用户名: 密码: 验证码:
喜树碱插层LDHs纳米杂化物的制备、修饰及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状双金属氢氧化物(Layered Double Hydroxides,简称LDHs),又称为类水滑石(Hydrotalcite-like compounds,简称HTlc),是由两种或两种以上金属元素组成的具有水滑石层状结构的氢氧化物,层板由于同晶取代而荷结构正电荷,层间存在可交换的阴离子,近期在药物载体中的应用受到广泛关注。药物分子可插入LDHs层间形成纳米杂化物,由于药物分子与层板间的相互作用及空间位阻效应而具有良好的药物缓释效果,被认为是极具应用前景的药物缓释新剂型。
     药物插层LDHs(简记为药物-LDHs)纳米杂化物的制备已有很多研究报道,常用的方法有离子交换、共沉淀和结构重建等,但这些方法多适合于阴离子型水溶性药物,而对非离子型(或电中性)疏水性(水难溶性)药物难以实现有效负载,因缺乏插层驱动力。为此,提出了二次插层法(secondary intercalation method)和药物修饰-离子交换法等,可实现疏水性药物的插层负载,但载药量低。近期,很多文献报道了LDHs的剥离-重组装(Delamination-reassembly)研究。在一定条件下,LDHs颗粒可剥离成单元晶片或纳米片(nanosheets),与有机物重组装可恢复层状结构而形成有机-LDHs纳米杂化物,并已成功用于有机-LDHs超薄膜和高分子-LDHs纳米杂化物的制备,过程简易、条件温和,但用于药物-LDHs纳米杂化物的制备还未见报道。因此,探索剥离-重组装法制备药物-LDHs纳米杂化物的可行性及特点,对LDHs基药物靶向控释剂型的研发具有重要意义。
     另外,通常制备的药物-LDHs纳米杂化物分散性差、聚集严重,限制其实际临床应用。如何有效地改善药物-LDHs纳米杂化物的分散稳定性,是一个亟待解决的问题。脂质体(或囊泡)是由磷脂分子的闭合双分子层包裹水相核所形成的一种有序分子组合体,用作药物载体的研究已有大量文献报道。我们设想,脂质体也可作为修饰体,用于包覆修饰药物-LDHs纳米杂化物形成复合体,可简记为(药物-LDHs)@脂质体复合体,预期脂质体膜的空间保护作用能有效改善纳米杂化物的分散稳定性;加之脂质体本身就具有良好的生物相容性,且易于靶向修饰,因此有望构筑成一类新型的药物靶向控释体系,是一个值得探索研究的课题。
     喜树碱(Capmtothecin, CPT)是一种已应用于临床治疗的抗肿瘤药物,也是相关研究中常采用的非离子型疏水性药物模型,抗癌活性强,但毒副作用大,且有效期短,实际临床效果并不理想,研制靶向缓释剂型对其临床应用具有重要意义。
     本文以CPT为非离子型疏水性药物模型,探索研究了剥离-重组装法制备CPT-LDHs纳米杂化物,脂质体包覆修饰纳米杂化物制备(CPT-LDHs)@脂质体复合体,并对其载药量、晶体结构、形貌等进行了表征,考察了药物释放行为和分散稳定性等性能,以期为LDHs基药物缓释剂型的研制提供依据。
     本文的主要研究内容和结论:
     (1)研究了剥离-重组装法制备脱氧胆酸根(deoxycholate, DC)-LDHs纳米杂化物,并对其进行了表征;考察了制备条件对晶体结构和DC负载量的影响,探索了DC在层间的分布状态。其目的一是考察剥离-重组装法的可行性和特点,二是构建一个可负载非离子型疏水性药物的通用平台(或复合物体系)。结果表明,剥离-重组装是制备LDHs纳米杂化物的有效途径,且过程简单,条件温和(常温),通过改变原料比例即可方便地调控晶体结构和客体负载量。
     (2)研究了剥离-重组装法制备CPT-LDHs纳米杂化物,并对其进行了表征。首先,用生物相容性的表面活性剂(surfactant, Sur)胆酸钠(sodium cholate, Ch)或脱氧胆酸钠(sodium deoxycholate, DC)包覆CPT形成载药胶束,再与LDHs剥离纳米片共组装,形成CPT-Sur-LDHs纳米杂化物。考察了制备条件对载药量的影响以及药物释放行为,探讨了CPT及表面活性剂阴离子(Ch或DC)在LDHs层问的分布状态。结果表明,所采用的剥离-重组装法可实现CPT的高效负载,载药量可达13.5%;Ch或DC在LDHs层间呈双层排列,CPT插于其中;纳米杂化物具有明显的药物缓释效果,释放过程复合Bhaskar方程和Parabolic扩散模型,颗粒内部扩散为释放过程的速控步骤。
     (3)以蛋黄卵磷脂为主要成膜物质,逆向蒸发法形成脂质体,对脂质体包覆修饰CPT-LDHs纳米杂化物进行了研究,考察了所形成(CPT-LDHs)@脂质体复合体的形貌、分散稳定性、再分散性以及药物释放行为等。结果表明,复合体具有良好的分散稳定性和再分散性,证明脂质体包覆修饰是解决药物-LDHs纳米杂化物分散性差的有效途径;另外,与CPT-LDHs纳米杂化物相比,复合体表现出更好的药物缓释性能,表明是具有发展潜力的新型药物控释体系。
     (4)研究了CPT-氧化石墨烯(graphene oxide, GO)-LDHs纳米杂化物的共组装法制备,以探索新型载药体系。现将CPT负载于GO单层片表面,再与LDHs纳米片共组装,形成CPT-GO-LDHs纳米杂化物,考察了纳米杂化物的载药量和药物释放行为。结果表明,CPT-GO-LDHs纳米杂化物载药量明显低于CPT-Sur-LDHs纳米杂化物,仅为13.4mg/g(或1.34%),但具有良好的缓释效果,有何有效提高载药量是一个有待研究的问题。
Layered double hydroxides (LDHs), also called anionic clays or hydrotalcite-like compounds, are an important class of layered inorganic materials. The brucite-like LDH layers possess structural positive charges due to the isomorphous substitution, which are counterbalanced by interlayer hydrated anions. LDHs are widely studied as drug delivery system. The drug can be intercalated into the gallery of LDHs to form the drug-LDH nanohybrids, which are considered as potential drug delivery and controlled-release system because of the host-guest interaction and steric-hinerance effect.
     There have been many reports on the synthesis of drug-LDH nanohybrids, mainly including co-precipitation, ion exchange, reconstruction and hydrothermal methods. Nevertheless, these conventional methods are most suitable for the intercalation of anionic water-soluble drugs. It is difficult for the water-insoluble or neutral charge drugs to be intercalated into the interlayer of LDHs due to the lack of driving force. Thus, the secondary intercalation or drug-modification ion exchange methods were raised to prepare the water-insoluble drug intercalated LDH nanohybrids. Recently, the delamination of LDHs attracts much attention because the nanosheets can be used as positive charged building block to prepare nanohybrid materials. And the delamination-reassembly is widely studied to synthesis organic-LDH ultrathin film and macromolecule-LDH nanohybrids thanks to their facile process and mild conditions. But to the best of our knowledge, the delamination/reassembling process has not been reported to prepare the drug-LDHs nanohybrids. Therefore, it is important to explore the feasibility and characteristics of delamination/reassembling method to synthesis the drug-LDHs nanohybrids for the targeted drug delivery-controlled release systems.
     In addition, the clinical application is limited for the poor water dispersion and serious aggregation. In order to solve these problems, liposome has been introduced into related study. Liposome is an artificially prepared spherical vesicle composed of a lipid bilayer with an aqueous interior, which is widely studied as drug delivery system. Herein, we make an assumption that liposome is used as a modification material for the coating of drug-LDH nanohybrids to improve the water dispersion of nanohybrids owing to steric-hinerance effect. Accordingly, the drug-LDHs@liposome nanocomposites have the potential to be a new targeted drug controlled-release system for the biocompatibility and surface modification.
     Camptothecin (CPT) is a kind of efficient clinical anticancer drug. But its application has been limited by the poor solubility, toxicity, side effect and short effective reaction time. So it is of great importance to develop the new delivery system for improving the solubility, stability and controlling the release of CPT.
     In this work, we take the water-insoluble and charge-neutral anticancer drug, CPT, as model drug to explore the preparation of CPT-LDH nanohybrids via delamination-reassembling method. The CPT-LDH@liposome nanocomposites were also synthesized by reverse evaporation method. In order to reach better understanding of drug-LDHs system, the drug loading amounts, crystal structure, morphology of CPT-LDH nanohybrids and CPT-LDH@liposome nanocomposites were characterized by XRD, TEM, UV-vis, Zeta potential, particle size and so on. Besides, the drug release and dispersibility were studied as well.
     Main contents and conclusions:
     (1) We chose the biocompatible surfactant deoxycholate as the guest molecule and Mg3Al-NO3LDH as the host material to synthesis DC-LDH nanohybrids via the delamination/reassembling method. The so-synthesized nanohybrids were characterized by XRD, TEM, FT-IR, elemental analyses and TG-DSC. The DC anions arrange as a slight tilted bilayer with the long axis perpendicular to the brucite-like layer. The feasibility and characteristic of delamination/reassembling method were investigated. It was proved that this strategy exhibited the advantages of short reaction time and mild experimental conditions and the loading amount of DC in the nanohybrids could be easily controlled by changing the ratio of DC to LDH. What's more, a new system was built for the encapsulation of water-insoluble drugs.
     (2) We chose the water insoluble anticancer drug, CPT, as the guest molecule and Mg3Al-NO3LDH as the host material to synthesis CPT-LDH nanohybrids via the delamination/reassembling method. The so-synthesized nanohybrids were characterized by XRD, TEM, FT-IR, elemental analyses and UV-vis. For this route, CPT molecules were initially incorporated into the micelles of a biocompatible surfactant, such as sodium cholate (SCh) or sodium deoxycholate (SDC). The resulting negatively charged CPT-loaded micelles and the positively charged LDH nanosheets were then co-assembled together to form CPT-Sur-LDH nanohybrids. It revealed that the loading of CPT in the nanohybrids could reach as high as13.5%, indicating that this route could be used to achieve the effective intercalation of charge-neutral and poorly water-soluble drugs into the LDH gallery. The in vitro release of CPT from the nanohybrids had been examined, and the results showed that the release was a diffusion-controlled process and that the diffusion process through the LDH particles was the rate-limiting step. The parabolic diffusion equation effectively described the kinetic process associated with the release of CPT from the nanohybrids.
     (3) The nanocomposites of liposome coated CPT-LDHs were synthesized by the optimized reverse evaporation method. The morphology, mean diameter, stability, and redispersion were characterized. CPT-LDHs were successfully encapsulated in the aqueous interior of liposome. It indicated that the CPT-LDH@liposome nanocomposites have good dispersion stability and re-dispersibility in water. The coating of liposome outside the CPT-LDH nanohybrids is an effective method to solve the problem of poor dispersion stability. The in vitro release profiles of CPT from the nanocomposites were examined, indicating that the nanocomposite is a novel pH-responsive drug delivery system and the diffusion through the particles the rate limiting step.
     (4) Ananohybrid of CPT-graphene oxide (GO)-LDHs is synthesized by using the delamination-coassembling method. For the coassembly route, CPT molecules were initially loaded on the surface of GO nanosheets; the resulting negatively charged CPT-loaded GO nanosheets and the positively charged LDH nanosheets were then coassembled together into the layered CPT-GO-LDH nanohybrid, in which the GO nanosheets and the LDH nanosheets were alternatively stacked and the CPT molecules were located in its interlay er gallery. The so-obtained nanohybrid was characterized by XRD、TEM、FT-IR、UV-vis and TGA/DSC. The drug loading amount, only13.4mg/g (1.34%), is lower than the CPT-Sur-LDH nanohybrids, which would be addressed in the future work.
引文
[1]Cavani, F.; Trifiro, F.; Vaccari, A., Hydrotalcite-type anionic clays:Preparation, properties and applications. Catalysis today,1991,11(2),173-301;
    [2]Vaccari, A., Preparation and catalytic properties of cationic and anionic clays. Catalysis Today,1998,41 (1),53-71.
    [3]侯万国;张春光,氢氧化铝镁正电溶胶制备及性能研究.高等学校化学学报,1995,16(8),1292-1294.
    [4]Amin, S.; Jayson, G, Humic substance uptake by hydrotalcites and PILCs. Water Research,1996,30 (2),299-306.
    [5]Reichle, W. T., Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics,1986,22 (1),135-141.
    [6]Feitknecht, W., Uber die Bildung von Doppelhydroxyden zwischen zwei-und dreiwertigen Metallen. Helvetica Chimica Acta,1942,25 (3),555-569
    [7]Aramendia, M. A; Aviles, Y.; Borau, V.; Luque, J. M; Marinas, J. M.; Ruiz, J. R.; Urbano, F. J., Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides:a spectroscopic study. Journal of Materials Chemistry,1999,9 (7), 1603-1607.
    [8]Thevenot, F.; Szymanski, R.; Chaumette, P., PREPARATION AND CHARACTERIZATION OF Al-RICH Zn-Al HYDROTALCITE-LIKE COMPOUNDS. Clays and Clay Minerals,1989,37 (5,396),102.
    [9]Chibwe, K.; Jones, W., Intercalation of organic and inorganic anions into layered double hydroxides. Journal of the Chemical Society, Chemical Communications, 1989, (14),926-927.
    [10]Reichle, W. T., Catalytic reactions by thermally activated, synthetic, anionic clay minerals. Journal of Catalysis,1985,94 (2),547-557.
    [11]Weir, M. R.; Kydd, R. A., Synthesis of heteropolyoxometalate-pillared Mg/Al, Mg/Ga, and Zn/Al layered double hydroxides via LDH-hydroxide precursors. Inorganic chemistry,1998,37 (21),5619-5624.
    [12]Li, W. Z.; Lu, J.; Chen, J. S.; Li, G. D.; Jiang, Y. S.; Li, L. S.; Huang, B. Q., Phenoxymethylpenicillin-intercalated hydrotalcite as a bacteria inhibitor. Journal of Chemical Technology and Biotechnology,2006,81 (1),89-93.
    [13]Evans, D. G.; Duan, X., Preparation of layered double hydroxides and then-applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chemical Communications,2006, (5),485-496.
    [14]Radha, A.; Vishnu Kamath, P.; Shivakumara, C., Mechanism of the anion exchange reactions of the layered double hydroxides (LDHs) of Ca and Mg with Al. Solid State Sciences,2005,7 (10),1180-1187.
    [15]Pausch, I.; Lohse, H.; Schumann, K.;Allmann, R., Synthesis of disordered and Al-rich hydrotalcite-like compounds, Clays Clay Miner,1986(34),507-510.
    [16]Ogawa, M.; Kaiho, H., Homogeneous precipitation of uniform hydrotalcite particles. Langmuir,2002,18 (11),4240-4242.
    [17]谢晖;矫庆泽;段雪,镁铝型水滑石水热合成.应用化学,2001,18(1),70-72.
    [18]Zhang, Y.; Wang, L.; Zou, L.; Xue, D., Crystallization behaviors of hexagonal nanoplatelet MgAl-CO3 layered double hydroxide. Journal of Crystal Growth, 2010,312 (22),3367-3372.
    [19]Han, Y.; Liu, Z.-H.; Yang, Z.; Wang, Z.; Tang, X.; Wang, T.; Fan, L.; Ooi, K., Preparation of Ni2+-Fe3+layered double hydroxide material with high crystallinity and well-defined hexagonal shapes. Chemistry of Materials,2007,20 (2),360-363.
    [20]Ogawa, M.; Asai, S., Hydrothermal synthesis of layered double hydroxide-deoxycholate intercalation compounds. Chemistry of materials, 2000,12 (11),3253-3255.
    [21]Ennadi, A.; Legrouri, A.; De Roy, A.; Besse, J. P., Shape and size determination for zinc-aluminium-chloride layered double hydroxide crystallites by analysis of X-ray diffraction line broadening. Journal of Materials Chemistry,2000,10 (10), 2337-2341.
    [22]Prinetto, F.; Ghiotti, G.; Graffin, P.; Tichit, D., Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples. Microporous and Mesoporous Materials,2000,39 (1), 229-247.
    [23]Hansen, H. C. B.; Koch, C. B., Synthesis and properties of hexacyanoferrate interlayered in hydrotalcite. I. Hexacyanoferrate (Ⅱ). Clays and clay minerals, 1994,42 (2),170-179.
    [24]杜以波,微波技术在制备水滑石中的应用.应用科学学报,1998,16(3),349-354.
    [25]Gastuche, M.; Brown, G; Mortland, M., MIXED MAGNESIUM-ALUMINIUM HYDROXIDES. Clay Minerals 1967,7,177.
    [26]Kloprogge, J. T.; Frost, R. L., Infrared emission spectroscopic study of the dehydroxylation of synthetic Mg/Al and Mg/Zn/Al-hydrotalcites. Physical Chemistry Chemical Physics,1999,1 (7),1641-1647.
    [27]Weir, M. R.; Kydd, R. A., Synthesis of heteropolyoxometalate-pillared Mg/Al, Mg/Ga, and Zn/Al layered double hydroxides via LDH-hydroxide precursors. Inorganic chemistry,1998,37 (21),5619-5624.
    [28]Ma, R.; Liu, Z.; Li, L.; Iyi, N.; Sasaki, T., Exfoliating layered double hydroxides in formamide:a method to obtain positively charged nanosheets. Journal of Materials Chemistry,2006,16 (39),3809-3813.
    [29]Evans, D. G.; Slade, R. C., Structural aspects of layered double hydroxides. In Layered double hydroxides, Springer,2006,1-87.
    [30]Coq, B.; Tichit, D.; Ribet, S., Co/Ni/Mg/Al layered double hydroxides as m precursors of catalysts for the hydrogenation of nitriles:hydrogenation of acetonitrile. Journal of Catalysis,2000,189 (1),117-128.
    [31]Lee, Y; Choi, J. H.; Jeon, H. J.; Choi, K. M; Lee, J. W.; Kang, J. K., Titanium-embedded layered double hydroxides as highly efficient water oxidation photocatalysts under visible light. Energy & Environmental Science, 2011,4 (3),914-920.
    [32]Zhao, Q.; Chang, Z.; Lei, X.; Sun, X., Adsorption behavior of thiophene from aqueous solution on carbonate-and dodecylsulfate-intercalated ZnAl layered double hydroxides. Industrial & Engineering Chemistry Research,2011,50 (17), 10253-10258.
    [33]Wang, L.; Wang D.; Dong X. Y; Zhang, Z. J.; Pei X. F.; Chen, X. J.;Chen B.; Jin, J., Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chemical Communications, 2011,47 (12),3556-3558.
    [34]Tyner, K. M.; Schiffman, S. R.; Giannelis, E. P., Nanobiohybrids as delivery vehicles for camptothecin. Journal of Controlled Release,2004,95 (3),501-514.
    [35]Choy, J. H.; Kwak, S. Y.; Jeong, Y J.; Park, J. S., Inorganic layered double hydroxides as nonviral vectors. Angewandte Chemie International Edition,2000, 39 (22),4041-4045.
    [36]Rey, F.; Fornes, V.; Rojo, J. M., Thermal decomposition of hydrotalcites. An infrared and nuclear magnetic resonance spectroscopic study. Journal of the Chemical Society, Faraday Transactions,1992,88 (15),2233-2238.
    [37]Hibino, T.; Tsunashima, A., Characterization of repeatedly reconstructed Mg-Al hydrotalcite-like compounds:gradual segregation of aluminum from the structure. Chemistry of materials,1998,10 (12),4055-4061.
    [38]Rhee, S.; Kang, M.; Kim, H.; Moon, C, Removal of aquatic chromate ion involving rehydration reaction of calcined layered double hydroxide (Mg-Al-CO3). Environmental technology,1997,18 (2),231-236.
    [39]Das, N.; Konar, J.; Mohanta, M.; Srivastava, S., Adsorption of Cr (VI) and Se (IV) from their aqueous solutions onto Zr4+-substituted ZnAl/MgAl-layered double hydroxides:effect of Zr Substitution in the layer. Journal of colloid and interface science,2004,270 (1),1-8.
    [40]You, Y.; Zhao, H.; Vance, G. F., Hybrid organic-inorganic derivatives of layered double hydroxides and dodecylbenzenesulfonate:preparation and adsorption characteristics. Journal of Materials Chemistry,2002,12 (4),907-912.
    [41]Zaghouane-Boudiaf, H.; Boutahala, M.; Arab, L., Removal of methyl orange from aqueous solution by uncalcined and calcined MgNiAl layered double hydroxides (LDHs). Chemical Engineering Journal,2012,187,142-149.
    [42]Wang, Z.; Han, E.; Ke, W., Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Progress in Organic Coatings, 2005,53 (1),29-37.
    [43]Li, L.; Ma, R.; Ebina, Y.; Iyi, N.; Sasaki, T., Positively charged nanosheets derived via total delamination of layered double hydroxides. Chemistry of materials,2005,17 (17),4386-4391.
    [44]Liu, Z.; Ma, R.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T., Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide:Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. Journal of the American Chemical Society,2006,128 (14),4872-4880.
    [45]Kang, H.; Huang, G.; Ma, S.; Bai, Y.; Ma, H.; Li, Y.; Yang, X., Coassembly of inorganic macromolecule of exfoliated LDH nanosheets with cellulose. The Journal of Physical Chemistry C,2009,113 (21),9157-9163.
    [46]Vial, S.; Prevot, V.; Leroux, F.; Forano, C., Immobilization of urease in ZnAl layered double hydroxides by soft chemistry routes. Microporous and Mesoporous Materials,2008,107 (1),190-201.
    [47]An, Z.; Lu, S.; He, J.; Wang, Y., Colloidal assembly of proteins with delaminated lamellas of layered metal hydroxide. Langmuir,2009,25 (18),10704-10710.
    [48]Han, J.; Yan, D.; Shi, W.; Ma, J.; Yan, H.; Wei, M.; Evans, D. G.; Duan, X., Layer-by-layer ultrathin films of azobenzene-containing polymer/layered double hydroxides with reversible photoresponsive behavior. The Journal of Physical Chemistry B,2010,114 (17),5678-5685.
    [49]Gunjakar, J. L.; Kim, T. W.; Kim, H. N.; Kim, I. Y; Hwang, S.J., Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide:highly active visible light photocatalysts with improved chemical stability. Journal of the American Chemical Society,2011,133 (38), 14998-15007.
    [50]Fu, P.; Xu, K.; Song, H.; Chen, G.; Yang, J.; Niu, Y, Preparation, stability and rheology of polyacrylamide/pristine layered double hydroxide nanocomposites. Journal of Materials Chemistry,2010,20 (19),3869-3876.
    [51]Adachi-Pagano, M.; Forano, C.; Besse, J.P., Delamination of layered double hydroxides by use of surfactants. Chemical Communications,2000,91-92.
    [52]Singh, M.; Ogden, M. I.; Parkinson, G. M.; Buckley, C.; Connolly, J., Delamination and re-assembly of surfactant-containing Li/Al layered double hydroxides. Journal of Materials Chemistry,2004,14 (5),871-874.
    [53]Hibino, T.; Jones, W., New approach to the delamination of layereddouble hydroxides. Journal of Materials Chemistry,2001,11 (5),1321-1323.
    [54]Wu, Q.; Olafsen, A.; Vistad,0. B.; Roots, J.; Norby, P., Delamination and restacking of a layered double hydroxide with nitrate as counter anion. Journal of Materials Chemistry,2005,15 (44),4695-4700.
    [55]O'Leary, S.; O'Hare, D.; Seeley, G, Delamination of layered double hydroxides in polar monomers:new LDH-acrylate nanocomposites. Chemical communications,2002,1506-1507.
    [56]Zhao, Y.; Yang, W.; Xue, Y.; Wang, X.; Lin, T., Partial exfoliation of layered double hydroxides in DMSO:a route to transparent polymer nanocomposites. Journal of materials chemistry,2011,21 (13),4869-4874.
    [57]Naik, V. V.; Ramesh, T.; Vasudevan, S., Neutral nanosheets that gel:exfoliated layered double hydroxides in toluene. The Journal of Physical Chemistry Letters, 2011,2(10),1193-1198;
    [58]Naik, V. V.; Vasudevan, S., Sol-Gel Transition in Dispersions of Layered Double-Hydroxide Nanosheets. Langmuir,2011,27 (21),13276-13283.
    [59]Li, L.; Ma, R. Z.; Iyi, N.; Ebina, Y; Takada, K.; Sasaki T, Hollow nanoshell of layered double hydroxide. Chemical Communication,2006,3125-3127
    [60]Park, D.; Kim, J. E.; Oh, J. M.; Shul, Y G; Choy, J. H., DNA Core@Inorganic Shell. Journal of the American Chemical Society,2010,132 (47),16735-16736
    [61]Li, L.; Feng, Y. J.; Li, Y. S.; Zhao, W. R.; Shi, J. L., Fe3O4 Core/Layered Double Hydroxide Shell Nanocomposite:Versatile Magnetic Matrix for Anionic Functional Materials,Angewandte Chemie International Edition,2009,48,5888-5892
    [62]Zhang, H.; Pan, D.; Duan, X., Synthesis, characterization, and magnetically controlled release behavior of novel core-shell structural magnetic ibuprofen-intercalated LDH nanohybrids. The Journal of Physical Chemistry C, 2009,113(28),12140-12148.
    [63]Khan, A. I.; O'Hare, D., Intercalation chemistry of layered double hydroxides: recent developments and applications. Journal of Materials Chemistry,2002,12 (11),3191-3198.
    [64]Li, B. X.; He, J; Evans, D. G; Duan, X.; Inorganic layered double hydroxides as a drug delivery system-intercalation and in vitro release of fenbufen. Applied Clay Science,2004,27,199.
    [65]Liu, C. X.; Hou, W. G; Li, Y.; LI, L. F., Synthesis and characterization of camptothecin intercalated into Mg/Al layered double hydroxide. Chinese Journal of Chemistry,2008,26 (10),1806-1810.
    [66]Khan, A. I.; Lei, L.; Norquist, A. J.; O'Hare, D., Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chemical Communication,2001,2342-2343.
    [67]Li, W. Z.; Lu, J.; Chen, J. S.; Li, G. D.; Jiang, Y. S.; Li, L. S.; Huang, B. Q., Phenoxymethylpenicillin-intercalated hydrotalcite as a bacteria inhibitor. Journal of Chemical Technology and Biotechnology,2006,81 (1),89-93.
    [68]Trikeriotis, M.; Ghanotakis, D. F., Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. International journal of pharmaceutics, 2007,332(1),176-184.
    [69]Mohanambe L., Vasudevan S., Aromatic molecules in restricted geometries:Photophysics of naphthalene included in a cyclodextrin functionalized layered solid. J. Phys. Chem. B,2005,109,22523-22529.
    [70]Cortesi, R.; Esposito, E.; Maietti, A.; Menegatti, E.; Nastruzzi, C, Formulation study for the antitumor drug camptothecin:liposomes, micellar solutions and a microemulsion. International journal of pharmaceutics,1997,159 (1),95-103.
    [71]Liggins, R.; Burt, H., Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Advanced drug delivery reviews,2002,54 (2),191-202.
    [72]Banerjee, S. S.; Chen, D.-H., Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chemistry of Materials,2007,19 (25), 6345-6349.
    [73]Liu, J.; Cui, L.; Losic, D., Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta biomaterialia,2013,9 (12),9243-9257.
    [74]Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society,2008,130 (33),10876-10877.
    [75]Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z., Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small,2010,6 (4),537-544.
    [76]Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y., High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. The Journal of Physical Chemistry C,2008,112 (45),17554-17558;
    [77]Gao, J.; Bao, F.; Feng, L.; Shen, K.; Zhu, Q.; Wang, D.; Chen, T.; Ma, R.; Yan, C., Functionalized graphene oxide modified polysebacic anhydride as drug carrier for levofloxacin controlled release. RSC Advances,2011,1 (9),1737-1744.
    [78]黄波涛;段磊;吴小玲;史慧慧;杨再兴;钟伟;戚晓红,5-氟尿嘧啶-Fe/Fe3O4磁性脂质体的制备及其表征.南京医科大学学报:自然科学版,2011,31(7),951-955.
    [79]Crosasso, P.; Ceruti, M.; Brusa, P.; Arpicco, S.; Dosio, F.; Cartel, L., Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. Journal of Controlled Release,2000,63 (1),19-30.
    [80]赵巧玲;高永良,固体分散体的释药机制及其稳定性的研究进展.国外医学:药学分册,2005,32(1),52-56.
    [81]Yang, S.; Zhu, J.; Lu, Y.; Liang, B.; Yang, C., Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharmaceutical research,1999, 16(5),751-757.
    [82]Trikeriotis, M.; Ghanotakis, D. F., Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. International journal of pharmaceutics, 2007,332 (1),176-184.
    [83]Bangham, A.; Standish, M. M.; Watkins, J., Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of molecular biology,1965,13 (1), 238-252.
    [84]Woodle, M. C; Lasic, D. D., Sterically stabilized liposomes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes,1992,1113 (2),171-199.
    [85]Wang, C.Y.; Hughes, K. W.; Huang, L., Improved cytoplasmic delivery to plant protoplasts via pH-sensitive liposomes. Plant physiology,1986,82 (1),179-184.
    [86]Wijaya, A.; Hamad-Schifferli, K., High-density encapsulation of Fe3O4 nanoparticles in lipid vesicles. Langmuir,2007,23 (19),9546-9550.
    [87]丁丽燕;杨春;李学明;张慧颖;韦萍,乙醇注入法制备司帕沙星脂质体.南京工业大学学报:自然科学版,2007,29(1),32-35.
    [88]王健松;朱家壁,乙醚注入法制备阿奇霉素脂质体.中国药学杂志,2005,40(11),874-876.
    [89]蒲宝婵;赵骏;邱超;张雪,复乳法制备龙胆苦苷脂质体.药物评价研究,2012,34(6),428-431.
    [90]Allen, T.; Chonn, A., Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS letters,1987,223 (1),42-46.
    [91]Sharma, A.; Mayhew, E.; Straubinger, R. M., Antitumor effect of taxol-containing liposomes in a taxol-resistant murine tumor model. Cancer research,1993,53 (24),5877-5881.
    [92]罗云敬;刘海涛,头孢菌素类抗生素脂质体的包封率测定与参漏研究.中国生化药物杂志,1999,20(1),4-6.
    [93]周青.无环鸟苷脂质体混悬液的分析,中国医院药学杂志,1997(17),115-116
    [94]Needham, D.; Anyarambhatla, G; Kong, G; Dewhirst, M. W., A new temperature-sensitive liposome for use with mild hyperthermia:characterization and testing in a human tumor xenograft model. Cancer research,2000,60 (5), 1197-1201.
    [95]Lee, S.-M.; Chen, H.; Dettmer, C. M.; O'Halloran, T. V.; Nguyen, S. T., Polymer-caged lipsomes:a pH-responsive delivery system with high stability. Journal of the American Chemical Society,2007,129 (49),15096-15097.
    [96]Leamon, C. P.; Cooper, S. R.; Hardee, G E., Folate-liposome-mediated antisense oligodeoxynucleotide targeting to cancer cells:evaluation in vitro and in vivo. Bioconjugate chemistry,2003,14 (4),738-747.
    [97]Torchilin, V.; Khaw, B.; Smirnov, V.; Haber, E., Preservation of antimyosin antibody activity after covalent coupling to liposomes. Biochemical and biophysical research communications,1979,89 (4),1114-1119.
    [98]温演庆;杨斌;钱志勇,光敏纳米脂质体制备及其特性研究.中国医学工程,2008,16(2),84-85.
    [99]Sadzuka, Y.; Kishi, K.; Hirota, S.; Sonobe, T., Effect of polyethyleneglycol (PEG chain on cell uptake of PEG-modified liposomes. Journal of liposome research, 2003,13 (2),157-172.
    [100]Kokkona, M.; Kallinteri, P.; Fatouros, D.; Antimisiaris, S. G, Stability of SUV liposomes in the presence of cholate salts and pancreatic Upases:effect of lipid composition. European journal of pharmaceutical sciences,2000,9 (3),245-252.
    [101]Payne, N. I.; Timmins, P.; Ambrose, C. V.; Ward, M. D.; Ridgway, F., Proliposomes:a novel solution to an old problem. Journal of pharmaceutical sciences,1986,75 (4),325-329.
    [1]Zhao, Q.; Chang, Z.; Lei, X.; Sun, X., Adsorption behavior of thiophene from aqueous solution on carbonate-and dodecylsulfate-intercalated ZnAl layered double hydroxides. Industrial & Engineering Chemistry Research,2011,50(17), 10253-10258
    [2]Li, L.; Feng, Y.; Li, Y; Zhao, W.; Shi, J., Fe3O4 core/layered double hydroxide shell nanocomposite:versatile magnetic matrix for anionic functional materials. Angewandte Chemie International Edition,2009,48 (32),5888-5892.
    [3]Sun, Z.; Jin, L.; Shi, W.; Wei, M.; Evans, D. G; Duan, X., Controllable photoluminescence properties of an anion-dye-intercalated layered double hydroxide by adjusting the confined environment. Langmuir,2011,27 (11), 7113-7120.
    [4]Reichle, W. T., Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics,1986,22 (1),135-141.
    [5]Ogawa, M.; Asai, S., Hydrothermal synthesis of layered double hydroxide-deoxycholate intercalation compounds. Chemistry of materials, 2000,12 (11),3253-3255.
    [6]Hou, W.G; Su, Y.L.; Sun, D.J.; Zhang, C.G., Studies on zero point of charge and permanent charge density of Mg-Fe hydrotalcite-like compounds. Langmuir,2001, 17 (6),1885-1888.
    [7]Wu, Q.; Olafsen, A.; Vistad,O. B.; Roots, J.; Norby, P., Delamination and restacking of a layered double hydroxide with nitrate as counter anion. Journal of materials chemistry,2005,15 (44),4695-4700.
    [8]Liu, Z.; Ma, R; Osada, M; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T., Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide:assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. Journal of the American Chemical Society,2006,128 (14),4872-4880.
    [9]Xu, Z. P.; Kurniawan, N. D.; Bartlett, P. F.; Lu, G Q., Enhancement of relaxivity rates of Gd-DTPA complexes by intercalation into layered double hydroxide nanoparticles. Chemistry-A European Journal,2007,13 (10),2824-2830.
    [10]Moyo, L.; Nhlapo, N.; Focke, W. W., A critical assessment of the methods for intercalating anionic surfactants in layered double hydroxides. Journal of materials science,2008,43 (18),6144-6158.
    [11]An, Z.; Lu, S.; He, J.; Wang, Y., Colloidal assembly of proteins with delaminated lamellas of layered metal hydroxide. Langmuir,2009,25 (18),10704-10710.
    [12]Wongkerd, T.; Luengnaruemitchai, A.; Jitkarnka, S., Phase change of catalysts derived from a LDH-deoxycholate intercalated compound and its impacts on NO reduction from stationary source emissions. Applied Catalysis B:Environmental, 2008,78(1),101-111.
    [13]Begu, S.; Pouessel, A.A.; Polexe, R.; Leitmanova, E.; Lerner, D.A.; Devoisselle,.M.; Tichit, D.; New Layered Double Hydroxides/Phospholipid Bilayer Hybrid Material with Strong Potential for Sustained Drug Delivery System. Chemistry of materials,2009(21),2679-2687.
    [1]Garcia-Carbonero, R.; Supko, J. G.; Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clinical Cancer Research,2002,8 (3),641-661;
    [2]Kehrer, D. F.; Soepenberg, O.; Loos, W. J.; Verweij, J.; Sparreboom, A., Modulation of camptothecin analogs in the treatment of cancer:a review. Anti-Cancer Drugs,2001,12 (2),89-105.
    [3]Burke, T. G.; Mishra, A. K.; Wani, M. C.; Wall, M. E., Lipid bilayer partitioning and stability of camptothecin drugs. Biochemistry,1993,32 (20),5352-5364
    [4]Tyner, K. M.; Schiffrnan, S. R.; Giannelis, E. P., Nanobiohybrids as delivery vehicles for camptothecin. Journal of controlled release,2004,95 (3),501-514.
    [5]Hou, W. G; Su, Y. L.; Sun, D. J.; Zhang, C. G, Studies on zero point of charge and permanent charge density of Mg-Fe hydrotalcite-like compounds. Langmuir,2001, 17(6),1885-1888.
    [6]Wu, Q.; Olafsen, A.; Vistad,0. B.; Roots, J.; Norby, F., Delamination and restacking of a layered double hydroxide with nitrate as counter anion. Journal of material chemistry,2005,15 (44),4695-4700.
    [7]Park, D.H.; Kim, J.E.; Oh, J.M.; Shul, Y.G; Choy, J.H., DNA core@ inorganic shell. Journal of the American Chemical Society,2010,132 (47),16735-16736.
    [8]Ogawa, M.; Asai, S., Hydrothermal synthesis of layered double hydroxide-deoxycholate intercalation compounds. Chemistry of materials,2000, 12 (11),3253-3255.
    [9]Gu, Z.; Thomas, A. C.; Xu, Z. P.; Campbell, J. H.; Lu, G Q., In vitro sustained release of LMWH from MgAl-layered double hydroxide nanohybrids. Chemistry of Materials,2008,20 (11),3715-3722.
    [10]Moyo, L.; Nhlapo, N.; Focke, W. W., A critical assessment of the methods for intercalating anionic surfactants in layered double hydroxides. Journal of materials science,2008,43 (18),6144-6158.
    [11]Xu, Z. P.; Kurniawan, N. D.; Bartlett, P. F.; Lu, G. Q., Enhancement of Relaxivity Rates of Gd-DTPA Complexes by Intercalation into Layered Double Hydroxide Nanoparticles. Chemistry-A European Journal,2007,13 (10),2824-2830.
    [12]Trikeriotis, M.; Ghanotakis, D. F., Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. International journal of pharmaceutics, 2007,332(1),176-184.
    [13]Zhang, H.; Zou, K.; Guo, S.; Duan, X., Nanostructural drug-inorganic clay composites:structure, thermal property and in vitro release of captopril-intercalated Mg-Al-layered double hydroxides. Journal of Solid State Chemistry,2006,179 (6),1792-1801.
    [14]Khan, A. I.; O'Hare, D., Intercalation chemistry of layered double hydroxides: recent developments and applications. Journal of material chemistry,2002,12 (11), 3191-3198.
    [15]Choy, J. H.; Choi, S. J.; Oh, J. M.; Park, T., Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science,2007,36 (1), 122-132.
    [16]Li, F.; Duan, X., Applications of layered double hydroxides. In Layered double hydroxides, Springer,2006,193-223.
    [17]Bhaskar, R.; Murthy, R.; Miglani, B.; Viswanathan, K., Novel method to evaluate diffusion controlled release of drug from resinate. International journal of pharmaceutics,1986,28 (1),59-66
    [1]Khan, A. I.; O'Hare, D., Intercalation chemistry of layered double hydroxides: recent developments and applications. J. Mater. Chem.2002,12 (11),3191-3198.
    [2]Li, F.; Duan, X., Applications of layered double hydroxides. In Layered double hydroxides, Springer:2006; 193-223.
    [3]Chen, C.; Han, D.; Cai, C.; Tang, X., An overview of liposome lyophilization and its future potential. Journal of Controlled Release,2010,142 (3),299-311.
    [4]Torchilin, V. P., Recent advances with liposomes as pharmaceutical carriers. Nature reviews Drug discovery,2005,4 (2),145-160.
    [5]Xu, Z. P.; Stevenson, G S.; Lu, C.-Q.; Lu, G Q.; Bartlett, P. F.; Gray, P. P., Stable suspension of layered double hydroxide nanoparticles in aqueous solution. Journal of the American Chemical Society,2006,128 (1),36-37.
    [6]Wu, X. W.; Li, H. P.; Song, S.; Zhang, R J.; Hou, W. G, Facile synthesis of camptothecin intercalated layered doublehydroxide nanohybrids via a coassembly route. International Journal of Pharmaceutics,2013(454),453-461.
    [7]Wijaya, A.; Hamad-Schifferli, K., High-density encapsulation of Fe3O4 nanoparticles in lipid vesicles. Langmuir,2007,23 (19),9546-9550.
    [8]Hou, W.-G; Su, Y.-L.; Sun, D.-J.; Zhang, C.-G, Studies on zero point of charge and permanent charge density of Mg-Fe hydrotalcite-like compounds. Langmuir, 2001,17(6),1885-1888.
    [9]Wu, Q.; Olafsen, A.; Vistad,O. B.; Roots, J.; Norby, P., Delamination and restacking of a layered double hydroxide with nitrate as counter anion. Journal of materials chemistry,2005,15 (44),4695-4700.
    [10]Huang, J.; Gou, G; Xue, B.; Yan, Q.; Sun, Y; Dong, L.-E., Preparation and characterization of "dextran-magnetic layered double hydroxide-fluorouracil" targeted liposomes. International journal of pharmaceutics,2013,450 (1), 323-330.
    [11]Moyo, L.; Nhlapo, N.; Focke, W. W., A critical assessment of the methods for intercalating anionic surfactants in layered double hydroxides. Journal of materialsscience,2008,43 (18),6144-6158.
    [12]Bhaskar, R.; Murthy, R; Miglani, B.; Viswanathan, K., Novel method to evaluate diffusion controlled release of drug from resinate. International journal of pharmaceutics,1986,28 (1),59-66
    [1]Liu, J.; Cui, L.; Losic, D., Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta biomaterialia 2013,9 (12),9243-9257.
    [2]Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society,2008,130(33),10876-10877.
    [3]Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z., Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small,2010,6 (4),537-544.
    [4]Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y; Chen, Y, High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. The Journal of Physical Chemistry C,2008,112 (45),17554-17558.
    [5]Gao, J.; Bao, F.; Feng, L.; Shen, K.; Zhu, Q.; Wang, D.; Chen, T.; Ma, R.; Yan, C., Functionalized graphene oxide modified polysebacic anhydride as drug carrier for levofloxacin controlled release. RSC Advances,2011,1 (9),1737-1744.
    [6]Fan, X.; Jko, G; Zhao, W.; Jin, P.; Li, X., Magnetic Fe3O4-graphene composites as targeted drug nanocarriers for pH-activated release. Nanoscale,2013,5 (3), 1143-1152.
    [7]Wang, C; Li, J.; Amatore, C; Chen, Y; Jiang, H.; Wang, X. M., Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angewandte Chemie International Edition,2011,50 (49),11644-11648.
    [8]Yang, X.; Wang, Y; Huang, X.; Ma, Y; Huang, Y; Yang, R.; Duan, H.; Chen, Y, Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. Journal of materials chemistry,2011, 21 (10),3448-3454.
    [9]Wang, Y; Zhang, D.; Bao, Q.; Wu, J.; Wan, Y, Controlled drug release characteristics and enhanced antibacterial effect of graphene oxide-drug intercalated layered double hydroxide hybrid films. Journal of Materials Chemistry,2012,22 (43),23106-23113.
    [10]YiaDong, X.; JunaZhang, Z.; FengaPei, X.; JiangaChen, X., Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chemical Communications,2011,47 (12), 3556-3558.
    [11]Li, B.; Zhao, Y; Zhang, S.; Gao, W.; Wei, M., Visible-Light-Responsive Photocatalysts toward Water Oxidation Based on NiTi-Layered Double Hydroxide/Reduced Graphene Oxide Composite Materials. ACS applied materials & interfaces,2013,5 (20),10233-10239.
    [12]Wu, X.-L.; Wang, L.; Chen, C.-L.; Xu, A.-W; Wang, X.-K., Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal. Journal of Materials Chemistry,2011,21 (43),17353-17359.
    [13]Hong, N.; Song, L.; Wang, B.; Stec, A. A; Hull, T. R.; Zhan, J.; Hu, Y, Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly (methyl methacrylate). Materials Research Bulletin,2014,49,657-664.
    [14]Zhu, C.; Guo, S.; Fang, Y; Dong, S., Reducing sugar:new functional molecules for the green synthesis of graphene nanosheets. ACS nano,2010,4 (4), 2429-2437.
    [15]Wu, Q.; Olafsen, A.; Vistad,O. B.; Roots, J.; Norby, P., Delamination and restacking of a layered double hydroxide with nitrate as counter anion. Journal of Materials Chemistry,2005,15 (44),4695-4700.
    [16]Liu, Z.; Ma, R.; Osada, M.; Iyi, N.; Ebina, Y; Takada, K.; Sasaki, T., Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide:assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. Journal of the American Chemical Society,2006,128 (14),4872-4880.
    [17]LIU, C. X.; HOU, W G.; Li, Y.; LI, L. F., Synthesis and characterization of camptothecin intercalated into Mg/Al layered double hydroxide. Chinese Journal of Chemistry,2008,26 (10),1806-1810.
    [18]Rives, V., Comment on "Direct Observation of a Metastable Solid Phase of Mg/Al/CO3-Layered Double Hydroxide by Means of High-Temperature in Situ Powder XRD and DTA/TG" 1. Inorganic Chemistry,1999,38 (2),406-407.
    [19]Liu, C.; Hou, W.; Li, L.; Li, Y.; Liu, S., Synthesis and characterization of 5-fluorocytosine intercalated Zn-Al layered double hydroxide. Journal of Solid State Chemistry,2008,181 (8),1792-1797.
    [20]Dong, L.; Yan, L.; Hou, W.-G; Liu, S.-J., Synthesis and release behavior of composites of camptothecin and layered double hydroxide. Journal of Solid State Chemistry,2010,183 (8),1811-1816.
    [21]Bhaskar, R.; Murthy, R.; Miglani, B.; Viswanathan, K., Novel method to evaluate diffusion controlled release of drug from resinate. International journal of pharmaceutics,1986,28 (1),59-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700