用户名: 密码: 验证码:
磺化聚苯并噁嗪质子交换膜的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池是一种清洁、高效的绿色环保能源,质子交换膜则是其核心部件,它为质子的迁移和输送提供通道,使得质子能够透过膜而从阳极到达阴极,与外电路的电子转移构成回路,向外界提供电流。因此质子交换膜的性能对燃料电池的性能起着非常重要的作用,它的好坏直接影响燃料电池的使用寿命。目前商业采用的是以Nafion为代表的全氟磺酸型质子交换膜,全氟磺酸膜具有高的质子电导率、化学稳定性和热稳定性,但高甲醇渗透性、高成本及温度依赖性的缺点阻碍了其在直接甲醇燃料电池中的发展和应用。含磺酸基的聚酰亚胺、聚苯并咪唑、聚芳醚砜等材料具有较好的耐热性能,但在磺化度较低时,质子电导率偏低,当磺化度达到一定值时,其尺寸稳定性、机械强度和阻醇性能又出现严重下降,同样降低了磺化芳香族聚合物的应用潜力。交联磺化芳香族聚合物可以有效提高了质子交换膜的综合性能,特别在抑制质子交换膜的过度溶胀和减少甲醇渗透方面效果显著。因此,本文首次以耐热性高、耐酸性强、化学稳定性好、成本低廉的聚苯并噁嗪作为骨架网络结构,通过分子设计将磺酸基团引入到聚苯并嗯嗪交联骨架上,来制备磺化聚苯并噁嗪质子交换膜,并对其合成、性能开展了系统研究,主要研究内容和结果如下:
     第一部分基于4-羟基苯磺酸钠的主链磺化型聚苯并噁嗪质子交换膜
     以二苯甲烷二胺、4-羟基苯磺酸钠、多聚甲醛为原料,合成了磺化苯并噁嗪单体,通过单体溶液的热浇注、固化成膜制备了磺化聚苯并噁嗪膜材料,该膜具有高的电导率和突出的阻醇性能。结果显示,甲醇渗透系数为5.8×10-8cm2s-,尤其适用于直接甲醇燃料电池,以其为组件的直接甲醇燃料电池测试结果表明,电池可以使用高达7M的甲醇浓度,目前在纯膜中报道最高。
     第二部分基于腰果酚的主链磺化型聚苯并噁嗪质子交换膜
     在第一部分的研究基础上,针对干膜韧性较差的缺点,我们选用含脂肪族柔性链的腰果酚为酚源,以双磺酸基联苯胺为胺源,合成了磺化聚苯并噁嗪质子交换膜。侧链分子长链为聚苯并噁嗪交联体系提供内增塑作用,在增加磺化聚苯并噁嗪薄膜的成膜性和柔韧性的同时,保证了高的质子传导率和较低的甲醇渗透系数。
     第三部分基于大麦芽碱的侧链磺化型聚苯并噁嗪质子交换膜
     我们又通过分子设计,选用含叔胺基团的大麦芽碱为酚源,与二苯甲烷二胺、多聚甲醛反应,得到含叔胺基团的苯并噁嗪单体,进而利用单体中叔胺基团的反应活性,与丙基磺酸内酯反应,得到侧链磺化的磺化聚苯并噁嗪薄膜,该结构通过在均聚合物内构建新的具有选择性的离子通道,并在聚苯并噁嗪共价交联的基础上,通过铵盐和磺酸之间的相互作用形成物理交联结构,进一步增加了聚合物分子的相互作用,从而更好地调节质子交换膜的参数平衡,在提高低湿度下质子导电率的同时,也进一步提高膜的尺寸稳定性和阻醇性能。
     综上所述,作为新型的非氟磺化聚电解质,磺化聚苯并噁嗪在质子交换膜燃料电池中具有一定的应用前景。
Fuel cell is a clean and efficient energy source for an environmentally responsible planet. Proton exchange membranes (PEMs) are key components of polymer fuel cells because they can provide an ionic pathway for proton transfer while prevent the mixing of reactant gases. Therefore, the property of a proton exchange membrane plays a very important role in the fuel cell performance. The most widely used PEM is Nafion membrane commercially available from DuPont. Nafion is the state-of-the-art material due to its high proton conductivity, good chemical and thermal stability. However, further application of Nafion is hinderedby high methanol crossover rate for direct methanol fuel cells (DMFCs), the strong temperature dependence of its proton conductivity, and the high cost. Alternative proton conducting materials, such as sufonic acid containning polyimides, polybenzimidazoles, and poly (arylene ether sulfone), exhibit excellent thermal stability, but the dimensional stability, mechanical strength, and methanol selectivity was poor with high degree of sulfonation, which also reduces the potential application of these sulfonated aromatic polymers. Crosslinked sulfonated aromatic polymers can effectively improve the overall performance of proton exchange membrane, particularly for the inhibition the excessive welling and reducing the methanol crossover behavior of PEMs. Thus, this paper firstly uses polybenzoxazine with high heat and acid resistance, and low cost propertis as the host network of the PEM. The sulfonic acid groups were intruduced to the benzine ring of polybenzoxazine by simple molecular design. The synthesis and property of sulfonated
     Part one:Main chain-type sulfonic acid-containing polybenzoxazine based on sodium4-hydroxybenzenesulfonate
     The sulfonic acid-containing benzoxazine monomer, abbreviated as SHS-ddm, was synthesized via Mannich reaction and acidizing reaction using sodium4-hydroxybenzenesulfonate,4,4'-diaminodiphenylmethane, and paraformaldehyde as raw materials. The crosslinked sulfonic acid-containing polybenzoxazine [poly (SHS-ddm)] membrane was prepared through high temperature solution casting of the monomer. Our results showed that poly(SHS-ddm) membrane exhibited a high proton conductivity and a very low methanol permeability of5.8×10-2cm2s-1, which is especially suited for direct methanol fuel cells. Employing this membrane in the membrane-electrode assembly (MEA), high methanol concentration up to7M was used, which is the highest one as reported for the pure PEM.
     Part two:Main chain-type sulfonic acid-containing polybenzoxazine based on cardanol.
     Based on the study of part one, we aim to improve the toughness of sulfonic acid-containing polybenzoxazine membrane by using a flexible aliphatic chain cardanol as the phenol source. The long aliphatic chain in each repeat unit of polybenzoxazine structure provide the plasticizing effect on the crosslinked macromolecules, which increased the flexibility of solfonic acid-containning polybenzoxazine membrane while ensuring its proton conductivity and low methanol permeability.
     Part three:Side chain-type sulfonic acid-containing polybenzoxazine based on hordenine.
     The hordenine-based benzoxazine monomer was synthesized via Mannich reaction and acidizing reaction using hordenine,4,4'-diaminodiphenylmethane, and paraformaldehyde as raw materials. Then, the sulfonic acid group was introduced via the reaction of1,3-propane sultone and hordenine-based benzoxazine monomer. A new selective ion channels was constructed in the homopolymer by the existence of zwitterionic groups. The physical interaction between the sulfonic acid and quaternary ammonium group can increase the macromolecule interaction so as to better adjust the balance of the membrane parameters. Properties of conductivity under low humidity, the dimensional stability and the methanol permeability will be improved simultaneously.
     In summary, as a novel non-fluorinated sulfonated polyelectrolyte, sulfonic acid-containning polybenzoxazine has the potential in the proton exchange membrane fuel cells.
引文
[1]S. Faure, N. Cornet, G. Gebel, In Proceeding of the Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems [M], Montreal, Canada, July 6-10,1997, p.818.
    [2]J.M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, N. Ogata, Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells [J], Solid State Ionics,2002,147,189-194.
    [3]S.G. Feng, Y.M. Shanga, S.B. Wang, X.F. Xie, Y.Z. Wang, Y.W. Wang, J.M. Xu, Novelmethod for the preparation of ionically crosslinked sulfonated poly(arylene ether sulfone)/polybenzimidazole composite membranes via in situ polymerization [J], Journal of Membrane Science,2010,346:105-112.
    [4]K. Shao, J. Zhu, G. Zhang, H. Na, W. Xing, Naphthalene-based poly (arylene ether ketone) copolymers containing sulfobutyl pendant groups for proton exchange membranes [J], Journal of Polymer Science Part A:Polymer Chemistry,2009,47, 5772-5783.
    [5]R. Wycisk, P.N. Pintauro, Sulfonated polyphosphazene ion exchange membranes [J], Journal of Membrane Science,1996,119,155-160.
    [6]S.P. Yen, S.R. Narayanan, G. Halpert, Polymer material for electrolytic membranes fuel cell [J], US Patent 5,795,496,1998.
    [7]R. Nolte, K. Ledjeff, M. Bauer, Partially sulfonated poly (arylene ether sulfone)-A versatile proton conducting membrane material for modern energy conversion technologies [J], Journal of Membrane Science,1993,83,211-220,
    [8]S.D. Mikhailenko, K. Wang, S. Kaliaguine, Journal of Membrane Science,2004,233,93-99.
    [9]S. Gu, G. He. H.X. Wu. M, Preparation and characteristics of cross-linked sulfonated poly (phthalazinone ether sulfone ketone) with poly (vinyl alcohol) for proton exchange membrane [J], Journal of Membrane Science,2008,312,48-58.
    [10]J.H. Fang, F.X. Zhai, X.X. Guo, H.J. Xu, K. Okamoto, A facile approach for the preparation of crosslinked sulfonated polyimide membranes for fuel cell application [J], J. Mater. Chem., 2007,17,1102-1108.
    [11]J. Kerres, W. Cui, M. Junginger, Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU crosslinked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes [J], Journal of Membrane Science, 1998,139,227-241.
    [12]J. Rhim, H.B. Park, C. Lee, Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group:proton and methanol transport through membranes [J], Journal of Membrane Science,2004,238,143-151.
    [13]H. Li, G. Zhang, J. Wu, C. Zhao, Y. Zhang, K. Shao, M. Han, H. Lin, J. Zhu, H. Na, A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells [J], Journal of Power Sources,2010,195,6443-6449.
    [14]D.S. Phu, C.H. Lee, C.H. Park, Synthesis of Crosslinked Sulfonated Poly (phenylene sulfide sulfone nitrile) for Direct Methanol Fuel Cell Applications [J], Macromolecular rapid communications,2009,30,64-68.
    [15]S.G. Feng, Y.M. Shang, G. Liu, W. Dong, X. Xie, J. Xu, V.K. Mathur, Novel modification method to prepare crosslinked sulfonated poly(ether ether ketone)/silica hybrid membranes for fuel cells [J], Journal of power sources,2010,195,6450-6458.
    [16]D.K. Lee, K.J. Lee, Y.W. Kim, Synthesis and characterization of crosslinked triblock copolymers for fuel cells [J], Desalination,2008,233,104-112.
    [17]S.L. Zhong, C.G. Liu, H. Na, Preparation and properties of UV irradiation induced crosslinked sulfonated poly (ether ether ketone) proton exchange membranes [J], Journal of Membrane Science,2009,326,400-407.
    [18]S.C. Gil, J.C. Kim, D. Ahn, J. Jang, H. Kim, Thermally crosslinked sulfonated polyethersulfone proton exchange membranes for direct methanol fuel cells [J], Journal of Membrane Science,2012,417-418,2-9.
    [19]Y.S. Oh, H.J. Lee, M. Yoo, Synthesis of novel crosslinked sulfonated poly (ether sulfone) using bisazide and their properties for fuel cell application [J], Journal of Membrane Science,2008,323,309-315.
    [20]P.B. Tripathic, V.K. Shahi,3-[[3-(Triethoxysilyl)propyl] amino] propane-1-sulfonic Acid-Poly(vinyl alcohol) Cross-Linked Zwitterionic Polymer Electrolyte Membranes for Direct Methanol Fuel Cell Applications [J], Applide materials & interfaces,2009,1, 1002-1012.
    [21]S.S. Gao, C.J. Zhao, H. Na, Effect of crosslinking on the durability and electrochemical performance of sulfonated aromatic polymer membranes at elevated temperatures [J], Journal of power sources,2012,214,285-291.
    [22]X. Ning, H. Ishida, Phenolic materials via ring-opening polymerization:Synthesis and characterization of bisphenol-A based benzoxazines and their polymers [J], J. Polym. Sci. Part A:Polym. Chem.,1994,32,1121-1129.
    [23]顾宜,鲁在君,谢美丽,蔡兴贤,“开环聚合酚醛树脂与纤维增强复合材料”, 中国专利, CN94111852.5,1996.
    [24]门薇薇,鲁在君,高性能聚苯并噁嗪树脂,化学进展,19,779-786,2007.
    [25]W. Li, T. Wei, K. Xi, X. Jia, Preparation of novel benzoxazine monomers containing ferrocene moiety and properties of polybenzoxazines [J], Polymer,2012,53,1236-1244.
    [26]S. Choi, J. Park, W. Lee, Phosphorous containing benzoxazine-480 based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell including the same, and fuel cell employing the same. U S 8,192,892 B2, Jun 5,2012.
    [27]S. Choi, J. Park, Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode. US 2012/0219876 Al, Aug 30,2012.
    [28]S. Choi, J. Park, C. Pak, K.H. Choi, J.C. Lee, H. Chang, Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(benzoxazine) and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell [J], Polymer,2013,5,77-111.
    [29]S.K. Kim, T. Ko, S.Choi, J.O. Park, K.H. Kim, C. Pak, H. Chang, C.J. Lee, Durable cross linked copolymer membranes based on poly(benzoxazine) and poly(2,5-benzimidazole) for use in fuel cells at elevated temperatures [J], J. Mater. Chem.,2012,22,7194-7205.
    [30]S.K. Kim, T. Ko, K. Kim, S.W Choi, J.O Park, K.H Kim, C. Pak, H. Chang, J.C Lee, Poly [2,2'-(m-phenylene)-5,5'-bibenzimidazole] and poly [6-fluoro-3-(pyridin-2-yl)-3,4-dihydro-2H-benzoxazine] based polymer electrolyte membranes for fuel cells at elevated temperature [J], Macromol. Res.,2012,20,1181-190.
    [31]S.K. Kim, S.W. Choi, W.S. Jeon, J.O. Park, T. Ko, H. Chang, J.C. Lee, Cross-Linked Benzoxazine-Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated Temperature [J], Macromolecules,2012,45,1438-1446.
    [32]N.H Chen, H.Y Li, J.Y Lai, Y.L Liu, Synthesis and characterization of benzoxazine-containing, crosslinkable, and sulfonated polymer through Diels-Alder reaction for direct methanol fuel cells [J], Polymer,2013,54,2096-2014.
    [33]Y.S. Ye, Y.C. Yen, C.C. Cheng, W.Y. Chen, L.T. Tsai, F.C. Chang, Sulfonated poly(ether ether ketone) membranes crosslinked with sulfonic acid containing benzoxazine monomer as proton exchange membranes [J], Polymer,2009,50,3196-3203.
    [34]Y.P. Zhang, M.Z. Yue, Y. Chen. Proton Exchange Membrane Based on Sulfonated Polyimide for Fuel Cells:State-of-the-Art and Recent Developments [J], Advanced Materials Research,2011,239-242,3032-3038.
    [35]F. Sun, T.P. Wang, S.Y. Yang, L. Fan. Synthesis and characterization of sulfonated polyimides bearing sulfonated aromatic pendant group for DMFC application [J], Polymer, 2010,51,3997-3898.
    [36]J. Li, X.J. Li, Y. Zhao, W.T. Lu, Z.G. Shao, B.L. Yi, High-Temperature Proton Exchange Membrane Fuel Cells Using an Ether-Containing Polybenzimidazole Membrane as Electrolyte [J], Chem.Sus.Chem.,2012,5,896-900.
    [37]G Wang, G. Xiao, D.Y. Yan. Synthesis and properties of solufonated poly-benzimidazoles derived from asymmetric dicarboxylic acid monomers with sulfonate group as proton exchange membrane, Journal of Membrane Science 369,388-396,2010.
    [38]F. Wang, M. Hickner, J.E. McGrath, Direct polymerization of sulfonated poly-(arylene ether sulfone) random (statistical) copolymers:candidates for new proton exchange membranes [J], Journal of Membrane Science,2002,197,231-242.
    [39]J. Ren, S. Zhang, Y. Liu,Y. Wang, J. Pang, Qi. Wang, G Wang. A novel crosslinking organic-inorganic hybrid proton exchange membrane based on sulfonated poly (arylene ether sulfone) with 4-amino-phenyl pendant group for fuel cell application [J], Journal of Membrane Science,2013,34,161-170.
    [40]C. Zhao, X.Li, H. Lin, K. Shao, H. Na, Sulfonated Poly (arylene ether ketone)s Prepared by Direct Copolymerization a Proton Exchange Membranes:Synthesis and Comparative Investigation on Transport Properties [J], Journal of Applied Polymer Science,2008,108, 671-680.
    [41]Z. Zhang, T. Xu. Poly (ether ketone)s Bearing Pendent Sulfonate Groups via Co-polyacylation of a Sulfonated Monomer and Isomeric AB-type Comonomers [J], Journal of polymer science Part A:Polymer Chemistry,2014,52,200-207.
    [42]B. Liu, G.P. Robertson, D.S. Kim, M.D. Guiver, W. Hu, Z. Jiang. Aromatic Poly (ether ketone)s with Pendant Sulfonic Acid Phenyl Groups Prepared by a Mild Sulfonation Method for Proton Exchange Membranes [J], Macromolecules,2007,40,1934-1944.
    [1]K. Matsumoto, T, Higashihara, M. Ueda, Locally and densely sulfonated poly (ether sulfone)s as proton exchange membrane [J], Macromolecules 2009,42,1161-1166.
    [2]K.A. Mauritz, R.B. Moore, State of Understanding of Nafion [J], Chem. Rev.,2004,101, 4535-4586.
    [3]M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. Mcgrath, Alternative polymer systems for proton exchange membranes (PEMs) [J], Chem. Rev.2004,104,4587-4611.
    [4]J. Ge, H. Liu, Experimental studies of a direct methanol fuel cell [J], J. Power Sources 2005, 142,56-69.
    [5]Y.A. Elabd, M.A. Hickner, Block Copolymers for Fuel Cells [J], Macromolecules 2011,44, 1-11.
    [6]N.W. Deluca, Y.A. Elabd, Polymer electrolyte membranes for the direct methanol fuel cell:a review [J], J. Polym. Sci., Part B:Polym. Phys.2006,44,2201-2225.
    [7]J. Qiao, T. Hamaya, T. Okada, Chemically modified poly (vinyl alcohol)-poly (2-acryamido-2-methyl-l-propancsulfonic acid) as a novel proton-conducting fuel cell membrane [J]. Chem. Mater.,2005,17,2413-2421.
    [8]N.N. Ghosh, B. Kishan, B, Y. Yagci, Polybenzoxazines-New high performance thermo setting resins:Synthesis and properties [J], Prog. Polym. Sci.,2007,32,1344-1391.
    [9]H. Ishida, D.P. Sanders, Regioselectivity and Network Structure of Difunctional Alkyl Substituted Aromatic Amine Based Polybenzoxazines [J], Macromolecules 2000,33, 8149-8157.
    [10]Y.S. Ye, Y.C. Yen, C.C. Cheng, W.Y. Chen, L.T. Tsai, F.C. Chang, Sulfonated poly (ether ether ketone) membranes crosslinked with sulfonic acid containing benzoxazine monomer as proton exchange membranes [J], Polymer,2009,50,3196-3203.
    [1]S. Gu, G.H. He, X.M. Wu, C.N. Li, H.J. Liu, C. Lin, X.C. Li, Synthesisi and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC) [J], Journal of membrane science,2006,281,121-129.
    [2]王芳,唐浩林,潘牧,袁润章,PEMFC膜电极材料退化的研究进展[J],电池,2007,37,61-66.
    [3]A.B. Laconti, M. Hamdan, R.C. MeDonald, Fuel Cell Handbook [M], New Jersey:Wiley, 2003,648-652.
    [4]T. Takeichi, Y. Guo, T. Agag, Synthesis and charcterization of poly(urethane-benzoxazine) films as novel type of polyurethane/phenolic resin composites [J], J. Appl. Polym. Sci.,2000, 38,4165-4176.
    [5]H. Xiang, H. Ling, Y. Gu, Modification of benzoxazine with ATBN rubber [J],2010,38, 66-70.
    [6]H. Ardhyananta, M.H. Wahid, M. Sasaki, Performance enhancement of poly-benzoxazine by hybridization with polysiloxane [J], Polymer,2008,49,4585-4591.
    [7]胡应模,郭明高,腰果壳液的组成、化学性质及其应用[J],中国生漆,1990,1,33-42.
    [8]刘红果,徐丽,冯世敬,二胺型腰果酚基苯并噁嗪的合成工艺[J],化工进展,2012,31,466-469.
    [9]B.S. Rao, A. Palanisamy, Monofunctional benzoxazine from cardanol for bio-composite applications [J], React. Funct. Polym.,2011,71,148-154.
    [10]B.S. Rao, A. Palanisamy, A new thermo set system based on.cardanol benzoxazine and hydroxyl benzoxazoline with lower cure temperature[J], Progress in Organic Coatings,2012, 74,427-434.
    [1]C.Wang, N. LI, D. W. Shin. Fluorene-based poly (arylene ether sulfone)s containing clustered flexible pendant sulfonic acids as proton exchange membranes [J], Macromolecules, 2011,44,7296-7306.
    [2]K. Miytake, A. S. Hay. Synthesis and properties of poly(arylene ether)s bearing sulfonic acid groups on pendant phenyl rings [J], Journal of Polymer Science Part A:Polymer Chemistry, 2001,39,3211-3217.
    [3]K. Matsumoto, T.Higashihara, M.Ueda. Locally and densely sulfonated poly (ether sulfone)s as proton exchange membrane [J], Macromolecules,2009,42,1161-1166.
    [4]W. Jang, S.Sundar, S.S. Choi. Acid-base polyimide blends for the application as electrolyte membranes for fiiel cells [J], Journal of Membrane Science,2006,28,321-329.
    [5]M.M. Guo, B.J. Liu, Z. Liu. Novel acid-base molecule enhanced blends/copolymers for fuel cell applications [J], Journal of Power Sources,2009,189,894-901.
    [6]H.Q. Zhang, X.F. Li, C.J. Zhao, T.Z. Fu, Y.H. Shi, H. Na. Composite membranes based on highly sulfonated PEEK and PBI:Morphology characteristics and performance [J], Journal of Membrane Science,2008,308,66-74.
    [7]P.B. Tripathic, V.K. Shahi,3-[[3-(Triethoxysilyl)propyl] amino]propane-l-sulfonic Acid Poly(vinyl alcohol) Cross-Linked Zwitterionic Polymer Electrolyte Membranes for Direct Methanol Fuel Cell Applications [J], Applied materials & interfaces,2009,1,1002-1012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700