用户名: 密码: 验证码:
锌基气凝胶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气凝胶是具有低密度、高孔隙率以及高比表面积等特点的新型纳米材料,可广泛应用于催化、吸附、高能物理等领域。锌基气凝胶成型性差,难于制备出完整的块状气凝胶,限制了其应用,因此目前对其研究较少。本论文系统的研究了锌基复合气凝胶的制备、氧化以及还原过程。以锌的无机盐为前驱体,研究在不同的制备参数(前驱体、溶剂、模板剂、水解比、凝胶促凝剂等)下所得到的湿凝胶,经超临界干燥工艺获得相应的锌基复合气凝胶样品;利用高级流变仪研究了不同反应体系的粘度变化,考察了体系储能模量和耗能模量的变化;用氮气和氧气的混合气氛氧化处理,制备了氧化锌气凝胶;采用一氧化碳与氮气的混合气体为还原锌基复合气凝胶,成功制备得到碳气凝胶。
     用聚丙烯酸和柠檬酸都制备出锌基复合气凝胶,说明聚丙烯酸和柠檬酸都具有模板剂的功能,但是制备的气凝胶在微观结构上却有很大的差异,这是与模板剂的分子链的长短具有直接联系。在制备锌基复合气凝胶过程中,模板剂的分子量和ZnCl2的含量都会对气凝胶的微观结构造成关键影响:用分子量为1800聚丙烯酸与ZnCl2的摩尔比为1:40制备的气凝胶微观颗粒间的孔隙率高,孔洞结构均匀,比表面积为470m2/g,总的孔体积为1.846cm3/g;以柠檬酸为模板剂制备的气凝胶的胶体颗粒之间较为致密,孔洞结构不明显,孔隙率低,比表面积为54m2/g,总的孔体积为0.126cm3/g。
     在溶胶—凝胶过程中,系统的研究了水量、环氧丙烷用量、聚丙烯酸用量对体系凝胶时间、气凝胶密度和比表面积的影响。利用高级流变仪研究了反应体系的粘度变化,对溶胶—凝胶过程进行研究。通过粘度的变化考察了体系储能模量和耗能模量变化,确定了凝胶时间;并研究了影响气凝胶比表面积和密度因素。运用分子动力学方法计算了不同分子量同浓度及同分子量不同浓度的聚丙烯酸的回旋半径和径向分布函数。用分子量1800的聚丙烯酸作为模板剂,将其浓度控制在0.11g·mL-1制备出锌基复合气凝胶的微观结构较好,这与实验的结果是相一致的。
     在气凝胶氧化处理中,研究了不同气体气氛、退火温度以及升温速率对气凝胶的成型性和微观结构的影响。在氮气:氧气为50:1的混合气氛中,500℃C的高温下,对锌基复合气凝胶进行退火处理,得到的氧化锌气凝胶孔隙率较高,骨架结构纤细,孔洞分布均匀,比表面积为125m2/g,总的孔体积为0.25cm3/g。制备的氧化锌气凝胶具有六方晶系的单一物相晶体结构,并运用Rietveld计算模拟方法对氧化锌气凝胶的晶体结构进行精修。测试氧化锌气凝胶的荧光光谱,发现随着温度升高,氧化锌气凝胶的发光光谱峰没有发生红移或者蓝移,发光强度随着温度升高增强。
     开发出了一种制备高纯度碳气凝胶的新技术。在一氧化碳:氮气为100:1的混合气氛中,980℃的高温下,对锌基复合气凝胶进行还原,制备出碳气凝胶。该方法制备的碳气凝胶密度低、比表面积高,这对其修饰、复合、改性等更进一步研究提供了良好的基础。XPS测试发现气凝胶中碳元素的单质的形式存在,EDS测试表明碳元素占96.8%;前驱物不同配比对样品的多孔结构、比表面积有较大影响;碳气凝胶比表面积可达1560cm2/g,总孔体积为1.760cm3/g,该材料属于介孔材料。
Aerogels are the one characterized by high surface area, large porosity and low density materials, consisting of three dimensional network solids with interconnected nanoscale pores. The inherent characteristics of aerogels have been widely applied, such as thermal insulators, heterogeneous catalysis, energy, space and capacitors. To the best of our knowledge, the preparations and applications of monolithic Zn-based aerogels are not studied in depth. Therefore, it is a state-of-art way to prepare Zn-based aerogels with the dispersed inorganic sol-gel method, and the aerogels have subsequent thermal and reduction treatments. The properties of the zinc-based aerogel, such as the density and surface area, are related to the amounts of catalyst, water and polyacrylic acid (PAA) in sol-gel process. The proper molar ratios between these reactants play a crucial factor in mediating the morphology of the zinc-based aerogel. The viscosities of colloidal systemsis are discussed using a rheometer, while the elastic modulus and the viscous modulus are demonstrated in the sol-gel process. With regard to the temperature in different atmospheres, it was an integrated result of the complicated decomposition of organic compounds and the preparation of the zinc oxide aerogel. The innovation demonstrates a zinc template method to prepare carbon aerogel through thermal treatment in CO. The unusual preparation of carbon aerogel was promising for advanced nanodevices because of its outstanding nanoscale porosity structures.
     As far as we know, this is a novel report on producing the Zn-based aerogels through the polyacrylic acid and citric acid template method. Furthermore, the aerogels are difference owing to the long or short molecular chains of the templates. This paper offers an explicit explanation on the microstructure and surface area of the Zn-based aerogels under the influence of ZnCl2and the molecular chains of the templates. The N2adsorption/desorption of the Zn-based aerogel which the molar ratio of PAA to ZnCl2is1:40has a high surface area about470m2/g and pore volume about1.846cm3/g, and the field-emission scanning electron microscope (FESEM) demonstrates the aerogel possesses the typical characteristic mesopore. Additionly, The N2adsorption/desorption of the Zn-based aerogel which is prepared with ZnCl2and citric acid has a surface area about54m2/g and pore volume about0.126cm3/g, and the characteristic mesopore is compact with FESEM measurement.
     The gelation mechanism of sol-gel process is discussed in the present dissertation, such as the value of water, propylene oxide (PO), and PAA of the system in gelation process. Therefore, the properties of the zinc-based aerogel of the density and surface area are studied that they are related to the amounts of water, PO, and PAA in sol-gel process. The viscosities of the reaction system are discussed using a rheometer, and the elastic modulus and the viscous modulus are measured the different amounts of water, PO, and PAA in the gelation. Molecular dynamics method to build different molecular weight PAA in ethanol solution model, while the model simulation of the ethanol solution of different concentrations of polyacrylic acid. Solution model the radius of gyration (Rg) is determined by external conditions affect different model polyacrylic acid. While the radial distribution function g(r) is calculated and found carbonyl O and on the hydroxyl group of O, and ethanol H of PAA, there are strong hydrogen bonding interactions, there is also has a strong van der Waals mutual role.As a result, the molecular weight of1800PAA is adapted to the Zn-based aerogel template, and its concentration controlled0.11g·mL"1is more reasonable.
     Monolithic pure zinc oxide aerogel was prepared successfully through the dispersed inorganic sol-gel method (DIS method) combined with a furnace of500℃in mixed atmosphere which the molar ratio of N2to O2is50:1. The aerogel exhibited many desirable properties, such as uniform nanoscale pores, high porosity and large specific surface area. The N2adsorption/desorption of the aerogel has a high surface area about125m2/g and pore volume about0.25cm3/g, and FESEM demonstrates the typical characteristic mesopore. It is an integrated result of the hexagonal system of the zinc oxide aerogel, and its crystalline structure is refined with Rietveld structure refinement. After being annealed at different temperatures, the photoluminescence (PL) spectra of the aerogel were measured. The PL with no temperature-dependent shifts of the maximum of the spectral PL intensity concerning the zinc oxide aerogel being investigated suggests that it is relative to the structural and optical properties.
     The innovation of a zinc template method is the preparation of carbon aerogel through thermal treatment in CO. As a result, the measurements of XPS and EDS confirm only the presence of C atoms. This paper offers an explicit explanation on the microstructure and surface area of carbon aerogels under the amount influence of ZnCl2and PAA. In summary, carbon oxide aerogel of high specific surface area (1560m2/g), continuous porosity, narrow particle size distribution and excellent crystallinity is successfully prepared with zinc salt and PAA. As far as we know, this is a novel report on producing carbon aerogel through the metal template method. Our work, surely, is able to provide a simple and metal tempale method for designing new porous carbon aerogel nanoarchitectures, which is promising for a wide range of future applications.
引文
[1]Gesser H D.Goswami P C.1989. Aerogels and related porous materials[J]. Chemical Reviews,89: 765-788.
    [2]Pierre A C.Pajonk G M.2002. Chemistry of Aerogels and Their Applications[J]. Chemical Reviews,102:4243-4266.
    [3]Y.K. A.2003. Fields of Application of Aerogels[J]. Instruments and Experimental Techniques,46: 287-299.
    [4]Mohanan J L,Brock S L.2003. Influence of Synthetic and Processing Parameters on the Surface Area, Speciation, and Particle Formation in Copper Oxide/Silica Aerogel Composites[J]. Chemistry of Materials,15:2567-2576.
    [5]G.M P.1991. Aerogel catalysts[J]. Applied Catalysis,72:217-266.
    [6]Armor J N, Carlson E J, Zambri P M.1985. Aerogels as hydrogenation catalysts[J]. Applied Catalysis,19:339-348.
    [7]Rolison D R.2003. Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity[J]. Science,299:1698-1701.
    [8]Baumann T F, Gash A E, Chinn S C, et al.2004. Synthesis of High-Surface-Area Alumina Aerogels without the Use of Alkoxide Precursors[J]. Chemistry of Materials,17:395-401.
    [9]Niranjan R S, Chaudhary V A, Mulla I S, et al.2002. A novel hydrogen sulfide room temperature sensor based on copper nanocluster functionalized tin oxide thin films[J]. Sensors and Actuators B: Chemical,85:26-32.
    [10]Blanchard F, Reymond J P, Pommier B, et al.1982. On the mechanism of the Fischer-Tropsch synthesis involving unreduced iron catalyst[J]. Journal of Molecular Catalysis,17:171-181.
    [11]Kistler S S.1931. Coherent Expanded Aerogels and Jellies[J]. Nature,127:741.
    [12]Tewari P H, Hunt A J, Lofftus K D.1985. Ambient-temperature supercritical drying of transparent silica aerogels[J]. Materials Letters,3:363-367.
    [13]Pekala R W.1989. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Journal of Materials Science,24:3221-3227.
    [14]Pekala R W.1992-01-14. Melamine-formaldehyde aerogels [P][J]. US,5081163.
    [15]Mohanan J L, Arachchige I U, Brock S L.2005. Porous Semiconductor Chalcogenide Aerogels[J]. Science,307:397-400.
    [16]许琰,赖东显,李双贵,等.2004.辐射在填充介质管中输运的理论[J].中国科学,525-539.
    [17]Pajonk G M.2003. Some applications of silica aerogels[J]. Colloid and Polymer Science, 637-651.
    [18]倪星元,周斌,吴广明,等.2002.溶胶-凝胶法制备惯性约束聚变靶材料研究[J].原子能科学技术,301-304.
    [19]Fearon E M, R.Coronado P, G.Garza R, et al.1987. Shrinkage and opacity of 100kg/m3 silica aerogel foam in liquid deuterium-tritium[J]. J. Nucl. Mater.,149:105-108.
    [20]S.Atzeni,A.Guerrieri.1993. Evolution of multimode Rayleigh-Tayloer instability towards self-semilar turbulent mixing[J]. Europhysics Letters 603-609.
    [21]A.Heller,K.Fournier.2005. Lightweight target generates bright, energetic X rays[J]. Science and Technology Review,19-22.
    [22]Bi Y, Ren H, Chen B, et al.2012. Synthesis monolithic copper-based aerogel with polyacrylic acid as template[J]. Journal of Sol-Gel Science and Technology,63:140-145.
    [23]毕于铁,任洪波,杨静,等.2011.铜基氧化物气凝胶的制备与表征[J].强激光与粒了束,23:2650-2652.
    [24]Du A, Zhou B, Shen J, et al.2009. Monolithic copper oxide aerogel via dispersed inorganic sol-gel method[J]. Journal of Non-Crystalline Solids,355:175-181.
    [25]Sisk C N.Hope-Weeks L. J.2008. Copper(ii) aerogels via 1,2-epoxide gelation[J]. Journal of Materials Chemistry,18:2607-2610.
    [26]任洪波,张林,万小波.2007.以环氧化合物为凝胶促进剂制备块状氧化铁气凝胶研究[J].原子能科学技术,41:288-291.
    [27]Gao Y P, Sisk C N, Hope-Weeks L J.2007. A Sol-Gel Route To Synthesize Monolithic Zinc Oxide Aerogels[J]. Chemistry of Materials,19:6007-6011.
    [28]Gash A E, Satcher Jr J H, Simpson R L.2004. Monolithic nickel(II)-based aerogels using an organic epoxide:the importance of the counterion[J]. Journal of Non-Crystalline Solids,350: 145-151.
    [29]Gash A E, Tillotson T M, Satcher Jr J H, et al.2001. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors[J]. Journal of Non-Crystalline Solids,285:22-28.
    [30]Gash A E, Tillotson T M, Satcher J H, et al.2001. Use of Epoxides in the Sol-Gel Synthesis of Porous Iron(Ⅲ) Oxide Monoliths from Fe(Ⅲ) Salts[J]. Chemistry of Materials,13:999-1007.
    [31]Chen B, Chen G, Zeng T, et al.2013. Monolithic zinc oxide aerogel with the building block of nanoscale crystalline particle[J]. Journal of Porous Materials,1-7.
    [32]Chen B W, Bi Y, Luo X, et al.2014. Photoluminescence of monolithic zinc oxide aerogel synthesised by dispersed inorganic sol-gel method[J]. Materials Technology,0: 1753555713Y.0000000125.
    [33]陈擘威,毕于铁,罗炫,等.2013.锌基复合气凝胶的微观结构研究[J].强激光与粒子束,23:2650-2652.
    [34]陈擘威,毕于铁,张林.2012.锌基复合气凝胶的制备与性能[J].第十届中日复合材料学术会议论文集、259-262.
    [35]毕于铁,任洪波,张庆军,等.2012.氧化铜气凝胶的制备与结构表征[J].原子能科学技术,46:1292-1295.
    [36]毕于铁,任洪波,陈擘威,等.2012.氧化镍气凝胶的制备与表征研究[J].功能材料,43:1361-1363.
    [37]任洪波.2010.低密度SiO2及其复合气凝胶的制备与特性研究[D]:[博士].绵阳:中国工程物理研究院.
    [38]Pekala R W, Alviso C T, Nielsen J K, et al.1995. Electrochemical Behavior of Carbon Aerogels Derived from Different Precursors[J]. Materials Research Society Symposium-Proceedings,393: 413-425.
    [39]Schaefer D W.1989. Polymers, Fractals, and Ceramic Materials[J]. Science,243.
    [40]Pekala R W.1989. Low density Resorcinol-Formaldehyde Aerogels:US[J].4873218[P].
    [41]Pekala R W.1993-03-25. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures[P][J]. US.5476878.
    [42]蒋伟阳,张波.1996.间苯二酚-甲醛有机气凝胶的结构控制研究[J].材料科学与工艺4:70-75.
    [43]王丽莉.2004.RF气凝胶的制备、掺杂及分子结构理论研究[D]:[硕士].成都:四川大学.
    [44]王朝阳.2006.ICF靶用酚醛类气凝胶的制备及氢、氖吸附应用研究[D]:[博士].绵阳:中国工程物理研究院.
    [45]Pekala R W,Alviso C T.1992. Aeorgels derived from multifunctional organic monomersfJ]. Jounal of Non-Crystalline Solids,145:90-98.
    [46]Mecklenburg M, Schuchardt A, Mishra Y K, et al.2012. Aerographite:Ultra Lightweight, Flexible Nanowall, Carbon Microtube Material with Outstanding Mechanical Performance[J]. Advanced Materials,24:3486-3490.
    [47]Sun H, Xu Z, Gao C.2013. Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels[J]. Advanced Materials,25:2554-2560.
    [48]蒋伟阳,王迁,沈军,等:1997.RF气凝胶的性能测试和应用研究[J].同济大学学报(自然科学版),25:248-251.
    [49]蒋伟阳,孙颖,唐永建,等.1997.碳气凝胶作为电双层电容器电极材料的研究[J].高电压技术,23:95-96.
    [50]陈一民.2005.金属/二氧化硅复合气凝胶和低成本疏水二氧化硅气凝胶的研究[D]:[博士].长沙:国防科技大学.
    [51]Goodwin T J, Leppert J, Smith C A, et al.1996. Synthesis of nanocrystalline gellium nitride in silica aerogels [J]. Applied Physics Letters,69.
    [52]Zhou H J, Zhang W P, Zhang L D, et al.1999. Photoluminescence fo indium-oxide nanoparticles dispersed within pores of mesoporous silica[J]. Applied Physics Letters,75:495-497.
    [53]Bhattachayrya S, Swhaa S K, Chadravoryt D.2000. Silver nnaowires grown in the pores of a silica gel[J]. Appllied Physics Letters,77:3770-3772.
    [54]Vendage V.Colohan P.1993. Elbaoration and the thermal stbailiy of (alumina,aluminosilicate/iron,cobalt,nical) magnetic nanocomposites prepared through a sol-gel route[J]. Materials science and Engineering, A168:199-203.
    [55]Arlon J H, Michacl R R, Cao W.1995. Aerogel composites using chemical vapor infiltration[J]. Jounal of Non-Crystalline Solids 185:227-232.
    [56]Lee D, Stevens P C, Zeng S Q, et al.1995. Thermal characterization of carbon-opacified silica aerogels [J]. Jounal of Non-Crystalline Solids,186:285-290.
    [57]任洪波王鲜,张林,等.2008.基于TaCl5的Ta205气凝胶制备工艺[J].强激光与粒子束,20:87-90.
    [58]任洪波,张林,杜爱明.2005.快速制备块状氧化铁气凝胶初步研究[J].原子能科学技术,39:513-516.
    [59]任洪波,毕于铁,张林,等.2009.氧化锡纳米晶气凝胶制备及其表征[J].原子能科学技术,43:700-704.
    [60]Krumm M, Pueyo C L, Polarz S.2010. Monolithic Zinc Oxide Aerogels from Organometallic Sol-Gel Precursors[J]. Chemistry of Materials,22:5129-5136.
    [61]秦国彤,李文翠,郭树才.2000.气凝胶结构控制[J].功能材料,26-28.
    [62]毕于铁.2012.铜基复合气凝胶的合成、氧化及金属化研究[D]:[博士].绵阳:中国工程物理研究院.
    [63]史非.2006.常压干燥制备SiO2气凝胶及其结构、性能研究[D]:[博士].大连:大连理工大学.
    [64]赵忠强.2008.氧化物气凝胶的制备、结构和性质的研究[D]:[博士].济南:山东大学.
    [65]Saliger R, Fischer U, Herta C, et al.1998. Journal of Non-Crystalline Solids,225:81.
    [66]Miller J, Dunn B, Tran T, et al.1997. Journal of the Electrochemical Society,144:L309.
    [67]Li W, Reichenauer G, Fricke J.2002. Carbon,402955.
    [68]Li G R, Feng Z P, Ou Y N, et al.2010. Langmuir,26:2209.
    [69]周斌,沈军,吴广明,等.2004.气凝胶的制备及其在惯性约束聚变实验中的应用[J].原了能科学技术,125-128.
    [70]Novak Z, Kotnik P, Knez Z.2004. Preparation of WO3 aerogel catalysts using supercritical CO2 drying[J]. Journal of Non-Crystalline Solids,350:308-313.
    [71]Wang J, Uma S, Klabunde K J.2004. Visible light photocatalytic activities of transition metal oxide/silica aerogels[J]. Microporous and Mesoporous Materials,75:143-147.
    [72]张华东.2009.超临界流体技术在气凝胶和纳米粉体制备中的应用[D]:[博士].济南:山东大学.
    [73]Bourdinaud M, Cheze J B, Thevenin J C.1976. Use of silica aerogel for Cherenkov radiation counter[J]. Nuclear Instruments and Methods,136:99-103.
    [74]Giray S, Bal T, Kartal A M, et al.2012. Journal of Biomedical Materials Research Part A,100: 1307.
    [75]常新红.2009.天然高分子基有机及碳气凝胶的制备结构和性质研究[D]:[博士].济南:山东大学.
    [76]尚承伟.2010.三聚氰胺-甲醛(MF)气凝胶的制备及其改性研究[D]:[博士].成都:电子科技大学.
    [77]黄燕.2011.Si02气凝胶空心微球制备初步研究[D]:[硕士].成都:西华大学.
    [78]SCHERER G W.1988. DRYING GELS VI. Viscoelastic plate[J], Journal of Non-Crystalline Solids,99:324-358.
    [79]Scherer G W.1986. Dying gels[J]. Jounal of Non-Crystalline Solids,87:199-225.
    [80]李伟.2002.溶胶-凝胶法制备二氧化硅气凝胶纳米材料的研究[D]:[硕士].湘潭:湘潭大学,
    [81]史非,王立久.2005.环境气压干燥制备多孔Si02气凝胶的研究进展[J].材料导报.
    [82]Cansell F, Aymonier C, Loppinet-Serani A.2003. Review on materials science and supercritical fluids[J]. Current Opinion in Solid State and Materials Science,7:331-340.
    [83]朱自强.2000.超临界流体技术一原理和应用(第一版)[M].北京:化学工业出版社.
    [84]胡惠康,甘礼华,李光明,等.2000.超临界干燥技术[J].实验室研究与探索33-35.
    [85]詹国武,王宏涛.2008.应用超临界流体干燥技术制备气凝胶的研究进展[J].干燥技术与设备,171-175.
    [86]Pawley G.S.1981. Unit-cell refinement from powder diffraction scans[J]. Journal of Applied Crystallography,14:357-361.
    [87]夏三宇.2006.新型炭气凝胶微球的制备及其在锂离子电池中的应用[D]:[硕士].北京:北京化工大学.
    [88]胡守亮.2007.SiO2气凝胶充填非石墨化泡沫炭复合隔热材料的研究[D]:[硕士].哈尔滨:哈尔滨工业大学.
    [89]甄聪棉,刘雪芹,何志巍,等.2003.超低介电常数纳米多孔SiO2薄膜制备技术进展[J].硅酸盐学报,31:878-882.
    [90]Kulkarni M M, Seth T, Venkateswara R A.2003. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes[J]. Applied Surface Science,206:262-270.
    [91]Land V D, Harris T M, Teeters D C.2001. Proeessing of low-density silica gel by critical point drying or ambient pressure drying [J]. Journal of Non-Crystalline Solids,283:11-17.
    [92]Machefaux E. Brousse T, Belanger D, et al.2007. Supercapacitor behavior of new substituted manganese dioxides[J]. Journal of Power Sources,165:651-655.
    [93]Hu Z-A, Xie Y-L, Wang Y-X, et al.2009. Polyaniline/SnO2 nanocomposite for supercapacitor applications[J]. Materials Chemistry and Physics,114:990-995.
    [94]Schwertfeger F, Frank D, Schmidt M.1998. Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying[J]. Journal of Non-Crystalline Solids,225:24-29.
    [95]Job N, Marie J, Lamber S, et al.2008. Carbon xerogels as catalyst supports for PEM fuel eel lcathode[J]. Energy Conversion and Management,49:2461-2470.
    [96]Job N, Pirard R, Marien J, et al.2004. Porous carbon xerogels with texture tailored by pH control during sol-gel process[J]. Carbon,42:619-628.
    [97]Lin C,James A R.2000. Carbonization and activation of sol-gel derived carbon xerogel[J]. Carbon,38:849-861.
    [98]L.Zubizarreta, A.Arenillas, A.Domnguez, et al.2008. Development of microporous carbon xerogels by controlling synthesis conditions[J]. Journal of Non-Crystalline Solids,354:817-825.
    [99]郭艳芝,沈军,王球.2001.常压干燥法制备炭气凝胶[J].新型炭材料,16:55-57.
    [100]秦仁喜,沈军,吴广明,等.2004.碳气凝胶的常压干燥制备及结构控制[J].过程工程学报,4:429-433.
    [101]Bisson A.Rigacci A.1999. Drying of Silica Gels to obtain Aerogels:Phenomenology and Sol-Gel derived porous silica films[J]. Journal of Non-Crystalline Solids,243:75-79.
    [102]Liang W Y.Yoffe A D.1968. Transmission Spectra of ZnO Single Crystals[J]. Physical Review Letters,20:59-62.
    [103]Cunnington G R, C.Lee S, White S M.1998. Radiative properties of fiber-reinforced aerogel: Theory versus experiment[J]. Journal of thermophysics and heat transfer,12:17-22.
    [104]Klvana D, Chaouki J, Repellinlacroix M, et al.1989. A new method of pteparation of aerogel-like materials using a freeze-drying process[J]. Journal de Physique,50:29-32.
    [105]Mathieu B, Blacher S, Pirard J P, et al.1997. Freeze-dried resorcinol-formaldehyde gel[J]. Journal of Non-Crystalline Solids,212:250-261.
    [106]左演声,陈文哲,梁伟.2000.材料现代分析方法[M].北京:化学工业大学出版社.
    [107]戴俊.2009.电化学沉积合成锡基合金薄膜及其作为锂离子电池负极材料的研究[D]:[硕士].合肥:[J].合肥工业大学.
    [108]曾俊.2007.纳米金属氧化物改性炭电极电化学电容器研究[D]:[硕士].上海:同济大学.
    [109]何方勇.2007.掺杂锰酸锂的合成及性能的研究[D]:[硕士].长沙:中南大学.
    [110]王志国.2010.锂离子电池负极材料Li4Ti3O12的制备及改性研究[D]:[硕士].长沙:中南大学.
    [111]贺林慧.2010.单晶多孔铁氧化物颗粒的可控制备及电化学性能研究[D]:[硕士].长沙:湖南大学.
    [112]陈永.2010.多孔材料制备与表征[M].合肥:中国科学技术大学出版社,
    [113]宋世谟.1991.物理化学[M].北京:高等教育出版杜.
    [114]邓芹英,刘岚,邓慧敏.2008.波普分析教程[M].北京:科学出版社.
    [115]马礼敦.2004.近代X射线多晶体衍射—实验技术与数据分析[M].北京:化学工业出版社.
    [116]甘卫平,陈志波,陈迎龙,等.2011.以聚丙烯酸为分散剂制备高分散超细银粉[J].电子元件与材料,30:47-51.
    [117]孙同明,汤艳峰,朱金丽.2008.低分子量聚丙烯酸的制备工艺研究[J].南通大学学报,7:58-61.
    [118]Baudrin E, Sudant G, Larcher D, et al.2006. Preparation of Nanotextured VO2[B] from Vanadium Oxide Aerogels[J]. Chemistry of Materials,18:4369-4374.
    [119]赖炜,刘杏芹.2001.聚丙烯酸水溶液及a-Al2O3悬浮液的流变性研究[J].化学物理学报,14:365-370.
    [120]Dubinsky S, Grader G S, Shter G E, et al.2004. Thermal degradation of poly(acrylic acid) containing copper nitrate[J]. Polymer Degradation and Stability,86:171-178.
    [121]Du A, Zhou B, Shen J, et al.2011. A versatile sol-gel route to monolithic oxidic gels via polyacrylic acid template[J]. New Journal of Chemistry,35:1096-1102.
    [122]吴轶,陈晓明,杨海洋,等.2008.不同中和度聚丙烯酸水溶液的黏度行为[J].高分子材料科学与工程,10:99-102.
    [123]曲康,浦群,单国荣.2013.有机-无机杂化柔性硅气凝胶的制备与表征[J].化工学报.
    [124]Jokela S J, McCluskey M D, Lynn K G.2003. Infrared spectroscopy of hydrogen in annealed zinc oxide[J]. Physica B:Condensed Matter,340-342:221-224.
    [125]Mccluskey M D.Jokela S J.2002. Infrared Spectroscopy of Hydrogen in ZnO[J]. Applied Physics Letters,81:3807-3809.
    [126]林劲柱.2011.柠檬酸在化学清洗中的应用分析[J].贵州化工.
    [127]权茂华.2006.聚合物前驱体法制备担酸锉薄膜的研究[D]:[硕士].哈尔滨:哈尔滨工业大学.
    [128]刘洪玲.2007.柠檬酸-苹果酸钙复合盐的制备和应用[D]:[硕士].泰安:山东农业大学.
    [129]伍秋美.2007.SiO2分散体系流变学研究及其在防护材料方面的应用[D]:[博士].长沙:中南大学.
    [130]徐佩弦.2003.高聚物流变学及其应用[M].北京:化学工业出版社.
    [131]吴其晔,巫静安.2002.高分子材料流变学[M].北京:高等教育出版社.
    [132]A.Schramm G.1998. Practical Approach to Rheology and Rheometry[M]. Petroleum Industry Press,113.
    [133]Raghavan S R,Khan S A.1995. Shear-induced microstructural changes in flocculated suspensions of fumed silica[J]. Journal of Rheology 39:1311-1325.
    [134]吴轶,陈晓明,杨海洋,et al.2008.不同中和度聚丙烯酸水溶液的黏度行为[J].高分子材料科学与工程,10:99-102.
    [135]杨小震.2004.分子模拟与高分子材料[M].北京:科学出版社.
    [136]Frenkel, Smit著,汪文川等译.2002.分子模拟一从算法到应用[M].北京:化学工业出版社.
    [137]马文淦.2005.计算物理学[M].北京:科学出版社.
    [138]陈正隆,徐为人,汤立达.2007.分子模拟理论与实践[M].北京:化学工业出版社.
    [139]岑敏.2012.环六肽分子在水/环己烷界面的分子动力学模拟[D]:[硕士].苏州:苏州大学.
    [140]殷开梁.2006.分子动力学模拟的若干基础应用和理论[D]:[博士].杭州:浙江大学.
    [141]蔡治勇.2008.界面微观特性的分子动力学模拟研究[D]:[博士].重庆:重庆大学.
    [142]尹强.2009.基于壳聚糖改性的两性聚电解质溶液行为及其分子动力学模拟研究[D]:[博士].成都:四川大学.
    [143]陶长贵,冯海军,周健,等.2009.氧气在聚丙烯内吸附和扩散的分子模拟[J].物理化学学报,25:1373-1378.
    [144]邵庆,吕玲红,陆小华,等.2009.纳米受限下溶质水化结构的分子模拟[J].物理化学学报,25:583-589.
    [145]江浩,岳红,刘倩.2012.分子动力学模拟研究NR/BR力学性能和界面相互作用[J].中国塑料,26:64-68.
    [146]周健,朱宇,汪文川,等2002.超临界NaCl水溶液的分子动力学模拟[J].物理化学学报,18:207-212.
    [147]刘艳艳,陈攀科,罗健辉,等.2010.聚丙烯酰胺稀溶液的模拟[J].物理化学学报,26:2907-2914.
    [148]Bishop M, Kalos M H, Frisch H L.1979. Molecular dynamics of polymeric systems[J]. The Journal of Chemical Physics,70:1299-1304.
    [149]Pan R, Liu X, Zhang A, et al.2007. Molecular simulation on structure-property relationship of polyimides with methylene spacing groups in biphenyl side chain[J]. Computational Materials Science,39:887-895.
    [150]何曼君,陈维孝,董西侠.2007.高分子物理[M].上海:复旦大学出版社,15-27.
    [151]Rubinstein M.Colby R.2002. Polymer physics[J]. Oxford:Oxford University Press.Chapter 27.
    [152]周健,陆小华,王延儒,et al.2000.化工学报,51:143.
    [153]吕畅.2012.聚合物流体微观和介观尺度下的模拟研究[D]:[硕士].郑州:郑州大学.
    [154]Sun H, Mumby S J, Maple J R, et al.1994. Jounal of America chemical socity,116:2978.
    [155]Soldera A.2002. Polymer,43:4269.
    [156]Li D X, Liu B L, Liu Y S, et al.2008. Cryobiology,56:114.
    [157]Zeng H, Duan G, Li Y, et al.2010. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes:Defect Origins and Emission Controls[J]. Advanced Functional Materials,20:561-572.
    [158]Fonoberov V A, Alim K A, Balandin A A, et al.2006. Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals[J]. Physical Review B,73: 165317.
    [159]Fan X M, Lian J S, Guo Z X, et al.2005. Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(111) substrates[J]. Applied Surface Science,239:176-181.
    [160]Eita M, El Sayed R, Muhammed M.2012. Optical properties of thin films of zinc oxide quantum dots and polydimethylsiloxane:UV-blocking and the effect of cross-linking[J]. Journal of Colloid and Interface Science,387:135-140.
    [161]Studenikin S A, Golego N, Cocivera M.1998. Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis[J]. Journal of Applied Physics,84: 2287-2294.
    [162]Look D C.2001. Recent advances in ZnO materials and devices[J]. Materials Science and Engineering:B,80:383-387.
    [163]Schmidt-Mende L,MacManus-Driscoll J L.2007. ZnO-nanostructures, defects, and devices[J]. Materials Today,10:40-48.
    [164]Lin B, Fu Z, Jia Y.2001. Green luminescent center in undoped zinc oxide films deposited on silicon substrates[J]. Applied Physics Letters,79:943-945.
    [165]Teke A. Ozgiir U. Dogan S, et al.2004. Excitonic fine structure and recombination dynamics in single-crystalline ZnO[J]. Physical Review B,70:195207.
    [166]Li X, Wang Y, Liu W, et al.2012. Study of oxygen vacancies'influence on the lattice parameter in ZnO thin film[J]. Materials Letters,85:25-28.
    [167]Qin Y, Wang X, Wang Z L.2008. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature,451:809-813.
    [168]Reynolds D C, Look D C, Jogai B, et al.1999. Valence-band ordering in ZnO[J]. Physical Review B,60:2340-2344.
    [169]Tang Z K, Wong G K L, Yu P, et al.1998. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Applied Physics Letters,72:3270-3272.
    [170]Kumar V, Singh R G, Purohit L P, et al.2011. Structural, Transport and Optical Properties of Boron-doped Zinc Oxide Nanocrystalline[.l]. Jounal of Material Science Technology,27:481-488.
    [171]Djurisic A B,Leung Y H.2006. Optical Properties of ZnO Nanostructures[J]. Small,2:944-961.
    [172]Raoufi D.2013. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method[J]. Renewable Energy,50:932-937.
    [173]Vanheusden K, Warren W L, Seager C H, et al.1996. Mechanisms behind green photoluminescence in ZnO phosphor powders[J]. Journal of Applied Physics,79:7983-7990.
    [174]Kamalasanan M.Chandra S.1996. Thin Solid Films,288:112-115.
    [175]Eisenberg A, Yokoyama T, Sambalido E.1969. Jouranl of Polymer Science Part A:Polym. Chem 7,1717-1728
    [176]McGaugh M,Kottle S.1967. Journal of Polymer Science Part B:Polym. Lett 5,719-720.
    [177]Yang X-J, Miao X-Y, Xu X-L, et al.2005. Structure, X-ray photoelectron spectroscopy and photoluminescence properties of highly ordered ZnO microrods[J]. Optical Materials,27: 1602-1605.
    [178]张子才,于威,张坤,等2011.XPS研究N-A1共掺p型ZnO薄膜的传导特性[J].人工晶体学报,40:1199-1202.
    [179]李振华,李颖毅,徐欣,等.2008.阴离子掺杂ZnO的荧光性能与X-光电子能谱特征[J].化工新型材料,36:39-41.
    [180]杨喜英.2008.X射线衍射-Rietveld全谱图拟合法测定粉尘中游离Si02含量的研究[D]:[硕士].南宁:广西大学.
    [181]朱晓燕.2007.煅烧条件对高胶凝性水泥熟料的烧成和阿特晶体结构的影响[D]:[博士].北京:中国建筑材料科学研究总院.
    [182]牟雷.2010.负载型氧化锌及其他几种氧化物的结构表征与研究[D]:[硕士].昆明:昆明理工大学.
    [183]王乐飞.2005.水合二氧化钛的超声洗涤研究[D]:[硕士].成都:四川大学.
    [184]陈擘威.2012.氧化锌气凝胶的晶体结构分析[J].绵阳师范学院学报,31:28-30.
    [185]胡恩萍,承强,郭灵虹,等,2006.基于粉末X射线衍射的7-ADCA晶体结构解析[J].科学通报,51:1847-1850.
    [186]孙玉明.2000.ZnO及其缺陷电子结构的FP-LMTO研究[D]:[博十].合肥:中国科学技术大学.
    [187]Koch M H, Hartmann A J, Lamb R N, et al.1997. Self-Texture in the Initial Stages of ZnO Film Growth[J]. The Journal of Physical Chemistry.B,101:8231-8236.
    [188]Lakshmi B B, Patrissi C J, Martin C R.1997. Sol-Gel Template Synthesis of Semiconductor Oxide Micro-and Nanostructures[J]. Chemistry of Materials,9:2544-2550.
    [189]Schwenzer B, Gomm J R, Morse D E.2006. Substrate-Induced Growth of Nanostructured Zinc Oxide Films at Room Temperature Using Concepts of Biomimetic Catalysis[J]. Langmuir,22: 9829-9831.
    [190]Zhi M, Zhu L, Ye Z, et al.2005. Preparation and Properties of Ternary ZnMgO Nanowires[J]. The Journal of Physical Chemistry B,109:23930-23934.
    [191]Li Q, Kumar V, Li Y, et al.2005. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions[J]. Chemistry of Materials,17:1001-1006.
    [192]Gao P,Wang Z L.2002. Self-Assembled Nanowire-Nanoribbon Junction Arrays of ZnO[J]. The Journal of Physical Chemistry B,106:12653-12658.
    [193]Meyer B K, Alves H, Hofmann D M, et al.2004. Bound exciton and donor-acceptor pair recombinations in ZnO[J]. physica status solidi (b),241:231-260.
    [194]许金钩.2006.荧光分析法[M][J].北京,科学出版社.
    [195]梅俊平.2011.预处理与离子注入GaN外延材料的性能研究[D]:[博士].天津:河北工业大学.
    [196]刘听.2009.热处理对MOCVD外延生长GaN薄膜性能的影响[D]:[硕士].大津:河北工业大 学.
    [197]景微娜.2008.衬底处理对MOCVD外延生长GaN薄膜性能的影响[D]:[硕士].天津:河北工业大学.
    [198]魏茂林.2001.横向外延GaN材料的MOCVD生长与特性研究[D]:[大动脉士].上海:中国科学院上海冶金研究所.
    [199]胥永.2010.水热合成(Y, Eu, Gd)2O3红色荧光粉及其发光性能研究[D]:[硕士].沈阳:东北大学.
    [200]陈国珍.1990.荧光分析法[J].北京,科学出版社.
    [201]Vanheusden K, Seager C H, Warren W L, et al.1996. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J]. Applied Physics Letters,68:403-405.
    [202]Tamon H, Ishizaka H, Mikami M, et al.1997. Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde[J]. Carbon,35:791-796.
    [203]Bock V, Emmerling A, Fricke J.1998. Influence of monomer and catalyst concentration on RF and carbon aerogel structure[J]. Journal of Non-Crystalline Solids,225:69-73.
    [204]Laszlo K, Tombacz E, Josepovits K.2001. Effect of activation on the surface chemistry of carbons from polymer precursors[J]. Carbon,39:1217-1228.
    [205]Fang B, Wei Y Z, Maruyama K, et al.2005. High capacity supercapacitors based on modified activated carbon aerogel[J]. Journal of Applied Electrochemistry,35:229-233.
    [206]Li J, Wang X, Huang Q, et al.2006. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor[J]. Journal of Power Sources,158:784-788.
    [207]Wang X, Liu L, Wang X, et al.2011. Preparation and performances of carbon aerogel microspheres for the application of supercapacitor[J]. Journal of Solid State Electrochemistry,15: 643-648.
    [208]Wu G-P, Yang J, Wang D, et al.2014. A novel route for preparing mesoporous carbon aerogels using inorganic templates under ambient drying[J]. Materials Letters,115:1-4.
    [209]Masika E,Mokaya R.2013. High surface area metal salt templated carbon aerogels via a simple subcritical drying route:preparation and CO2 uptake properties[J]. RSC Advances,3: 17677-17681.
    [210]Fechler N, Wohlgemuth S-A, Jakera P, et al.2013. Salt and sugar:direct synthesis of high surface area carbon materials at low temperatures via hydrothermal carbonization of glucose under hypersaline onditions [J]. Journal of Materials Chemistry A 19418-9421.
    [211]Wang J, Chen M, Wang C, et al.2012. A facile method to prepare carbon aerogels from amphiphilic carbon material[J]. Materials Letters,68:446-449.
    [212]袁磊.2011.碳气凝胶储能电容电极材料的制备与性能研究[D]:[博士].绵阳:中国工程物理研究院.
    [213]Antonietti M, Fechler N, Fellinger T-P.2013. Carbon Aerogels and Monoliths:Control of Porosity and Nanoarchitecture via Sol-Gel routes[J]. Chemistry of Materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700