang, Y. G. Yang, R. Cai, D. S. Su. Macroporous ‘bubble’ graphene lm viatemplate-directed ordered-assembly for high rate supercapacitors[J]. Chem.Commun.,2012,48,7149-7151.
    [133] D. Carriazo, M. C. Gutiérrez, F. Picó, J. M. Rojo, J. G. Fierro, M. L. Ferrer, F. D.Monte. Phosphate-functionalized carbon monoliths from deep eutectic solventsand their use as monolithic electrodes in supercapacitors[J]. ChemSusChem,2012,5,1405-1409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700