用户名: 密码: 验证码:
分子与惰性金属纳米粒子光学性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该论文主要展示了我在攻读博士学位期间所做的一些工作。论文的主要工作包含两项:一是在时间域中发展和完善了包含振动能级贡献的电子谱和共振拉曼光谱的微分截面的数学表达,并利用其详细的研究了一系列处于气相及液相中分子的单/双光子吸收、发射和(超)共振拉曼光谱;另一项工作是研究小尺寸孤立的惰性金属纳米粒子及纳米粒子对的特殊光学性质。这些工作从理论上给出了光谱微分截面在时间域中的数学表达式,阐述了惰性金属纳米粒子对中等离子激元的杂化机理;同时也对一系列分子的光学性质做了微观描述,比如:生物分子中的发光基团、自由基、卟啉,以及金属纳米粒子。它有助于人们更容易的理解这些体系中存在的光化学和光物理过程,并有利于生命科学、医学、太阳能电池、以及材料科学的大力发展。具体工作主要包含以下几个方面:(1)为了有效地描述复杂分子的模式混合和电声耦合效应,我们运用时间相关函数方法构建了时域中线性与非线性光谱的数学表达式。(2)运用已经发展的理论方法与模型来研究实际体系。例如,自由基分子中取代基和电声耦合作用对吸收、荧光和共振拉曼光谱的影响;激发态势能面对π共轭分子以及生物发色团中双光子吸收和超共振拉曼光谱的作用。(3)利用第一性原理方法,结合激子耦合理论模型和适当的交换相关泛函,从量子力学角度解释了金属纳米粒子以及粒子间等离子共振的产生和相互作用机理。主要的研究成果如下:
     1.在时域中发展和完善了包含Duschinsky转动和Herzberg-Teller效应的一系列振动分辨的电子谱及共振拉曼散射谱的微分截面的数学表达式。这些谱包括线性的吸收、发射、圆二色谱和共振拉曼光谱(RRS),以及非线性的双光子吸收(TPA)和超共振拉曼光谱(RHRS)o不同于态求和(SOS)方法,时域中方法不需要对大量中间振动态进行截断和求和,因此具有较高的计算精度和效率。随后使用已建立的光谱理论模型和程序研究了一系列自由基、发色团和π共轭的分子体系。
     2.对于气相和溶液中分子共振拉曼光谱的计算表明,我们发展的理论方法是正确的,可以重复实验和其它理论方法的结果。基组、理论模型和参考结构对分子的电子和几何结构起着显著作用。TDDFT-TDA近似不适合描述振动分辨的光谱。
     3对自由基分子的研究表明,虽然TD-B3LYP计算的激发能严重低估了实验值,但却能较好的描述分子的基态和激发态的势能面,因为理论模拟的吸收、荧光和共振拉曼光谱与实验值是一致的。另外,电声耦合会随着取代基团不同而显著变化,但振动频率受到的影响却是有限的。
     4.对于TPA和RHRS的研究表明,正确的共振态势能面在光谱的模拟过程中是必不可少的,垂直梯度近似会丢失一些重要的电子振动信息。也就是说,模式混合、频率差和Herzberg-Teller效应对TPA和RHRS产生重要的影响。
     5.对金属纳米粒子的计算说明,长程修正的泛函(LRC-wPBE)才能正确的产生金纳米粒子的等离子特性,不同的粒子尺寸和粒子间距对其等离子吸收带的影响是非常明显的,纳米粒子对在较小的粒子间距下甚至会产生新的吸收峰。局域的激子耦合模型无法描述密堆积纳米粒子的光谱。另外,纳米粒子间的耦合方式可以调整其聚集体中的等离子吸收带的位置和强度以及电子转移。
The current thesis presents the major works that I have done during my PhD study. The main work includes two parts: one part is concerned with the theory and applica-tions of time-dependent approaches to one/two photon electronic and scattering spectra with inclusion of Herzberg-Teller (HT) contribution and mode-mixing (Duschinsky) effect. Another part is to study the special optical properties of isolated noble metal nanoparticle and nanoparticle pairs in small size. These works not only provide the detailed mathematical expressions of differential cross sections of spectra in the time domain, and elaborate the hybrid mechanism of plasmon for noble metal nanoparti-cle pairs, but also present a microscopic description to the optical properties of se-ries molecules, such as the luminescent groups of biological molecules, free radical molecules, porphyrin, as well as metal nanoparticles. It helps people to more easily un-derstand photophysical and photochemical processes in these systems, and facilitates the development of the life sciences, medicine, solar cells, and materials science. The specific work mainly includes the following aspects:(1) To effectively describe the mode-mixing and vibronic coupling effects of complex molecules, the mathematical expressions of linear and nonlinear spectra have been constructed in time-domain based on the time-correlation functions.(2) Studying the realistic system with the develope-d theoretical methods and models. For example, we have investigated the influence of substitution and vibronic coupling effects on the absorption, fluorescence and reso-nance Raman spectroscopy in free radicals; examined the role of the excited potential energy surfaces in two-photon and resonance hyper-Raman spectroscopy of π conju-gated molecules and biological chromophores.(3) Based on the first-principles meth-ods, and then combined with exciton coupling theory model and appropriate exchange-correlation functional, we explain the mechanism of interaction and generation in the plasmon resonance of metal nanoparticles and its aggregates from the perspective of quantum mechanics. The main results are presented as follows:
     1. Developing and consummating the detailed mathematical expressions of differ- ential cross sections for a series of vibrationally-resolved electric spectra and resonance raman scattering spectra with inclusion of Duschinsky rotation and Herzberg-Teller ef-fect in the time-domain. These include the linear absorption, emission, circular dichro-ism and resonance Raman spectroscopy (RRS) as well as the nonlinear two-photon absorption (TPA) and resonance hyper-Raman spectroscopy (RHRS). Unlike sum-of-state (SOS) method, the analytical expressions for these spectroscopies avoid trunca-tion and summation over the large number of intermediate vibrational states, and thus have higher accuracy and efficiency. Consequently, the established theoretical models and program are used to study a series of free radical molecules, chromophores and π conjugated molecular systems.
     2. The calculation of resonance Raman spectra for molecules in the gas phase and solution proves that, our developed theoretical approach is correct, it can well reproduce the results originate from the experiment and other theoretical approaches. The basis sets, theoretical model and reference configuration play a significant role on the electronic and geometric structure of the molecule. Tamm-Dancoff approximation to TDDFT is not suitable to describe the vibrationally resolved spectroscopy.
     3. From the studies of the free radicals, we find that TD-B3LYP seriously un-derestimates the calculated excitation energies compared with the experimental values, however, it provides a good description for the ground state and excited state poten-tial energy surface, because we get the perfectly consistent spectral lineshapes between theoretical calculations and experiments for the absorption, fluorescence and resonance Raman spectra. In additional, the vibronic coupling significantly varies from the sub-stituent groups, but it has a little influence on the vibrational frequency.
     4. The investigation on the calculated TPA and RHRS show that, the correct resonance-states potential energy surface is essential to the simulation of the spectrum, and some importantly vibronic information will be missed by vertical gradient approx-imation. On the other hand, mode-mixing, frequency difference and Herzberg-Teller effects play an important role on the TPA and RHRS.
     5. The calculation to metal nanoparticles illustrate that, only the long-range-corrected functional (LRC-wPBE) can produce the correct plasmon characteristics of gold nanoparticles, plasmon absorption band is significantly influenced by the different particle size and interparticle spacing, and even new peaks will be yielded for nanopar-ticle pairs in smaller interparticle distance. The localized exciton coupling model can not describe the spectrum of closely packed nanoparticles. Furthermore, the coupled form between nanoparticles can adjust position and intensity of the plasmon absorption bands in aggregates, as well as its electron transfer.
引文
[1]Circular Dichroism and the Conformational Analysis of Biomolecules, Plenum Press:New York,1996.
    [2]Berova, N.; Di Bari, L.; Pescitelli, G. Chem. Soc. Rev.2007,36,914-931.
    [3]Terenziani, R; Katan, C.; Badaeva, E. Tretiak, S.;Blanchard-Desce M. Adv. Mater. 2008,20,4641-4678.
    [4]Kelley, A. M. Annu. Rev. Phys. Chem.2010,61,41-61.
    [5]Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990,248,73.
    [6]So, P. T. C.; Dong, C. Y.; Masters, B. R.; Berland, K. M. Annu. Rev. Biomed. Eng. 2000,2,399.
    [7]Biczysko, M.; Bloino, J.; Santoro, F.; Barone, V. Computational Strategies for Spectroscopy. From Small Molecules to Nano Systems, first edition; V. Barone, Eds.;Wiley, Ltd.:Chichester, U.K.2011, pp 300-386.
    [8]Borrelli, R.; Peluso, A. J. Chem. Phys.2003,119,8437.
    [9]Hazra, A.; Nooijen, M. Int. J. Quantum Chem.2003,95,643.
    [10]Barone, V.; Polimeno, A. Chem. Soc. Rev.2007,36,1724-1731.
    [11]Barone, V.; Bloino, J.; Biczysko, M.; Santoro, F. J. Chem. Theory Comput.2009, 5,540.
    [12]Sharp, T. E.; Rosenstock, H. M. J. Chem. Phys.1964,41,3453-3463.
    [13]Kupka, H.; Cribb, P. H. J. Chem. Phys.1986,85,1303-1315.
    [14]Ruhoff, P. T. Chem. Phys.1994,186,355-374.
    [15]Doktorov, E. V.; Malkin, I. A.; Man'ko, V. I. J. Mol. Spectrosc.1977,64,302-326.
    [16]Doktorov, E. V.; Malkin, I. A.; Man'ko, V. I. J. Mol. Spectrosc.1975,56,1-20.
    [17]Peluso, A.; Santoro, F.; Del Re, G. Int. J. Quantum Chem.1997,63,233-244.
    [18]Macak, P.; Luo, Y.; Norman, P.; Agren, H. Chem. Phys. Lett.2000,330,447.
    [19]Lin, N.; Zhao, X.; Rizzo, A.; Luo, Y. J. Chem. Phys 2007,126,244509.
    [20]Heller, E. J.; Lee, S.-Y. J. Chem. Phys.1979,71,4777-4788.
    [21]Heller, E. J.; Sundberg, R. L.; Tannor, D. J. J. Phys. Chem.1982,86,1822-1833.
    [22]Heller, E. J.; Tannor, D. J.J. Chem. Phys.1982,77,202-218.
    [23]Kamarchik, E.; Krylov, A. I. J. Phys. Chem. Lett.2011,2,488.
    [24]Ai, Y. J.; Tian, G. J.; Luo, Y. Mol. Phys.2013,111,1316.
    [25]Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.; Rebane, A.J. Phys. Chem. B 2012,116,1736.
    [26]Liu, J.; Liang, W. Z. J. Chem. Phys.2011,134,044114.
    [27]Liu, J.; Liang, W. Z. J. Chem. Phys.2011,135,014113.
    [28]Liu, J.; Liang, W. Z.J. Chem. Phys.2011,135,184111.
    [29]Ma, H. L.; Liu, J.; Liang, W. Z. J. Chem. Theory Comput.2012,8,4474.
    [30]Ma, H. L.; Zhao, Y.; Liang, W. Z. J. Chem. Phys.2014,140,094107.
    [31]Chen, D. P.; Liu, J.; Ma, H. L.; Zeng, Q.; Liang, W. Z.Sci. China Chem.2014, 57,48-57.
    [32]Morton, S. M.; Silverstein, D. W.; Jensen, L. Chem. Rev.2011,111,3962-3694.
    [33]Ma, H. L.; Gao, F.; Liang, W. Z.J. Phys. Chem. C 2012,116,1755-1763.
    [1]Kramers H. A.; Heisenberg, W. Z. Phys.1925,31,681.
    [2]Dirac, P. A. M. Proc. R. Soc. London, Ser. A 1927,114,710.
    [3]Applequist, J.J. Chem. Phys.1979,71,4332.
    [4]Ito, H. J.Chem. Phys.1998,108,93.
    [5]Luo, Y. Linear and Nonlinear Optical and X-ray Scattering by Molecules, Doc-toral Thesis, Linkoping University,1996.
    [6]Langhoff, P. W.; Epstein, S. T.; Karplus, M. Rev. Mod. Phys.1972,44,602.
    [7]Orr, B. J.; Ward, J. F. Mol. Phys.1971,20,513.
    [8]Olsen, J.; Jorgensen, P. Modern Electronic Structure Theory, World Scientific: New York,1995, P.857
    [9]Helgaker, T.; Coriani, S.; Jorgensen, P.; Kristensen, K.; Olsen, J.; Ruud, K. Chem. Rev.2012,112,543-631.
    [10]Lami, A.; Petrongolo, C.; Santoro, F. In Conical Intersections, Electronic Struc-ture, Dynamics and Spectroscopy; Domcke, W., Yarkony, R., Koeppel, H., Eds.; World Scientific Publishing Co.:Singapore,2004; pp 699-739.
    [11]Condon, E. U. Rev. Mod. Phys.1937,55,2789.
    [12]Rizzo, A.; Lin, N.; Ruud, K. J. Chem. Phys.2008,128,164312.
    [13]Macak, P.; Luo, Y.; Norman, P.; Agren, H. Chem. Phys. Lett.2000,330,447.
    [14]Silverstein, D. W.; Jensen, L.J. Chem. Phys.2012,136,064111.
    [15]Petrenko, T.; Neese, F.J. Chem. Phys.2007,127,164319.
    [16]Heller, E. J.; Sundberg, R. L.; D. Tannor, J.J. Phys. Chem.1982,86,1822.
    [17]Monson, P. R.; McClain, W. M. J. Chem. Phys.1970,53,29.
    [18]McClain, W. M. J. Chem. Phys.1971,55,2789.
    [19]Diek, B.; Hoehstrasser, R.M.; Trommsdorff, H. P. Nonlinear Optical Properties of Organic Molecules and Crstals, Aeademic Press, Orlando, FL,1987.
    [20]Shen, Y. R. The Principles of Nonlinear Optics, Wiley, New York,1984.
    [21]Bishop, D. M.; Luis, L. J.; Kirtman, B.J. Chem. Phys 2002,116,9729.
    [22]Albrecht, A. C.J. Chem. Phys.1961,34,1476.
    [23]Long, D. A. The Raman Effect:A Unified Treatment of the Theory of Raman Scattering by Molecules, Wiley:Chichester, U.K.2002.
    [24]Chung, Y. G.; Ziegler, L. D. J. Chem. Phys.1988,88,7287.
    [25]Chung, Y. G.; Ziegler, L. D.J. Chem. Phys.1988,89,4692.
    [26]Yang, W. H.; Schatz, G. C. J. Chem. Phys.1992,97,3831.
    [27]Quinet, O.; Champagne, B.; Van Gisbergen, S. J. A. Int. J. Quantum Chem.2005, 106,599.
    [28]Sharp, T. E.; Rosenstock, H. M.J. Chem. Phys.1964,41,3453-3463.
    [29]Kupka, H.; Cribb, P. H. J. Chem. Phys.1986,85,1303-1315.
    [30]Ruhoff, P. T. Chem. Phys.1994,186,355-374.
    [31]Doktorov, E. V.; Malkin, I. A.; Man'ko, V. I. J. Mol. Spectrosc.1977,64,302-326.
    [32]Doktorov, E. V.; Malkin, I. A.; Man'ko, V. I. J. Mol. Spectrosc.1975,56,1-20.
    [33]Peluso, A.; Santoro, F.; Del Re, G. Int. J. Quantum Chem.1997,63,233-244.
    [34]Heller, E. J.; Lee, S.-Y. J. Chem. Phys.1979,71,4777-4788.
    [35]Heller, E. J.; Tannor, D. J. J. Chem. Phys.1982,77,202-218.
    [36]Bonang, C. C.; Cameron, S. M. J. Chem. Phys.1992,97,5377.
    [37]Mukamel, S. J. Chem. Phys.1982,77,173.
    [38]Mukamel, S.; Abe, S.; Yan, Y. J.; Islampour, R. J. Phys. Chem.1985,89,201.
    [39]Mukamel, S.; Sue, J.J. Chem. Phys.1985,82,5291.
    [40]Yan Y. J.; Mukamel, S. J. Chem. Phys.1986,85,5908.
    [41]Carl, E. Phys. Rev.1935,47,552.
    [42]Duschinsky, F. Acta Physicochim. URSS1937,7,551.
    [43]Warshel, A.; Karplus, M. Chem. Phys. Lett.1972,17,7.
    [44]Lucas, N. J. D.J. Phys. B 1973,6,155.
    [45]Sando, G. M.; Spears, K. G. J. Phys. Chem. A 2001,105,5326.
    [46]Cesar, A.; Agren, H.; Naves de Brito, A.; Svensson, S.; Karlsson, L.; Keane, M. P.; Wannberg, B.; Baltzer, P.; Fournier, P. G.; Fournder, J. J. Chem. Phys.1990, 93,918.
    [47]Milojevich, C. B.; Silverstein, D. W.; Jensen, L.; Camden, J. P. J. Am. Chem. Soc. 2011,133,14590.
    [48]Milojevich, C. B.; Silverstein, D. W.; Jensen, L.; Camden, J. P.J. Phys. Chem. C 2013,117,3046.
    [49]van Caillie, C.; Amos, R. D. Chem. Phys. Lett.1999,308,249-255.
    [50]Furche, F.; Ahlrichs, R. J. Chem. Phys.2002,117,7433-7447.
    [51]Dierksen, M.; Grimme, S. J. Phys. Chem. A 2004,108,10225-10237.
    [52]Goerigk, L.; Grimme, S. J. Chem. Phys.2010,132,184103.
    [53]Send, R.; Kuhn, M.; Furche, F.J. Chem.Theory Comput.2011,7,2376-2386.
    [54]Jacquemin, D.; Planchat, A.; Adamo, C.; Mennucci, B.J. Chem.Theory Comput. 2012,8,2359-2372.
    [55]Pescitelli, G.; Barone, V.; Di Bari, L.; Rizzo, A.; Santoro, F.J. Org. Chem.2013, 78,7398-7405.
    [56]Mukamel, S. Princiles of Nonlinear Optical Spectroscopy, Oxford University Press,1995.
    [57]Ai, Y. J.; Tian, G. J.; Luo, Y. Mol. Phys.2013,111,1316.
    [1]Kagan, V. E.; Tyurina, Y. Y. Ann. N.Y.Acad. Sci.1998,854,425.
    [2]Shimazaki, Y.; Huth, S.; Odani, A.; Yamauchi, O. Angew. Chem., Int. Ed.2000, 39,1666.
    [3]Itoh, S.; Taki, M.; Fukuzumi, S. Coord. Chem. Rev.2000,198,3.
    [4]Casella, L.; De Gioia, L.; Silvestri, G. F.; Monzani, E.; Redaelli, C.; Roncone, R.; Santagostini, L. J. Inorg. Biochem.2000,79,31.
    [5]Platz, J.; Nielsen, O. J.; Wallington, T. J.; Ball, J. C.; Hurley, M. D.; Straccia, A. M.; Schneider, W. F.; Sehested, J. J. Phys. Chem. A 1998,102,7964.
    [6]Tripathi, G. N. R.; Schuler, R. H. J. Chem. Phys.1984,81,113.
    [7]Cheng, C. W.; Witek, H.; Lee, Y. P.J. Chem. Phys.129,154307 (2008).
    [8]Tripathi, G. N. R.; Schuler, R. H.J. Chem. Phys.1987,86,3795.
    [9]Claudina, C.; Sydney, L. J. Chem. Phys.1972,56,1534.
    [10]Negri, F.; Orlandi, G.; Zerbetto, F.; Zgierski, M. Z. J. Chem. Phys.1990,93, 600.
    [11]Langkilde, F. W.; Bajdor, K.; Wilbrandt, R. Chem. Phys. Lett.193,169 (1992).
    [12]Langkilde, F. W.; Bajdor, K.; Wilbrandt, R.; Negri, F.; Zerbetto, F.; Orlandi, G. J. Chem. Phys.1994,100,3503.
    [13]Kazuya, U. Spectrochim. Acta Part A 2004,60,595.
    [14]Lee S. K.; Baek, D. Y. Chem. Phys. Lett.1999,301,407.
    [15]Larsen, J. S.; Gil, M.; Gorski, A.; Blake, D. M.; Waluk, J.; Radziszewski, J. G. J. Am. Chem. Soc.2001,123,11253.
    [16]Radziszewski, J. G.; Gil, M.; Gorski, A.; Larsen, J. S.; Waluk, J.; Mroz, B. J.J. Chem. Phys.2001,115,9733.
    [17]Santoro, F.; Cappelli, C.; Barone, V.J. Chem. Theory Comput.2011,7,1824.
    [18]Molecular Spectroscopy, edited by J. L. McHale, (Prentice Hall, Upper Saddle River, NJ,1999).
    [19]Kramers H. A.; Heisenberg, W. Z. Phys.1925,31,681.
    [20]Dirac, P. A. M. Proc. R. Soc. London, Ser. A 1927,114,710.
    [21]Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Phys.2005,123,161103.
    [22]Liu, J.; Liang, W. Z. J. Chem. Phys.2011,134,044114.
    [23]Liu, J.; Liang, W. Z. J. Chem. Phys.2011,135,014113.
    [24]Liu, J.; Liang, W. Z. J. Chem. Phys.2011,135,184111.
    [25]Ma, H. L.; Liu, J.; Liang, W. Z. J. Chem. Theory Comput.2012,8,4474.
    [26]Liang, W. Z.; Zhao, Y.; Sun, J.; Song, J.; Hu, S. L.; Yang, J. L. J. Phys. Chem. B 2006,110,9908-9915.
    [27]Gao, F.; Zhao, Y.; Liang, W. Z. J. Phys. Chem. A 2009,113,12847-12856.
    [28]Gao, F.; Zhao, Y.; Liang, W. Z. J. Phys. Chem. B 2011,115,2699-2708.
    [29]Gao, F.; Liang, W. Z.; Zhao, Y. Sci. China Chem.2010,53,297-309.
    [30]Duschinsky, F. Acta Physicochim. URSS1937,7,551.
    [31]Borrelli, R.; Peluso, A.J. Chem. Phys.2003,119,8437.
    [32]Hazra, A.; Nooijen, M. Int. J. Quantum Chem.2003,95,643.
    [33]Barone, V.; Bloino, J.; Biczysko, M.; Santoro, F. J. Chem. Theory Comput.2009, 5,540.
    [34]Sharp, T. E.; Rosenstock, H. M. J. Chem. Phys.1964,41,3453-3463.
    [35]Kupka, H.; Cribb, P. H. J. Chem. Phys.1986,85,1303-1315.
    [36]Ruhoff, P. T. Chem. Phys.1994,186,355-374.
    [37]Doktorov, E. V.; Malkin, I. A.; Man'ko, V. I. J. Mol. Spectrosc.1977,64, 302-326.
    [38]Doktorov, E. V.; Malkin, I. A.; Man'ko, V. I. J. Mol. Spectrosc.1975,56,1-20.
    [39]Peluso, A.; Santoro, F.; Del Re, G. Int. J. Quantum Chem.1997,63,233-244.
    [40]Heller, E. J. J. Chem. Phys.1975,62,1544.
    [41]Heller, E. J. J. Chem. Phys.1978,68,2066.
    [42]Lee S. Y.; Heller, E. J. J. Chem. Phys.1979,71,4777.
    [43]Mukamel, S.; Abe, S.; Yan, Y. J.; Islampour, R. J. Chem. Phys.1985,89,201.
    [44]Yan Y. J.; Mukamel, S.J. Chem. Phys.1986,85,5908.
    [45]Sando, G. M.; Spears, K. G.; Hupp, J. T.; Ruhoff, P. T. J. Phys. Chem. A 2001, 105.5317.
    [46]Orlandi, G.; Siebrand, V. J. Chem. Phys.1973,58,4513.
    [47]Lin,S.H.;Eyring,H.Proc.Natl.Acad.Sci.U.S.A.1974,71,3802.
    [48]Small,G.J.J. Chem.Phys.1971,54,3300.
    [49]Minaev,B.;Wang,Y.-H.;Wang,G.-K.;Luo,Y.;Agren H.Spectrochim.Acta, Part A 2006,65,308-323.
    [50]Santoro,F.;Lami,A.;Improta,R.;Bloino,J.;Barone,V.J.Chem.Phys.2008, 128,224311.
    [51]Shao,Y.;Molnar,L.F.;Jung,Y.;Kussmann,J.;Ochsenfeld,C.;Brown,S.T.; Gilbert,A.T.B.;Slipchenko,L.V.;Levchenko,S.V.;O'Neill,D.P.;DiStasio, R.A.;Lochan,R.C.;Wang,T.;Beran,G.J.O.;Besley,N.A.;Herbert,J.M.; Lin,C.Y.;Van Voorhis,T.;Chien,S.H.;Sodt,A.;Steele,R.P.;Rassolov,V. A.; Maslen,P E.;Korambath,P. P.;Adamson,R.D.;Austin,B.;Baker,J.;Byrd, E.F.C.;Dachsel,H.;Doerksen,R.J.;Dreuw,A.;Dunietz,B.D.;Dutoi,A.D.; Furlani,T. R.;Gwaltney,S.R.;Heyden,A.;Hirata,S.;Hsu,C.P.;Kedziora, G.;Khalliulin,R.Z.;Klunzinger,P.;Lee,A.M.;Lee,M.S.;Liang,W.;Lotan, I.;Nair,N.;Peters,B.;Proynov,E.I.;Pieniazek,P. A.;Rhee,Y.M.;Ritchie, J.;Rosta,E.;Sherrill,C.D.;Simmonett,A.C.;Subotnik,J.E.;Woodcock,H. L.;Zhang,W;Bell,A.T.;Chakraborty,A.K.;Chipman,D.M.;Keil,F. J.; Warshel,A.;Hehre,W, J.;Schaefer,H.F.;Kong,J.;Krylov,A.I.;Gill,P. M. W.;Head-Gordon,M.Phys.Chem.Chem.Phys.2006,8,3172.
    [52]Hizhnyakov,V.;Tehver,I.J. Raman Spectrosc.1988,19,383.
    [53]Silverstein,D.W.;Jensen,L.J. Chem.Phys.2012,136,064110.
    [54]Silverstein,D.W.;Jensen,L.J. Chem.Phys.2012,136,064111.
    [55]Myers,A.B.Chem.Rev.1996,96,911-926.
    [56]Myers,A.B.Acc. Chem.Res.1997,30,519-527.
    [57]McHale,J.L.Acc.Chem.Res.2001,34,265-272.
    [58]Hupp,J.T.;Williams,R.D.Acc.Chem.Res.2001,34,808-817.
    [59]Spiro,T.G.;Stein,P Annu.Rev.Phys.Chem.1977,28,501-521.
    [60]Warshel,A.Ann.Rev.Biophys.Bioeng.1977,6,273-300.
    [61]Champion, P. M.; Albrecht, A. C. Ann. Rev. Phys. Chem.1982,33,353-376.
    [62]Wachtler, M.; Guthmuller, J.; Gonzalez, L.; Dietzek, B. Coord. Chem. Rev. 2012,2561479-1508
    [63]Heller, E. J.; Lee, S.-Y.J. Chem. Phys.1979,71,4777-4788.
    [64]Heller, E. J.; Sundberg, R. L.; Tannor, D. J. J. Phys. Chem.1982,86,1822-1833.
    [65]Heller, E. J.; Tannor, D. J. J. Chem. Phys.1982,77,202-218.
    [66]Islampour, R.; Hayashi, M.; Lin, S. H. J. Raman Spectroscopy 1997,28,331-338.
    [67]Dehestani, M.; Islampour, R. Int. J. Quantum Chem.2005,103,119-126.
    [68]Heller, E. J.; Sundberg, R. L.; D. Tannor, J.J. Phys. Chem.1982,86,1822.
    [69]Albrecht, A. C. J. Chem. Phys.1961,34,1476-1484.
    [70]Albrecht, A. C.; Hutley, M. C. J. Chem. Phys.1971,55,4438-4443.
    [71]Caillie, C. V.; Amos, R. D. Chem. Phys. Lett.1999,308,249-255.
    [72]Caillie, C. V.; Amos, R. D. Chem. Phys. Lett.2000,317,159-164.
    [73]Hutter, J. J. Chem. Phys.2003,118,3928-3934.
    [74]Furche, F.; Ahlrichs, R.J. Chem. Phys.2002,117,7433-7447.
    [75]Rappoport, D.; Furche, F. J. Chem. Phys.2005,122,064105.
    [76]Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. J. Chem. Phys.2006,124,094107.
    [77]Thorvaldsen, A. J.; Ruud, K.; Kristensen, K.; Jogensen, P.; Coriani, S. J. Chem. Phys.2008,129,214108.
    [78]Coriani, S.; Kaergaard, T.; Jorgensen, P.; Ruud, K; Huh, J.; Berger, R. J. Chem. Theory Comput.2010,6,1028-1047.
    [79]Liu, F.; Gan, Z.; Shao, Y. H.; Hsu, C. P.; Dreuw, A.; Head-Gordon, M.; Miller, B. T.; Brooks, B. R.; Yu, J. G.; Furlani, T. R.; Kong, J. Mol. Phys. 2010,108,2791.2800.
    [80]Chiba,M.;Tsuneda,T.;Hirao,K.J. Chem.Phys.2006,124,144106.
    [81]Cammi,R.;Mennucci,B.;Tomasi,J.J, Phys.Chem.A 2000,104,5631.5637.
    [82]Frisch,M.J.;Trucks,G.W.,Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.; Cheeseman,J.R.;Scalmani,G.;Barone,V;Mennucci,B.;Petersson,G.A.; Nakatsuji,H.;Caricato,M.;Li,X.;Hratchian,H.P.;Izmaylov,A.F.;Bloino, J.;Zheng,G.;Sonnenberg,J.L.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.; Hasegawa,J.;Ishida,M.;Nakajima,T;Honda,Y.,Kitao,O.,Nakai,H.;Vreven, T.;Montgomery,Jr.,J.A.;Peralta,J.E.;Ogliaro,F.;Bearpark,M.;Heyd,J.J.; Brothers,E.;Kudin,K.N.;Staroverov,V N.;Kobayashi,R.;Normand,J.; Raghavachari,K.;Rendell,A.;Burant,J.C.;Iyengar,S.S.;Tomasi,J.;Cossi, M.;Rega,N.;Millam,J.M.;Klene,M.;Knox,J.E.;Cross,J.B.;Bakken,V.; Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin, A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.,Martin,R.L.;Morokuma,K.; Zakrzewski,V. G.;Voth,G.A.;Salvador,P.,Dannenberg,J.J.;Dapprich,S.; Daniels,A.D.;Farkas,O.;Foresman,J.B.;Ortiz,J.V;Cioslowski,J.;Fox,D. J.Gaussian09,Revision B.01;Gaussian,Inc.:Wallingford,CT,2009
    [83]Niu,Y.;Peng,Q.;Deng,C.M.;Gao,X.;Shuai,Z.G.J. Phys.Chem.A 2010, 114,7817-7831.
    [84]Du,R.;Liu,C.;Zhao,Y Y;Pei,K.-M.;Wang,H.-G.;Zheng,X.M.;Li,M. D.;Xue,J.-D.;Phillips,D.L.J. Phys.Chem.B 2011,115,8266-8277.
    [85]Hehre,W,.J.;Radom,L.;Schleyer,P v.R.;Pople,J.A.Ab Initio Moleculaar Orbital Theory;Wiley:New York,1996.
    [86]Edwards,L.;Dolphin,D.H.;Gouterman,M.;and Adler,A.D.J, Mol.Spec-trosc.1971,38,16.
    [87]Hirata,S.;Head-Gordon,M.Chem.Phys.Lett.1999,314,291-299.
    [88]Peng,Q.;Niu,Y.,Shi,Q.;Gao,X.;Shuai,Z.G.J.Chem.Theory Comput.2013, 9.1132.
    [89]Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990,248,73.
    [90]So, P. T. C.; Dong, C. Y.; Masters, B. R.; Berland, K. M. Annu. Rev. Biomed. Eng.2000,2,399.
    [91]Schmid, W. J.; Schrotter, H. W. Chem. Phys. Lett.1977,45,502.
    [92]Dines, T. J.; French, M. J.; Hall, R. J. B.; Long, D. A. J. Raman Spectrosc.1983, 14,225.
    [93]Neddersen, J. P.; Mounter, S. A.; Bostick, J. M.; Johnson, C. K. J. Chem. Phys. 1989,90,4719.
    [94]Shoute, L. C. T.; Bartholomew, G. P.; Bazan, G. C.; Kelley, A. M. J. Chem. Phys.2005,122,184508.
    [95]A. M. Kelley, Annu. Rev. Phys. Chem.2010,61,41.
    [96]Macak, P.; Luo, Y.; Norman, P.; Agren, H. Chem. Phys. Lett.2000,330,447.
    [97]Lin, N.; Zhao, X.; Rizzo, A.; Luo, Y.J. Chem. Phys 2007,126,244509.
    [98]Chung, Y. C.; Ziegler, L. D. J. Chem. Phys.1988,88,7287.
    [99]Chung, Y. C.; Ziegler, L. D.J. Chem. Phys.1988,89,4692.
    [100]Bonang, C. C.; Cameron, S. M. Opt. Commun.1991,86,504.
    [101]Bonang, C. C.; Cameron, S. M. Chem. Phys. Lett.1991,187,619.
    [102]Bonang, C. C.; Cameron, S. M. Chem. Phys. Lett.1992,192,303.
    [103]Bonang, C. C.; Cameron, S. M. J. Chem. Phys.1992,97,5377.
    [104]Liu, J.; Liang, W. Z.J. Chem. Phys.2013,138,024101.
    [105]Salek, P.; Vahtras, O.; Guo, J. D.; Luo, Y.; Helgaker, T.; Agren, H. Chem. Phys. Lett.2003,374,446.
    [106]Jansik, B.; Salek, P.; Jonsson, D.; Vahtras, O.; Agren, H. J. Chem. Phys.2005, 122,54107.
    [107]Olsen, J.; Jogensen, P. J. Chem. Phys.1985,82,3235.
    [108]Thorvaldsen, A. J.; Ruud, K.; Kristensen, K.; Jogensen, P.; Coriani, S.J. Chem. Phys.2008,129,214108.
    [109]Frediani, L.; Rinkevicius, Z.; Agren, H. J. Chem. Phys.2005,122,244104.
    [110]Rudberg, E.; Salek, P.; Helgaker, T.; Agren, H. J. Chem. Phys.2005,123, 184108.
    [111]Ferrighi, L.; Frediani, L.; Fossgaard, E.; Ruud, K. J. Chem. Phys.2007,127, 244103.
    [112]Jankowiak, H. C.; Stuber, J. L.; Bergera, R.J. Chem. Phys.2007,127,234101.
    [113]Avila Ferrer, F. J.; Cappelli, C.; Barone, V.; Santoro, F. J. Chem. Theory Comput. 2013,9,3597.
    [114]Milojevich, C. B.; Silverstein, D. W.; Jensen, L.; Camden, J. P. J. Am. Chem. Soc.2011,133,14590.
    [115]Milojevich, C.B.; Silverstein, D. W.; Jensen, L.; Camden, J. P. J. Phys. Chem. C 2013,117,3046.
    [116]Dalton, a molecular electronic structure program, Release Dalton.2011, see http://daltonprogram.org.2011.
    [117]Ai, Y. J.; Tian, G. J.; Luo, Y. Mol. Phys.2013,111,1316.
    [118]Kamarchik, E.; Krylov, A. I.J. Phys. Chem. Lett.2011,2,488.
    [119]Epifanovsky, E.; Polyakov, I.; Grigorenko, B. L.; Nemukhin, A. V.; Krylov, A. I.J. Chem. Theory Comput.2009, 5,1895.
    [120]Paterson, M. J.; Christiansen, O.; Pawlowski, F.; Jorgensen, P.; Hatig, C.; Hel-gaker, T.; Salek, P.J. Chem. Phys.2006,124,054322.
    [121]Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev.2005,105,2999.
    [122]Scalmani, G.; Frisch, M. J. J. Chem. Phys.2010,132,114110.
    [123]Clouthier, D. J.; Ramsay, D. A. Annu. Rev. Phys. Chem.1983,34,31.
    [124]Furche, F.; Ahlrichs, R. J. Chem. Phys.2002,117,7433.
    [125]Drobizhev, M.; Makarov, N. S.; Hughes, T.; Rebane, A. J. Phys. Chem. B 2007, 111,14051.
    [126]Drobizhev, M.; Makarov, N. S.; Tillo, S. E.; Hughes, T. E.; Rebane, A. J. Phys. Chem. B 2012,116,1736.
    [127]Gratien, A.; Nilsson, E.; Bache-Andreassen, L;. Doussin, J F.; Johnson, M. S.; Nielsen, C. J.; Stenstrom, Y.; Picquet-Varrault, B. J. Phys. Chem. A 2007,111, 11506.
    [128]Strickler, S. J.; Barnhart, R. J. J. Phys. Chem.1982,86,448.
    [129]Robey, M. J.; Schlag, E. W. Chem. Phys.1978,30,9.
    [130]Doraiswamy, S.; Periasamy, N. J. Chem. Phys.1984,81,4844.
    [131]Drobizhev, M.; Tillo, S.; Makarov, N. S.; Hughes, T. E.; Rebane, A. J. Phys. Chem. B 2009,113,855.
    [132]Drobizhev, M.; Makarov, N. S.; Tillo, S.; Hughes, T. E.; Rebane, A. Nat. Meth-ods 2011,8,393.
    [133]Yanai, T.; Tew, D.; Handy, N. Chem. Phys. Lett.2004,393,51.
    [134]Chai, J. D.; Head-Gordon, M. Phys. Chem. Chem. Phys.2008,10,6615.
    [135]Lin, N.; Luo, Y; Ruud, K.; Zhao, X.; Santoro, F.; Rizzo, A. ChemPhysChem 2011,12,3392.
    [136]Smith, K. M. Porphyrins and Metalloporphyrins; Elsevier:Amsterdam,1975.
    [137]Forbes, M. W.; Jockusch, R. A. J. Am. Chem. Soc.2009,131,17038.
    [1]Brack,M.Rev. Mod.Phys.1993,65,677.
    [2]Adams,A.;Rendell,R.W.;West,W.P.;Broida,H.P;Hansma,P K.;Metiu,H. Phys.Rev.B1980,21,5565.
    [3]Adams,A.;Rendell,R.W;Garnett,R.W.,Hansma,P K.;Metiu,H.Opt.Com-mun.1980,34,417.
    [4]Adams, A.; Moreland, J.; Hansma, P. K. Surf. Sci.1981,111,351.
    [5]Adams, A.; Moreland, J.; Hansma, P. K.; Schlesinger, Z. Phys. Rev. B 1982,25, 3457.
    [6]Metiu, H.; Das, P. Annu. Rev. Phys. Chem.1984,35,507.
    [7]Metiu, H. Prog. Surf. Sci.1984,17,153.
    [8]Aravind, P. K.; Nitzan, A.; Metiu, H. Surf. Sci.1981,110,189.
    [9]Mie, G. Ann. Phys. (Leipzig) 1908,25,377.
    [10]Yang, W.-H.; Schatz, G. C.; Van Duyne, R. P. J. Chem. Phys.1995,103,869.
    [11]Draine, B. T.; Flatau, P. J.J. Opt. Soc. Am. A 1994,11,1491.
    [12]Bian, R. X.; Dunn, R. C.; Xie, X. S.; Leung, P. T. Phys. Rev. Lett.1995,75,4772.
    [13]Taflove, A.; Hagness, S. C. Computational Electrodynamics:The Finite-Difference Timedomain Method; Artech House:Boston, MA,2005.
    [14]Link, S.; El-Sayed, M. A. Annu. Rev. Phys. Chem.2003,54,331PMID: 12626731.
    [15]de Heer, W. A.; Selby, K.; Kresin, V.; Masui, J.; Vollmer, M.; Chatelain, A.; Knight, W. D. Phys. Rev. Lett.1987,59,1805.
    [16]de Heer, W. A. Rev. Mod. Phys.1993,65,611.
    [17]Zuloaga, J.; Prodan, E.; Nordlander, P. Nano Lett.2009,9,887.
    [18]Zhao, K.; Troparevsky, M. C.; Xiao, D.; Eguiluz, A. G.; Zhang, Z. Phys. Rev. Lett.2009,102,186804.
    [19]Troparevsky, M. C; Zhao, K.; Xiao, D.; Eguiluz, A. G.; Zhang, Z. Phys. Rev. B 2010,82,045413.
    [20]McMahon, J. M.; Gray, S. K.; Schatz, G. C. Phys. Rev. Lett.2009,103,097403.
    [21]Garcia de Abajo, F. J. J. Phys. Chem. C 2008,112,17983.
    [22]Prodan, E.; Nordlander, P. Chem. Phys. Lett.2002,352,140.
    [23]Prodan, E.; Nordlander, P. Nano Lett.2003,3,543.
    [24]Prodan, E.; Nordlander, P.; Halas, N. J. Nano Lett.2003,3,1411.
    [25]Wood, D. M.; Ashcroft, N. W. Phys. Rev. B 1982,25,6255.
    [26]Liebsch, A. Phys. Rev. B 1993,48,11317.
    [27]Zheng, J.; Nicovich, P. R.; Dickson, R. M. Annu. Rev. Phys. Chem.2007,58,409.
    [28]El-Sayed, M. A. Acc. Chem. Res.2001,34,257.
    [29]Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. B 1997,101,3706.
    [30]Logunov, S.; Ahmadi, T.; El-Sayed, M.; Khoury, J.; Whetten, R. J. Phys. Chem. B 1997,101,3713.
    [31]Schaaff, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L.; Cullen, W. G.; First, P. N.; Gutierrez-Wing, C.; Ascensio, J.; Jose-Yacaman, M. J. J. Phys. Chem. B 1997,101,7885.
    [32]Gersten, J. I.; Nitzan, A. J. Chem. Phys.1980,73,3023.
    [33]Wang, D.-S.; Chew, H.; Kerker, M. Appl. Opt.1980,19,2256.
    [34]Moskovits, M. J. Chem. Phys.1978,69,4159.
    [35]Moskovits, M. Solid State Commun.1978,32,59.
    [36]Gersten, J. I. J. Chem. Phys.1980,72,5779.
    [37]Kerker, M.; Wang, D. S.; Chew, H. Appl. Opt.1980,19,3373.
    [38]Bonacic-Koutecky, V.; Fantucci, P.; Koutecky, J. Chem. Rev.1991,91,1035.
    [39]Charle,K. P.; Schulze, W. Ber. Bunsen-Ges. Phys. Chem.1984,88,350.
    [40]Novotny, L.; Hecht, B.. Principles of Nano-Optics; Cambridge, U.K.2006.
    [41]Maier, S. A. Plasmonics:Fundamentals and Applications; Springer:Berlin,2007
    [42]Purcell, E. M.; Pennypacker, C. R. Astrophys. J.1973,186,705.
    [43]Draine, B. T.; Goodman, J. J. Astrophys. J.1993,405,685.
    [44]Jensen, J. R.; Duval, M. L.; Kelly, K. L.; Lazarides, A. A.; Shatz, G. C.; Van, Duyne, R. P.J. Phys. Chem. B 1999,103,9846.
    [45]Kunz, K. S.; Luebbers, R. J. The Finite Difference Time Domain Method for Electromagnetics; CRC Press:Boca Raton, FL,1993, p8657.
    [46]Yee, K. IEEE Trans.1966,14,302.
    [47]Taflove, A. IEEE Trans.1980,22,191.
    [48]Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. Science 2003,302,419.
    [49]Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Nano Lett.2004, 4,899.
    [50]Jacak, W.; Krasnyj, J.; Jacak, J.; Chepok, A.; Jacak, L.; Donderowicz, W.; Hu, D. Z.; Schaadt, D. M.J. Appl. Phys.2010,108,084304.
    [51]Frey, K.; Idrobo, J. C.; Tiago, M. L.; Reboredo, F. A.; Ogut, S. Phys. Rev. B 2009, 80,153411.
    [52]Quijada, M.; Borisov, A. G.; Muino, R. D. Phys. Status Solidi A 2008,205,1312.
    [53]Kulish, V. V.; Tomchuk, P. M. Surf. Sci.2008,602,1045.
    [54]Zangwill, A.; Soven, P. Phys. Rev. A 1980,21,1561.
    [55]Aikens, C. M.; Li, S.; Schatz, G. C. J. Phys. Chem. C 2008,112,11272.
    [56]Spano, F. C. Annu. Rev. Phys. Chem.2006,57,217.
    [57]Seibt, J.; Dehm, V.; Wurthner, F.; Engel, V. J. Chem. Phys.2007,126,164308.
    [58]Seibt, J.; Engel, V. Chem. Phys.2008,347,120.
    [59]Renger, T.; Voigt, J.; May, V.; Kiihn, O. J. Phys. Chem.1996,100,15654.
    [60]Fink, R. F; Seibt, J.; Engel, V.; Renz, M.; Kaupp, M.; Lochbrunner, S.; Zhao, H. M.; Pfister, J.; Wurthner, F.; Engels, B. J. Am. Chem. Soc.2008,130,12858.
    [61]McWeeny, R. Methods of Molecular Quantum Mechanics,2nd ed. Academic Press, London, U. K.,1992.
    [62]Hsu, C. P.; Fleming, G. R.; Head-Gordon, M.; Head-Gordon, T. J. Chem. Phys. 2001,114,3065.
    [63]Scholes. G. D. Annu. Rev. Phys. Chem.2003,54,57.
    [64]Pan, F.; Gao, F.; Liang, W. Z.J. Phys. Chem. B 2009,113,14581-14587.
    [65]Song, J.; Gao, F.; Shi, B.; Liang, W. Z. Phys. Chem. Chem. Phys.2010,12, 13070-13075.
    [66]Gao, F.; Zhao, Y.; Liang, W. Z. J. Phys. Chem. B 2011,115,2699-2708.
    [67]Gao, F.; Liang, W. Z.; Zhao, Y. Sci. China Chem.2010,53,297-309.
    [68]Lu, T.; Chen, F. W. J. Comp. Chem.2012,33,580.
    [69]Weinhold, F. In Encyclopedia of Computational Chemistry,Vol.2, Ed.:Schleyer, P. V. R., John Wiley & Sons, West Sussex,1998, pp.1792-1811.
    [70]Mulliken, R. S.J. Chem. Phys.1955,23,1841.
    [71]Mulliken, R. S.J. Chem. Phys.1955,23,1833.
    [72]Mulliken, R. S.J. Chem. Phys.1955,23,2338.
    [73]Stout, E. W.; Politzer, P. Theor. Chem. Acc.1968,12,379.
    [74]Ros, P.; Schuit, G. C. A. Theor. Chem. Acc.1966,4,1.
    [75]Christoffersena, R. E.; Baker, K. A. Chem. Phys. Lett.1971,8,4.
    [76]Bickelhaupt, F. M.; van Eikema Hommes, N. J. R.; Fonseca Guerra, C.; Baerends, E. J. Organometallics 1996,15,2923.
    [77]Doggett, G. J. Chem. Soc. A 1969,229.
    [78]Lowdin, P.-O. Adv. Quantum. Phys.1970,5,185.
    [79]Hirshfeld, Theor. Chim. Acta (Berl.) 1977,44,129.
    [80]Hoffmann, R. Solids and Surfaces:A Chemist's View of Bonding in Extended Structures; VCH Publishers:New York,1988.
    [81]Hughbanks, T.; Hoffmann, R. J. Am. Chem. Soc.1983,105,3528.
    [1]El-Sayed, M. A. Acc. Chem. Res.2001,34,257.
    [2]Haes, A. J.; Zou, S. L.; Schatz, G. C; Van Duyne, R. P. J. Phys. Chem. B 2004, 108,6961-6968.
    [3]Danckwerts, M.; Novotny, L. Phys. Rev. Lett.2007,98,026104.
    [4]Fofang, N. T.; Park, T.-H.; Neumann, O.; Mirin, N. A.; Nordlander, P.; Halas, N. J. Nano Lett.2008,8,3481-3487.
    [5]Lassiter, J. B.; Sobhani, H.; Fan, J. A.; Kundu, J.; Capasso, F.; Nordlander, P.; Halas, N. J. Nano Lett.2010,10,3184-3189.
    [6]Pelton, J., M Aizpurua; Bryant, G. Laser & Photon.2008,2,136-159.
    [7]Shegai, T.; Li, Z.; Dadosh, T.; Zhang, Z.; Xu, H.; and Haran, G. Pro. Nat. Aca. Sci.2008,105,16448-16453.
    [8]Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999,103,8410-8426.
    [9]Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. B 1997,101,3706.
    [10]Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107,668-677.
    [11]Sun, Y.; Xia, Y. Science 2002,298,2176-2179.
    [12]Sherry, L. J.; Chang, S.-H.; Schatz, G. C.; Duyne, R. P. V.; Wiley, B. J.; Xia, Y. Nano Lett.2005,5,2034-2038.
    [13]Nehl, C. L.; Liao, H.; Hafner, J. H. Nano Lett.2006,6,683-688.
    [14]Mie, G. Ann. Phys. (Leipzig) 1908,25,377.
    [15]Miller, E. K.J. Electromagn. Waves Appl.1994,8,1125-1172.
    [16]Purcell, E. M.; Pennypacker, C. R. Astrophys. J.1973,186,705.
    [17]Draine, B. T.; Flatau, P. J. J. Opt. Soc. Am. A 1994,11,1491-1499.
    [18]Hafner, C. H.; Ballist, R. Int. J. Comp.Elect. Elect. Eng.1983,2,1.
    [19]Pendry, J. B.; MacKinnon, A. Phys. Rev. Lett.1992,69,2772-2775.
    [20]Jin, J. The Lnite Element Method in Electromagnetics,2nd ed. Wiley:New York 2002
    [21]Zhao, J.; Pinchuk, A.; Mcmahon, J. M.; Li, S.; Ausman, L. K.; Atkinson, A. L.; Schatz, G. C.Acc. Chem. Res.2008,41,1710-1720.
    [22]Morton, S. M.; Silverstein, D. W.; Jensen, L. Chem. Rev.2011,111,3962.
    [23]Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Chem. Rev.2011, 111,3913-3961.
    [24]Prodan, E.; Radloff, G.; Halas, N. J.; Nordlander, P. Science 2003,302,419.
    [25]Jain, P. K.; Huang, W.; El-Sayed, M. A. Nano Lett.2007,7,2080-2088.
    [26]Wang, H.; Brandl, D.; Nordlander, P.; Halas, N. Acc. Chem. Res.2007,40,53-62.
    [27]Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I. Nano Lett.2004, 4,899.
    [28]Sheikholeslami, S.; Jun, Y.-W.; Jain, P. K.; Alivisatos, A. P. Nano Lett.2010,10, 2655-2660.
    [29]Atay, T.; Song, J. H.; Nurmikko, A. V. Nano Lett.2004,4,1627-1631.
    [30]Aizpurua, J.; Bryant, G. W.; Richter, L. J.; Garcla de Abajo, F. J.; Kelly, B. K.; Mallouk, T. Phys. Rev. B 2005,71,235420.
    [31]Romero, I.; Aizpurua, J.; Bryant, G. W.; Garcia de Abajo, F. J. Opt. Express 2006, 14,9988-9999.
    [32]Gersten, J. I.; Nitzan, A. Surf. Sci.1985,158,165-189.
    [33]Schmeits, M.; Dambly, L. Phys. Rev. B 1991,44,12706.
    [34]Tamaru, H.; Kuwata, H.; Miyazaki, H. T.; Miyano, K. Appl. Phys. Lett.2002,14, 348-350.
    [35]Rechberger, W.; Hohenau, A.; Leitner, A.; Krenn, J. R.; Lamprecht, B.; Aussenegg, F. Optics Comm.2003,220,137-141.
    [36]Su, K.-H.; Wei, Q.-H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett.2003,3,1087-1090.
    [37]Futamata, M.; Maruyama, Y.; Ishikawa, M.J. Phys. Chem. B 2003,107,7607-7617.
    [38]Prikulis, J.; Svedberg, F.; Kall, M.; Enger, J.; Ramser, K.; Goksor, M.; Hanstorp, D. Nano Lett.2004,4,115-118.
    [39]Ghosh, S. K.; Pal, T. Chem. Rev.2007,107,4787.
    [40]Kim, D. S.; Heo, J.; Ahn, S. H.; Han, S. W; Yun, W. S.; Kim, Z. H. Nano Lett. 2009,9,3619-3625.
    [41]Hakkinen, H.; Yoon, B.; Landman, U.; Li, X.; Zhai, H.-J.; Wang, L.-S. J. Phys. Chem.A 2003,107,6168-6175.
    [42]Johansson,M.P.;Lechtken,A.;Schooss,D.;Kappes,M.M.;Furche,F. Phyws. Rev.A 2008,77,053202.
    [43]Bulusu,S.;Li,X.;Wang,L.-S.;Zeng,X.C.Proc.Natl.Acad.Sci.U.S.A.2006, 103,8326-8330.
    [44]Huang,W.;Bulusu,S.;Pal,R.;Zeng,X.C.;Wang,L.S.ACS Nano.2009,3, 1225-1230.
    [45]Xing,X.P;Yoon,B.;Landman,U.;Parks,J.H.Phys.Rev.B 2006,74,165423.
    [46]Ji,M.;Gu,X.;Li,X.;Gong,X.G.;Li,J.;Wang,L.S.Angew.Chem.Int.Ed. 2005,44,7119-7123.
    [47]Johansson,M.P;Sundholm,D.;Vaara,J.Angew.Chem.Int Ed.2004,43,2678-2681.
    [48]Fa,W.;Zhou,J.;Luo,C.F.;Dong,J.M.Phys.Rev.B 2006,73,085405.
    [49]Jalbout,A.F.;Contreras-Torres,F. F.;Perez,L.A.;Garz6n,I.L.J. Phys.Chem. A 2008,112,353-357.
    [50]Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.; Cheeseman,J.R.;Montgomery,J.A.,Jr.;Vreven,T.;Kudin,K.N.;Burant,J. C.;Millam,J.M.;Iyengar,S.S.;Tomasi,J.;Barone,V;Mennucci,B.;Cossi, M.;Scalmani,G.;Rega,N.;Petersson,G.A.;Nakatsuji,H.;Hada,M.;Ehara, M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.; Kitao,O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross, J.B.;Bakken,V;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.; Yazyev,O.;Austin,A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;ayala,P Y; Morokuma,K.;Voth,G.A.;Salvador,P.; Dannenberg,J.J.;Zakrzewski,V G.; Dapprich,S.;Daniels,A.D.;Strain,M.C.;Farkas,O.;Malick,D.K.;Rabuck, A.D.;Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui,Q.;Baboul,A.G.; Clifford,S.;Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P; Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C. Y;Nanayakkara,A.;Challacombe,M.;Gill,P M.W.;Johnson,B.;Chen,W.; Wong,M.W.;Gonzalez,C.;Pople,J.A.Gaussian 03,revision D.01;Gaussian, Inc.:Wallingford,CT,2004
    [51]Gilb,S.;Jacobsen,K.;Schooss,D.;Furche,F.;hlrichs,R.;Kappesb,M.M.J. Chem.Phys.2004,121,619-4627.
    [52]Chai,J.-D.;Head-Gordon,M.J.Chem.Phys.2008,128,084106.
    [53]Rohrdanz,M.A.;Martins,K.M.;Herberta,J.M.J.hem.Phys.2009,130, 054112.
    [54]Adamo,C.;Barone,V.J.Chem.Phys.1999,110,6158-6170.
    [55]Perdew,J.P;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996,77,3865-3688.
    [56]Chai,J.-D.;Head-Gordon,M.Chem.Phys.Lett.2008,467,176-178.
    [57]Shao,Y.;Molnar,L.F.;Jung,Y.;Kussmann,J.;Ochsenfeld,C.;Brown,S.T.; Gilbert,A.T.B.;Slipchenko,L.V.;Levchenko,S.V.;O'Neill,D.P;DiStasio,R. A.;Lochan,R.C.;Wang,T.;Beran,G.J.O.;Besley,N.A.;Herbert,J.M.;Lin,C. Y;Van Voorhis,T.;Chien,S.H.;Sodt,A.;Steele,R.P.;Rassolov,V. A.;Maslen, P E.;Korambath,P P;Adamson,R.D.;Austin,B.;Baker,J.;Byrd,E.F.C.; Dachsel,H.;Doerksen,R.J.;Dreuw,A.;Dunietz,B.D.;Dutoi,A.D.;Furlani,T. R.;Gwaltney,S.R.;Heyden,A.;Hirata,S.;Hsu,C.P;Kedziora,G.;Khalliulin, R.Z.;Klunzinger,P;Lee,A.M.;Lee,M.S.;Liang,W.;Lotan,I.;Nair,N.; Peters,B.;Proynov,E.I.;Pieniazek,P A.;Rhee,Y.M.;Ritchie,J.;Rosta,E.; Sherrill,C.D.;Simmonett,A.C.;Subotnik,J.E.;Woodcock,H.L.;Zhang,W; Bell,A.T.;Chakraborty,A.K.;Chipman,D.M.;Keil,F. J.;Warshel,A.;Hehre, W. J..Schaefer,H.F.;Kong,J.;Krylov,A.I.;Gill,P M.W.;Head-Gordon,M. Phys.Chem.Chem.Phys.2006,8,3172.
    [58]Guo,Z.Y.;Habenicht,B.F.;Liang,W.Z.;Prezhdo,O.V Phys.Rev.B 2010,81, 125415.
    [59]Zhao,J.;Feng,M.;Yang,J.;Petek,H.ACS Nano 2009,3,853-864.
    [60]Pan,F.;Gao,F.;Liang,W. Z.J. Phys.Chem.B 2009,113,14581-14587.
    [61]Song,J.;Gao,F.;Shi,B.;Liang,W Z.Phys.Chem.Chem.Phys.2010,12, 13070-13075.
    [62]Gao, F.; Zhao, Y.; Liang, W. Z. J. Phys. Chem. B 2011,115,2699-2708.
    [63]Gao, F.; Liang, W. Z.; Zhao, Y. Sci. China Chem.2010,53,297-309.
    [64]Troparevsky, M. C.; Zhao, K.; Xiao, D.; Eguiluz, A. G.; Zhang, Z. Y. Phys. Rev. B 2008,82,045413.
    [65]Olk, P.; Renger, J.; Wenzel, M. T.; Eng, L. M. Nano Lett.2008,8,1174-1178.
    [66]Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer:Berlin 1995.
    [67]Wei, Q. H.; Su, K. H.; Durant, S.; Zhang, X. Nano Lett.2004,4,1067-1071.
    [68]Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Nature Mater.2010,9,193-204.
    [69]Lim, D. K.; Jeon, K. S.; Kim, H. M.; Nam, J. M.; Suh, Y. D. Nature Mater.2010, 9,60-67.
    [70]Duan, H.; Hu, H.; Kumar, K.; Shen, Z.; Yang, J. K. W. ACS Nano 2011,5,7593-7600.
    [71]Liu, N.; Alivisatos, A. P.; Hentschel, M.; Weiss, T.; Giessen, H. Science 2011, 332,1407-1410.
    [72]Li, K. R.; Stockman, M. I.; Bergman, D. J. Phys. Rev. Lett.2003,91,227402.
    [73]Encina, E. R.; Coronado, E. A. J. Phys. Chem. C 2010,114,3918-3923.
    [74]Jain, P. K.; Eustis, S.; El-Sayed, M. A. J. Phys. Chem. B 2006,110,18243-18253.
    [75]Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P. Nano Lett.2007,7,729-732.
    [76]Zuloaga, J.; Prodan, E.; Nordlander, P. Nano Lett.2009,9,887.
    [77]Duan, H. G.; Fernandez-Domiguez, A. I.; Bosman, M.; Maier, S. A.; Yang, J. K. W. Nano Lett.2012,12,1683-1689.
    [78]Marinica, D. C.; Kazansky, A. K.; Nordlander, P.; Aizpurua, J.; Borisov, A. G. Nano Lett.2012,12,1333-1339.
    [79]Ward,D.R.;Hu.ser,F.;Pauly,F.;Cuevas,J.C.;Natelson,D.Nature Nanotechnol. 2010,5,732-736.
    [80]Lambe,J.;McCarthy,S.L.Phys.Rev.Lett.1976,37,923-925.
    [81]Bharadwaj,P.;Bouhelier,A.;Novotny,L.Phys.Rev.Lett.2011,106,226802.
    [82]Kasha,M.Radiat.Res.1963,20,55.
    [83]Kasha,M.;Rawls,H.R.;El-Bayoumi,M.A.Pure Appl.Chem.1965,11,371.
    [84]Wang,J.;Wang,G.;Zhao,J.Chem.Phys.Lett.2003,380,716-720.
    [85]Femandez,E.M.;Soler,J.M.;Garzon,I.L.;Balbas,L.C.Phys.Rev. B 2004, 70,165403.
    [86]FriSch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.; Cheeseman,J.R.;Scalmani,G.;Barone,V;Mennucci,B.;Petersson,G.A.; Nakatsuji,H.;Caricato,M.;Li,X.;Hratchian,H.P;Izmaylov,A.F;Bloino, J.;Zheng,G.;Sonnenberg,J.L.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.; Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y;Kitao,O.;Nakai,H.;Vreven, T.;Montgomery,Jr.,J.A.;Peralta,J.E.;Ogliaro,F.;Bearpark,M.;Heyd,J. J.;Brothers,E.;Kudin,K.N.;Staroverov,V N.;Kobayashi,R.;Normand,J.; Raghavachari,K.;Rendell,A.;Burant,J.C.;Iyengar,S.S.;Tomasi,J.;Cossi, M.;Rega,N.'Millam,J.M.;Klene,M.;Knox,J.E.;Cross,J.B.;Bakken,V.; Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin, A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Martin,R.L.;Morokuma,K.; Zakrzewski,V G.;Voth,G.A.;Salvador,P.;Dannenberg,J.J.;Dapprich,S.; Daniels,A.D.;Farkas,O.;Foresman,J.B.;Ortiz,J.V.;Cioslowski,J.;Fox,D. J.Gaussian 09,Revision B.01;Gaussian,Inc.:Wallingford,CT,2009
    [87]Ma,H.L.;Gao,F.;Liang,W Z.J. Phys.Chem.C 2012,116,1755-1763.
    [88]Fedrigo,S.;Harbich,W.;Buttet,J.Phys.Rev.B1993,47,10706-10715.
    [89]Logunov,S.;Ahmadi,T.;El-Sayed,M.;Khoury,J.;Whetten,R.J.Phys.Chem. B 1997,101,3713.
    [90]Schaaff,T G.;Shafigullin,M.N.;Khoury,J.T.;Vezmar,I.;Whetten,R.L.; Cullen, W. G.; First, P. N.; Gutierrez-Wing, C.; Ascensio, J.; Jose-Yacaman, M. J. J. Phys. Chem. B 1997,101,7885.
    [91]Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. B 1997,101,3706-3712.
    [92]Ozbay, E. Science 2006,311,189-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700