用户名: 密码: 验证码:
聚合物拓扑结构和序列结构的调控及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物的性能不仅依赖于聚合物的化学结构与组成,同时也和聚合物的拓扑结构和序列结构密切相关。最近,可控“活性”聚合的快速发展,为聚合物拓扑结构和序列结构的构筑提供了强有力的工具,但是距离天然大分子的复杂、精密结构还有很大的差距。因此,寻找新的方法来构建拓扑结构规整、序列可控的聚合物对于高分子化学来说非常重要。本文通过精细的单体设计和选择高效的键合反应,制备了化学结构可控的功能性聚合物,并拓展这些聚合物在分子荧光成像、复合凝胶、重金属离子检测等方面的应用。论文主要研究内容分为以下五个部分:
     1.制备了含有二硫吡啶官能团的多嵌段共聚物,二硫吡啶侧单元数可以通过单体和链转移试剂的投料比来控制。当聚合物链中二硫吡啶单元数为1左右时,多嵌段聚合物在胺解反应后生成的A2B型中间体(A为巯基,B为二硫吡啶)可以进一步反应生成超支化聚合物。超支化聚合物结构外围的过量巯基在氧化条件下可以偶联生成凝胶,凝胶网络中的二硫键使之在还原条件下可以降解,凝胶-溶液间的转换过程是可逆的。同样,这种聚合物拓扑结构间的转换(线性聚合物-超支化聚合物-聚合物凝胶)适用于嵌段共聚物体系。
     2.通过精确的单体设计,利用高选择性、高活性特征反应如:巯基-甲基丙烯酸酯的迈克尔加成反应、胺基-硫代内酯的胺解开环反应、巯基-溴代马来酰亚胺的取代反应以及胺基-马来酰亚胺的加成反应,一锅法制备了ABC三序列、CBABCD四序列和DCBABCDE五序列的序列规整聚合物。此反应体系反应定量、高效,无需任何分离纯化,即可制备得到高分子量的聚合物。
     3.利用伯胺和硫代内酯的特征开环反应,反应过程中原位产生的巯基很好地避免了巯基氧化的问题;同时,巯基在太阳光的照射下能够生成硫自由基,进一步与硫代内酯单体末端的炔或烯发生自由基加成反应生成超支化聚合物。通过改变胺的结构和种类,可以很方便地调控聚合物的组成;此外,超支化聚合物结构外围的炔和烯能够进一步和生物巯基分子反应,得到生物相容性的超支化生物大分子。整个反应过程在自然太阳光下进行,绿色环保。
     4.通过迈克尔加成反应合成了不同结构的聚酰胺胺并考察它们作为量子点配体的能力及成凝胶能力。结果发现,线性聚酰胺胺是很好的成凝胶剂,但是不能与量子点结合;超支化聚酰胺胺可以很好的充当量子点配体,但是不能在DMF中超声形成凝胶;支化度较低、保留有部分线性单元的超支化聚酰胺胺既可以作为量子点配体,也可以形成凝胶。更为重要的是,量子点-聚酰胺胺杂化凝胶具有多响应性,还可以在溶液-凝胶状态下可逆的转变,并且凝胶状态下的荧光强度相比于溶液状态有所增强。
     5.在反应体系中没有任何荧光单元参与的条件下,通过聚合反应可生成具有强荧光特性的聚合物,反应技术不仅仅局限于RAFT,选择合适引发剂的ATRP聚合体系制备的聚合物同样有较强的荧光。通过密度泛函理论计算得知,RAFT试剂或ATRP引发剂结构中的苯环与邻位单体结构中的羰基之间的π-π相互作用是聚合物荧光的来源。用RAFT制备的PNIPAM-b-PEG温敏性嵌段共聚物有较宽的激发和发射区间,具有很高的量子产率、光稳定性及良好的生物相容性,37℃左右自组装成纳米粒子,在体外分子荧光成像中表现出很好的实验效果。
The properties of polymers depend not only on their chemical structure and composition, but also on their topology and sequence. Recently, the rapid development of controlled/"living" polymerization techniques provides powerful tools for the control of polymeric topology and sequence. However, it's still a long way to reach the level of natural biopolymers with accurate and complex structures. Therefore, finding new methods to easily construct polymers with well-defined topologies, controlled sequence is very important for polymer chemistry. In this dissertation, various functional polymers with controlled topology and sequence were successfully prepared by deliberate design of monomers and screening of specific organic reactions/polymerization methods, expanded applications in molecular imaging, hybrid gels and metal ions detection were also developed. The content of the dissertation includes following five parts:
     1. Multiblock copolymers containing pyridine-disulfide units were prepared by RAFT polymerization utilizing poly(trithiocarbonate)s (PTTC) as RAFT agent, the number of pyridine-disulfide unit in polymer chain could be easily tuned by initial feed ratios of monomer and PTTC. When the number was around1, aminolysis led to the generation of A2B intermediate (A is thiol group and B is pyridine-disulfide unit) and successive thiol-disulfide exchange reactions gave birth to hyperbranched polymers. The excess thiol groups on periphery of hyperbranched polymers were oxidized to form gels in the presence of oxygen, and the gels could be reversibly degraded with reductive agents such as DTT and GSH. This topology conversion from linear copolymers to hyperbranched copolymers to3D structured gels was also successful in block copolymer system.
     2. CBA, CBABCD and DCBABCDE sequence-ordered copolymers were successfully prepared in one-pot by deliberate design of monomers and employment of highly selective, high specific reactions such as thiol-methacrylate Michael addition reaction, amine-thiolactone ring-opening reaction, thiol-bromomaleimide substitution reaction and amine-maleimide addition reaction. These quantitative reactions were highly efficient, and high molecular weight polymers could be obtained without separation and purification.
     3. The aminolysis reaction of alkene/alkyne terminated thiolactones by primary amines generated in-situ an equivalent of thiol groups and decreased the possibility of thiol oxidization. Thiol groups would generate thiyl radicals under the sunlight irradiation, followed by thiol-ene/yne radical addition reaction to form hyperbranched polymers. The composition of the hyperbranched polymers could be readily tuned by different categories of primary amines. In addition, the excess alkene/alkyne groups were able to react with biomacromolecules containing thiol functionality to give biocompatible bioconjugates. The whole reaction process was involved in natural sunlight, and it was a green method.
     4. Poly(amido amine)s (PAAs) with different structures were prepared by Michael addition reaction to testify their performance on QD ligands and gelling abilities. It was found that linear PAAs were excellent gelling agent, but did not have good interaction with QDs; hyperbranched PAAs were perfect ligands for QDs but could not assemble into gels in DMF under ultrasound sonication; highly branched PAAs with linear units not only show excellent gelling ability but also behaved greatly as QD ligands. More importantly, HPAA-QD hybrid gels were multi-responsive with reversible transformation between gel and solution states, the fluorescence intensity at gel state was much stronger than solution state.
     5. Strong fluorescent polymers were prepared by polymerizations without utilization of any fluorescent matter in reaction system. It was not restricted to other polymerization techniques besides RAFT, such as ATRP. We came to the conclusion by calculation with density functional theory (DFT), as a matter of fact, the strong fluorescence of polymers resulted from the π-π interaction between benzene ring of RAFT agent and adjacent carbonyl group of monomers. The fluorescent block copolymers prepared by RAFT copolymerization of NIPAM and PEG presented very high quantum yield, high photostability and excellent biocompatibility. The copolymers assembled into nanoparticles at37℃and showed very promising results in vitro molecular imaging test.
引文
1. Matyjaszewski, K.; Gnanou, Y.; Leibler, L., Macromolecular Engineering:Precise Synthesis, Materials Properties, Applications. John Wiley & Sons:2007.
    2. Matyjaszewski, K.; Tsarevsky, N. V., Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 2009,1 (4),276-288.
    3. Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Mays, J., Macromolecular architectures by living and controlled/living polymerizations. Prog Polym Sci 2006,31 (12),1068-1132.
    4. Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H., Polymers with complex architecture by living anionic polymerization. Chem Rev 2001,101 (12),3747-3792.
    5. Shin, E. J.; Brown, H. A.; Gonzalez, S.; Jeong, W.; Hedrick, J. L.; Waymouth, R. M., Zwitterionic Copolymerization:Synthesis of Cyclic Gradient Copolymers. Angew Chem Int Ed 2011,50 (28),6388-6391.
    6. Semlyen, J. A., Cyclic Polymers. Pure Appl Chem 1981,53 (9),1797-1804.
    7. Glassner, M.; Blinco, J. P.; Barner-Kowollik, C., Diels-Alder Reactions as an Efficient Route to High Purity Cyclic Polymers. Macromol Rapid Comm 2011,32 (9-10),724-728.
    8. Bielawski, C. W.; Benitez, D.; Grubbs, R. H., An "endless" route to cyclic polymers. Science 2002,297 (5589),2041-2044.
    9. Yagci, Y.; Tasdelen, M. A., Mechanistic transformations involving living and controlled/living polymerization methods. Prog Polym Sci 2006,31 (12),1133-1170.
    10. Bates, F. S.; Fredrickson, G H., Block copolymers-Designer soft materials. Phys Today 1999, 52 (2),32-38.
    11. Matyjaszewski, K.; Ziegler, M. J.; Arehart, S. V.; Greszta, D.; Pakula, T., Gradient copolymers by atom transfer radical copolymerization. JPhys Org Chem 2000,13 (12),775-786.
    12. Listak, J.; Jakubowski, W.; Mueller, L.; Plichta, A.; Matyjaszewski, K.; Bockstaller, M. R., Effect of symmetry of molecular weight distribution in block copolymers on formation of "metastable" morphologies. Macromolecules 2008,41 (15),5919-5927.
    13. Lynd, N. A.; Meuler, A. J.; Hillmyer, M. A., Polydispersity and block copolymer self-assembly. Prog Polym Sci 2008,33 (9),875-893.
    14. Li, S.; Register, R. A.; Landes, B. G.; Hustad, P. D.; Weinhold, J. D., Crystallization in Ordered Polydisperse Polyolefin Diblock Copolymers. Macromolecules 2010,43 (10), 4761-4770.
    15. Tsarevsky, N. V.; Matyjaszewski, K., "Green" atom transfer radical polymerization:From process design to preparation of well-defined environmentally friendly polymeric materials. Chem Rev 2007,107 (6),2270-2299.
    16. Matyjaszewski, K., Architecturally Complex Polymers with Controlled Heterogeneity. Science 2011,333 (6046),1104-1105.
    17. Lutz, J. F., Sequence-controlled polymerizations:the next Holy Grail in polymer science? Polym Chem-Uk 2010,1 (1),55-62.
    18. Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F., Assembling materials with DNA as the guide. Science 2008,321 (5897),1795-1799.
    19. Saiki, R. K.; Gelfand, D. H.; Stoffel, S.; Scharf, S. J.; Higuchi, R.; Horn, G T.; Mullis, K. B.; Erlich, H. A., Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA-Polymerase. Science 1988,239 (4839),487-491.
    20. Mcgrath, K. P.; Fournier, M. J.; Mason, T. L.; Tirrell, D. A., Genetically Directed Syntheses of New Polymeric Materials-Expression of Artificial Genes Encoding Proteins with Repeating (Alagly)3proglugly Elements. JAm Chem Soc 1992,114 (2),727-733.
    21. Merrifield, R. B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J Am Chem Soc 1963,85 (14),2149-2154.
    22. Szwarc, M.,/ Living/' Polymers. Nature 1956,178 (4543),1168-1169.
    23. Patten, T. E.; Xia, J. H.; Abernathy, T.; Matyjaszewski, K., Polymers with very low polydispersities from atom transfer radical polymerization. Science 1996,272 (5263), 866-868.
    24. Ouchi, M.; Terashima, T.; Sawamoto, M., Transition Metal-Catalyzed Living Radical Polymerization:Toward Perfection in Catalysis and Precision Polymer Synthesis. Chem Rev 2009,109 (11),4963-5050.
    25. Bielawski, C. W.; Grubbs, R. H., Living ring-opening metathesis polymerization. Prog Polym Sci 2007,32(1),1-29.
    26. Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H., Multiblock Polymers:Panacea or Pandora's Box? Science 2012,336 (6080),434-440.
    27. Leibfarth, F. A.; Mattson, K. M.; Fors, B. P.; Collins, H. A.; Hawker, C. J., External Regulation of Controlled Polymerizations. Angew Chem Int Ed 2013,52 (1),199-210.
    28. Szwarc, M., Living polymers. Their discovery, characterization, and properties. J Polym Sci Pol Chem 1998,36 (1), Ix-Xv.
    29. Szwarc, M., Living Polymers-a Tool in Studies of Ions and Ion-Pairs. Science 1970,170 (3953),23-32.
    30. Lee, L.; Adams, R.; Jagurgro J; Szwarc, M., Thermodynamic and Electron Spin Resonance Studies of Ion Pairs in Mixed Solvents. JAm Chem Soc 1971,93 (17),4149-4154.
    31. Szwarc, M., Block and Graft Polymers Their Synthesis, Especially by Living Polymer Technique, and Their Properties. Polym Eng Sci 1973,13 (1),1-9.
    32. Szwarc, M., Radical Anions and Carbanions as Donors in Electron-Transfer Processes. Accounts Chem Res 1972,5 (5),169-176.
    33. Morton, M., Anionic polymerization:principles and practice. Academic Press:1983.
    34. Bywater S. Adv Polym Sci 1979;30:89-96.
    35. Kennedy, J. P., Living cationic polymerization of olefins. How did the discovery come about? JPolym Sci Pol Chem 1999,37 (14),2285-2293.
    36. Webster, O. W., The discovery and commercialization of group transfer polymerization. J Polym Sci Pol Chem 2000,38 (16),2855-2860.
    37. Matyjaszewski, K.; Xia, J. H., Atom transfer radical polymerization. Chem Rev 2001,101 (9), 2921-2990.
    38. Kamigaito, M.; Ando, T.; Sawamoto, M., Metal-catalyzed living radical polymerization. Chem Rev 2001,101 (12),3689-3745.
    39. Hawker, C. J.; Bosman, A. W.; Harth, E., New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 2001,101 (12),3661-3688.
    40.Matyjaszewski, K.; Davis, T. P., Handbook of Radical Polymerization. Wiley:2002.
    41. Trnka, T. M.; Grubbs, R. H., The development of L2X2Ru=CHR olefin metathesis catalysts: An organometallic success story. Accounts Chem Res 2001,34 (1),18-29.
    42. Coates, G. W., Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem Rev 2000,100 (4),1223-1252.
    43. Tasdelen, M. A.; Kahveci, M. U.; Yagci, Y., Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci 2011,36 (4),455-567.
    44. Gregory, A.; Stenzel, M. H., Complex polymer architectures via RAFT polymerization:From fundamental process to extending the scope using click chemistry and nature's building blocks. Prog Polym Sci 2012,37 (1),38-105.
    45. Matyjaszewski, K., Atom Transfer Radical Polymerization (ATRP):Current Status and Future Perspectives. Macromolecules 2012,45 (10),4015-4039.
    46. Gao, C.; Yan, D., Hyperbranched polymers:from synthesis to applications. Prog Polym Sci 2004,29 (3),183-275.
    47. Voit, B. I.; Lederer, A., Hyperbranched and Highly Branched Polymer Architectures-Synthetic Strategies and Major Characterization Aspects. Chem Rev 2009,109 (11),5924-5973.
    48. Trollsas, M.; Atthoff, B.; Claesson, H.; Hedrick, J. L., Hyperbranched poly(epsilon-caprolactone)s. Macromolecules 1998,31 (11),3439-3445.
    49. Trollsas, M.; Hedrick, J. L., Hyperbranched poly(epsilon-caprolactone) derived from intrinsically branched AB(2) macromonomers. Macromolecules 1998,31 (13),4390-4395.
    50. Trollsas, M.; Kelly, M. A.; Claesson, H.; Siemens, R.; Hedrick, J. L., Highly branched block copolymers:Design, synthesis, and morphology. Macromolecules 1999,32 (15),4917-4924.
    51. Xu, J. T.; Tao, L.; Liu, J. Q.; Bulmus, V.; Davis, T. P., Synthesis of Functionalized and Biodegradable Hyperbranched Polymers from Novel AB(2) Macromonomers Prepared by RAFT Polymerization. Macromolecules 2009,42 (18),6893-6901.
    52. Xu, J. T.; Tao, L.; Boyer, C.; Lowe, A. B.; Davis, T. P., Combining Thio-Bromo "Click" Chemistry and RAFT Polymerization:A Powerful Tool for Preparing Functionalized Multiblock and Hyperbranched Polymers. Macromolecules 2010,43 (1),20-24.
    53. Segawa, Y.; Higashihara, T.; Ueda, M., Synthesis of hyperbranched polymers with controlled structure. Polym Chem-Uk 2013,4 (6),1746-1759.
    54. Hawker, C. J.; Lee, R.; Frechet, J. M. J., One-Step Synthesis of Hyperbranched Dendritic Polyesters. JAm Chem Soc 1991,113 (12),4583-4588.
    55. Holter, D.; Burgath, A.; Frey, H., Degree of branching in hyperbranched polymers. Acta Polym 1997,48 (1-2),30-35.
    56. Hobson, L. J.; Kenwright, A. M.; Feast, W. J., A simple'one pot'route to the hyperbranched analogues of Tomalia's poly(amidoamine) dendrimers. Chem Commun 1997, (19), 1877-1878.
    57. Holter, D.; Frey, H., Degree of branching in hyperbranched polymers.2. Enhancement of the DB:Scope and limitations. Acta Polym 1997,48 (8),298-309.
    58. Hanselmann, R.; Holter, D.; Frey, H., Hyperbranched polymers prepared via the core-dilution/slow addition technique:Computer simulation of molecular weight distribution and degree of branching. Macromolecules 1998,31 (12),3790-3801.
    59. Zhou, Z. P.; Jia, Z. W.; Yan, D. Y, Effect of slow monomer addition on molecular parameters of hyperbranched polymers synthesized in the presence of multifunctional core molecules. Sci China Chem 2010,53 (4),891-897.
    60. Satoh, T., Synthesis of Hyperbranched Polymer Using Slow Monomer Addition Method. Int J Polym Sci 2012.
    61. Suzuki, M.; Yoshida, S.; Shiraga, K.; Saegusa, T., New ring-opening polymerization via a pi-allylpalladium complex.5. Multibranching polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine. Macromolecules 1998,31 (6),1716-1719.
    62. Schmaljohann, D.; Komber, H.; Barratt, J. G; Appelhans, D.; Voit, B. I., Kinetics of nonideal hyperbranched polymerizations.2. Kinetic analysis of the polycondensation of 3,5-bis(trimethylsiloxy)benzoyl chloride using NMR spectroscopy. Macromolecules 2003,36 (1),97-108.
    63. Higashihara, T.; Segawa, Y.; Sinananwanich, W.; Ueda, M., Synthesis of hyperbranched polymers with controlled degree of branching. Polym J2012,44 (1),14-29.
    64. Konkolewicz, D.; Gray-Weale, A.; Perrier, S., Hyperbranched Polymers by Thiol-Yne Chemistry:From Small Molecules to Functional Polymers. J Am Chem Soc 2009,131 (50), 18075-18077.
    65. Hoogenboom, R., Thiol-Yne Chemistry:A Powerful Tool for Creating Highly Functional Materials. Angew Chem Int Ed 2010,49 (20),3415-3417.
    66. Lowe, A. B.; Hoyle, C. E.; Bowman, C. N., Thiol-yne click chemistry:A powerful and versatile methodology for materials synthesis. J Mater Chem 2010,20 (23),4745-4750.
    67. Rikkou-Kalourkoti, M.; Matyjaszewski, K.; Patrickios, C. S., Synthesis, Characterization and Thermolysis of Hyperbranched Homo-and Amphiphilic Co-Polymers Prepared Using an Inimer Bearing a Thermolyzable Acylal Group. Macromolecules 2012,45 (3),1313-1320.
    68. Wei, Z. K.; Hao, X. J.; Kambouris, P. A.; Gan, Z. H.; Hughes, T. C., One-pot synthesis of hyperbranched polymers using small molecule and macro RAFT inimers. Polymer 2012,53 (7),1429-1436.
    69. Zhang, C. B.; Zhou, Y. A.; Liu, Q. A.; Li, S. X.; Perrier, S.; Zhao, Y. L., Facile Synthesis of Hyperbranched and Star-Shaped Polymers by RAFT Polymerization Based on a Polymerizable Trithiocarbonate. Macromolecules 2011,44 (7),2034-2049.
    70. Orgel, L. E., Molecular Replication. Nature 1992,358 (6383),203-209.
    71. Li, T.; Nicolaou, K. C., Chemical Self-Replication of Palindromic Duplex DNA. Nature 1994, 369(6471),218-221.
    72. Sievers, D.; Vonkiedrowski, G., Self Replication of Complementary Nucleotide-Based Oligomers. Nature 1994,369 (6477),221-224.
    73. Brudno, Y; Liu, D. R., Recent Progress Toward the Templated Synthesis and Directed Evolution of Sequence-Defined Synthetic Polymers. Chem Biol 2009,16 (3),265-276.
    74. Bohler, C.; Nielsen, P. E.; Orgel, L. E., Template Switching between Pna and Rna Oligonucleotides. Nature 1995,376 (6541),578-581.
    75. Rosenbaum, D. M.; Liu, D. R., Efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid aldehydes. J Am Chem Soc 2003,125 (46), 13924-13925.
    76. Kleiner, R. E.; Brudno, Y; Birnbaum, M. E.; Liu, D. R., DNA-templated polymerization of side-chain-functionalized peptide nucleic acid aldehydes. J Am Chem Soc 2008,130 (14), 4646-4659.
    77. Niu, J.; Hili, R.; Liu, D. R., Enzyme-free translation of DNA into sequence-defined synthetic polymers structurally unrelated to nucleic acids. Nat Chem 2013,5 (4),282-292.
    78. Piccirilli, J. A.; Krauch, T.; Moroney, S. E.; Benner, S. A., Enzymatic Incorporation of a New Base Pair into DNA and Rna Extends the Genetic Alphabet. Nature 1990,343 (6253),33-37.
    79. Kool, E. T., Replacing the nucleohases in DNA with designer molecules. Accounts Chem Res 2002,35 (11),936-943.
    80. Malyshev, D. A.; Dhami, K.; Quach, H. T.; Lavergne, T.; Ordoukhanian, P.; Torkamani, A.; Romesberg, F. E., Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet. P Natl Acad Sci USA 2012,109 (30),12005-12010.
    81. van Hest, J. C. M.; Tirrell, D. A., Protein-based materials, toward a new level of structural control. Chem Commun 2001, (19),1897-1904.
    82. Wang, L.; Schultz, P. G, Expanding the genetic code. Angew Chem Int Ed 2005,44 (1),34-66.
    83. Kiick, K. L.; van Hest, J. C. M.; Tirrell, D. A., Expanding the scope of protein biosynthesis by altering the methionyl-tRNA synthetase activity of a bacterial expression host. Angew Chem Int Ed 2000,39 (12),2148-2152.
    84. Noren, C. J.; Anthonycahill, S. J.; Griffith, M. C.; Schultz, P. G, A General-Method for Site-Specific Incorporation of Unnatural Amino-Acids into Proteins. Science 1989,244 (4901), 182-188.
    85. Pfeifer, S.; Zarafshani, Z.; Badi, N.; Lutz, J. F., Liquid-Phase Synthesis of Block Copolymers Containing Sequence-Ordered Segments. JAm Chem Soc 2009,131 (26),9195-9197.
    86. Minoda, M.; Sawamoto, M.; Higashimura, T., Sequence-Regulated Oligomers and Polymers by Living Cationic Polymerization.2. Principle of Sequence Regulation and Synthesis of Sequence-Regulated Oligomers of Functional Vinyl Ethers and Styrene Derivatives. Macromolecules 1990,23 (23),4889-4895.
    87. Houshyar, S.; Keddie, D. J.; Moad, G.; Mulder, R. J.; Saubern, S.; Tsanaktsidis, J., The scope for synthesis of macro-RAFT agents by sequential insertion of single monomer units. Polym Chem-Uk 2012,3 (7),1879-1889.
    88. Tong, X. M.; Guo, B. H.; Huang, Y. B., Toward the synthesis of sequence-controlled vinyl copolymers. Chem Commun 2011,47 (5),1455-1457.
    89. Norris, B. N.; Pan, T. Q.; Meyer, T. Y., Iterative Synthesis of Heterotelechelic Oligo(phenylene-vinylene)s by Olefin Cross-Metathesis. Org Lett 2010,12 (23),5514-5517.
    90. Norris, B. N.; Zhang, S. P.; Campbell, C. M.; Auletta, J. T.; Calvo-Marzal, P.; Hutchison, G R.; Meyer, T. Y., Sequence Matters:Modulating Electronic and Optical Properties of Conjugated Oligomers via Tailored Sequence. Macromolecules 2013,46 (4),1384-1392.
    91. Rzaev, Z. M. O., Complex-radical alternating copolymerization. Prog Polym Sci 2000,25 (2), 163-217.
    92. Satoh, K.; Matsuda, M.; Nagai, K.; Kamigaito, M., AAB-Sequence Living Radical Chain Copolymerization of Naturally Occurring Limonene with Maleimide:An End-to-End Sequence-Regulated Copolymer. JAm Chem Soc 2010,132 (29),10003-10005.
    93. Pfeifer, S.; Lutz, J. F., A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. JAm Chem Soc 2007,129 (31),9542-9543.
    94. Lutz, J. F.; Schmidt, B. V. K. J.; Pfeifer, S., Tailored Polymer Microstructures Prepared by Atom Transfer Radical Copolymerization of Styrene and N-substituted Maleimides. Macromol Rapid Comm 2011,32 (2),127-135.
    95. Zamfir, M.; Lutz, J. F., Ultra-precise insertion of functional monomers in chain-growth polymerizations. Nat Commun 2012,3.
    96. Pfeifer, S.; Lutz, J. F., Development of a Library of N-Substituted Maleimides for the Local Functionalization of Linear Polymer Chains. Chem-Eur J2008,14 (35),10949-10957.
    97. Berthet, M. A.; Zarafshani, Z.; Pfeifer, S.; Lutz, J. F., Facile Synthesis of Functional Periodic Copolymers:A Step toward Polymer-Based Molecular Arrays. Macromolecules 2010,43 (1), 44-50.
    98. Chan-Seng, D.; Zamfir, M.; Lutz, J. F., Polymer-Chain Encoding:Synthesis of Highly Complex Monomer Sequence Patterns by Using Automated Protocols. Angew Chem Int Ed 2012,51 (49),12254-12257.
    99. Schmidt, B. V. K. J.; Fechler, N.; Falkenhagen, J.; Lutz, J. F., Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nat Chem 2011,3 (3), 234-238.
    100. Natalello, A.; Hall, J. N.; Eccles, E. A. L.; Kimani, S. M.; Hutchings, L. R., Kinetic Control of Monomer Sequence Distribution in Living Anionic Copolymerisation. Macromol Rapid Comm 2011,32 (2),233-237.
    101. Yu, T. B.; Bai, J. Z.; Guan, Z. B., Cycloaddition-Promoted Self-Assembly of a Polymer into Well-Defined beta Sheets and Hierarchical Nanofibrils. Angew Chem Int Ed 2009,48 (6), 1097-1101.
    102. Satoh, K.; Mizutani, M.; Kamigaito, M., Metal-catalyzed radical polyaddition as a novel polymer synthetic route. Chem Commun 2007, (12),1260-1262.
    103.Satoh, K.; Ozawa, S.; Mizutani, M.; Nagai, K.; Kamigaito, M., Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization. Nat Commun 2010,/.
    104. Berda, E. B.; Wagener, K. B.,5.09-Advances in Acyclic Diene Metathesis Polymerization. In Polymer Science:A Comprehensive Reference, Matyjaszewski, K.; MSller, M., Eds. Elsevier:Amsterdam,2012; pp 195-216.
    105. Rojas, G.; Inci, B.; Wei, Y. Y.; Wagener, K. B., Precision Polyethylene:Changes in Morphology as a Function of Alkyl Branch Size.J Am Chem Soc 2009,131 (47), 17376-17386.
    106. Atallah, P.; Wagener, K. B.; Schulz, M. D., ADMET:The Future Revealed. Macromolecules 2013,46 (12),4735-4741.
    107. Zhang, J. H.; Matta, M. E.; Hillmyer, M. A., Synthesis of Sequence-Specific Vinyl Copolymers by Regioselective ROMP of Multiply Substituted Cyclooctenes. Acs Macro Lett 2012,1 (12),1383-1387.
    108. Inaki, Y.; Ebisutani, K.; Takemoto, K., Functional Monomers and Polymers.132. Template Polymerization of Methacrylamide Derivatives Containing Nucleic-Acid Bases. J Polym Sci Pol Chem 1986,24 (12),3249-3262.
    109. Spijker, H. J.; van Delft, F. L.; van Hest, J. C. M., Atom transfer radical polymerization of adenine, thymine, cytosine, and guanine nucleobase monomers. Macromolecules 2007,40 (1), 12-18.
    110. Lo, P. K.; Sleiman, H. F., Nucleobase-Templated Polymerization:Copying the Chain Length and Polydispersity of Living Polymers into Conjugated Polymers. J Am Chem Soc 2009,131 (12),4182-4183.
    111.McHale, R.; Patterson, J. P.; Zetterlund, P. B.; O'Reilly, R. K., Biomimetic radical polymerization via cooperative assembly of segregating templates. Nat Chem 2012,4 (6), 491-497.
    112. McKee, M. L.; Milnes, P. J.; Bath, J.; Stulz, E.; Turberfield, A. J.; O'Reilly, R. K., Multistep DNA-Templated Reactions for the Synthesis of Functional Sequence Controlled Oligomers. Angew Chem Int Ed 2010,49 (43),7948-7951.
    113. Milnes, P. J.; McKee, M. L.; Bath, J.; Song, L. J.; Stulz, E.; Turberfield, A. J.; O'Reilly, R. K., Sequence-specific synthesis of macromolecules using DNA-templated chemistry. Chem Commun 2012,48 (45),5614-5616.
    114. Li, Z. Y; Zhang, Z. Y. J.; Knipe, R.; Lynn, D. G, DNA-catalyzed polymerization. JAm Chem Soc 2002,124 (5),746-747.
    115. Chen, W.; Schuster, G. B., Precise Sequence Control in Linear and Cyclic Copolymers of 2,5-Bis(2-thienyl)pyrrole and Aniline by DNA-Programmed Assembly. JAm Chem Soc 2013, 135 (11),4438-4449.
    116. Ida, S.; Terashima, T.; Ouchi, M.; Sawamoto, M., Selective Radical Addition with a Designed Heterobifunctional Halide:A Primary Study toward Sequence-Controlled Polymerization upon Template Effect. JAm Chem Soc 2009,131 (31),10808-10809.
    117. Ida, S.; Ouchi, M.; Sawamoto, M., Template-Assisted Selective Radical Addition toward Sequence-Regulated Polymerization:Lariat Capture of Target Monomer by Template Initiator. JAm Chem Soc 2010,132 (42),14748-14750.
    118. Hibi, Y.; Ouchi, M.; Sawamoto, M., Sequence-Regulated Radical Polymerization with a Metal-Templated Monomer:Repetitive ABA Sequence by Double Cyclopolymerization. Angew Chem Int Ed 2011,50 (32),7434-7437.
    119. Hibi, Y.; Tokuoka, S.; Terashima, T.; Ouchi, M.; Sawamoto, M., Design of AB divinyl "template monomers" toward alternating sequence control in metal-catalyzed living radical polymerization. Polym Chem-Uk 2011,2 (2),341-347.
    120. Kramer, J. W.; Treitler, D. S.; Dunn, E. W.; Castro, P. M.; Roisnel, T.; Thomas, C. M.; Coates, G W., Polymerization of Enantiopure Monomers Using Syndiospecific Catalysts:A New Approach To Sequence Control in Polymer Synthesis. J Am Chem Soc 2009,131 (44), 16042-16044.
    121. Lewandowski, B.; De Bo, G.; Ward, J. W.; Papmeyer, M.; Kuschel, S.; Aldegunde, M. J.; Gramlich, P. M. E.; Heckmann, D.; Goldup, S. M.; D'Souza, D. M.; Fernandes, A. E.; Leigh, D. A., Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine. Science 2013,339 (6116),189-193.
    122. Lee, D. H.; Granja, J. R.; Martinez, J. A.; Severin, K.; Ghadiri, M. R., A self-replicating peptide. Nature 1996,382 (6591),525-528.
    123. Pinheiro, V. B.; Taylor, A. I.; Cozens, C.; Abramov, M.; Renders, M.; Zhang, S.; Chaput, J. C.; Wengel, J.; Peak-Chew, S. Y.; McLaughlin, S. H.; Herdewijn, P.; Holliger, P., Synthetic Genetic Polymers Capable of Heredity and Evolution. Science 2012,336 (6079),341-344.
    124. Borner, H. G., Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences. Prog Polym Sci 2009,34 (9),811-851.
    125. Eckhardt, D.; Groenewolt, M.; Krause, E.; Borner, H. G., Rational design of oligopeptide organizers for the formation of poly(ethylene oxide) nanofibers. Chem Commun 2005, (22), 2814-2816.
    126. Frauenrath, H.; Jahnke, E., A general concept for the preparation of hierarchically structured pi-conjugated polymers. Chem-Eur J 2008,14 (10),2942-2955.
    127. Hartgerink, J. D.; Beniash, E.; Stupp, S. I., Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001,294 (5547),1684-1688.
    128. Petka, W. A.; Harden, J. L.; McGrath, K. P.; Wirtz, D.; Tirrell, D. A., Reversible hydrogels from self-assembling artificial proteins. Science 1998,281 (5375),389-392.
    129. Seeman, N. C., Nucleic acid nanostructures and topology. Angew Chem Int Ed 1998,37 (23), 3220-3238.
    130. Schnitzler, T.; Herrmann, A., DNA Block Copolymers:Functional Materials for Nanoscience and Biomedicine. Accounts Chem Res 2012,45 (9),1419-1430.
    131. Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S., A field guide to foldamers. Chem Rev 2001,101 (12),3893-4011.
    132. Ouchi, M.; Badi, N.; Lutz, J. F.; Sawamoto, M., Single-chain technology using discrete synthetic macromolecules. Nat Chem 2011,3 (12),917-924.
    133. Terashima, T.; Mes, T.; De Greef, T. F. A.; Gillissen, M. A. J.; Besenius, P.; Palmans, A. R. A.; Meijer, E. W., Single-Chain Folding of Polymers for Catalytic Systems in Water. J Am Chem Soc 2011,133 (13),4742-4745.
    134. Baradel, N.; Fort, S.; Halila, S.; Badi, N.; Lutz, J. F., Synthesis of Single-Chain Sugar Arrays. Angew Chem Int Ed 2013,52 (8),2335-2339.
    135.Murnen, H. K.; Khokhlov, A. R.; Khalatur, P. G; Segalman, R. A.; Zuckermann, R. N., Impact of Hydrophobic Sequence Patterning on the Coil-to-Globule Transition of Protein-like Polymers. Macromolecules 2012,45 (12),5229-5236.
    136. Weiss, J.; Li, A.; Wischerhoff, E.; Laschewsky, A., Water-soluble random and alternating copolymers of styrene monomers with adjustable lower critical solution temperature. Polym Chem-Uk 2012,3 (2),352-361.
    137. Hao, Z. H.; Li, G. X.; Yang, K.; Cai, Y. L., Thermoresponsive Synergistic Hydrogen Bonding Switched by Several Guest Units in a Water-Soluble Polymer. Macromol Rapid Comm 2013, 34 (5),411-416.
    138. Aitken, B. S.; Buitrago, C. F.; Heffley, J. D.; Lee, M.; Gibson, H. W.; Winey, K. I.; Wagener, K. B., Precision Ionomers:Synthesis and Thermal/Mechanical Characterization. Macromolecules 2012,45 (2),681-687.
    139. Murnen, H. K.; Rosales, A. M.; Dobrynin, A. V.; Zuckermann, R. N.; Segalman, R. A., Persistence length of polyelectrolytes with precisely located charges. Soft Matter 2013,9 (1), 90-98.
    140. Bazzi, H. S.; Bouffard, J.; Sleiman, H. F., Self-complementary ABC triblock copolymers via ring-opening metathesis polymerization. Macromolecules 2003,36 (21),7899-7902.
    141. Ishihara, Y.; Bazzi, H. S.; Toader, V.; Godin, F.; Sleiman, H. F., Molecule-responsive block copolymer micelles. Chem-EurJ 2007,13 (16),4560-4570.
    142. Smith, J. A.; Brzezinska, K. R.; Valenti, D. J.; Wagener, K. B., Precisely controlled methyl branching in polyethylene via acyclic diene metathesis (ADMET) polymerization. Macromolecules 2000,33 (10),3781-3794.
    143. Rosales, A. M.; McCulloch, B. L.; Zuckermann, R. N.; Segalman, R. A., Tunable Phase Behavior of Polystyrene-Polypeptoid Block Copolymers. Macromolecules 2012,45 (15), 6027-6035.
    144. Li, J.; Stayshich, R. M.; Meyer, T. Y., Exploiting Sequence To Control the Hydrolysis Behavior of Biodegradable PLGA Copolymers. JAm Chem Soc 2011,133 (18),6910-6913.
    145. Li, J.; Rothstein, S. N.; Little, S. R.; Edenborn, H. M.; Meyer, T. Y., The Effect of Monomer Order on the Hydrolysis of Biodegradable Poly(lactic-co-glycolic acid) Repeating Sequence Copolymers. JAm Chem Soc 2012,134 (39),16352-16359.
    146. Hartmann, L.; Haefele, S.; Peschka-Suess, R.; Antonietti, M.; Borner, H. G., Tailor-made poly(amidoamine)s for controlled complexation and condensation of DNA. Chem-Eur J 2008, 14 (7),2025-2033.
    147. Chen, C. L.; Qi, J. H.; Zuckermann, R. N.; DeYoreo, J. J., Engineered Biomimetic Polymers as Tunable Agents for Controlling CaCO3 Mineralization. J Am Chem Soc 2011,133 (14), 5214-5217.
    1. Hawker, C. J.; Frechet, J. M. J., Comparison of linear, hyperbranched, and dendritic macromolecules.Acs Sym Ser 1996,624,132-144.
    2. Sunder, A.; Heinemann, J.; Frey, H., Controlling the growth of polymer trees:Concepts and perspectives for hyperbranched polymers. Chem-Eur J 2000,6(14),2499-2506.
    3. Bharathi, P.; Moore, J. S., Controlled synthesis of hyperbranched polymers by slow monomer addition to a core. Macromolecules 2000,33 (9),3212-3218.
    4. Hawker, C. J.; Frechet, J. M. J.; Grubbs, R. B.; Dao, J., Preparation of Hyperbranched and Star Polymers by a Living, Self-Condensing Free-Radical Polymerization. J Am Chem Soc 1995,117 (43),10763-10764.
    5. Grayson, S. M.; Frechet, J. M. J., Convergent dendrons and dendrimers:from synthesis to applications. Chem Rev 2001,101 (12),3819-3867.
    6. Hecht, S.; Frechet, J. M. J., Dendritic encapsulation of function:Applying nature's site isolation principle from biomimetics to materials science. Angew Chem Int Ed 2001,40 (1), 74-91.
    7. Feng, X.; Taton, D.; Borsali, R.; Chaikof, E. L.; Gnanou, Y., pH responsiveness of dendrimer-like poly(ethylene oxide)s. JAm Chem Soc 2006,128 (35),11551-11562
    8. You, Y. Z.; Yu, Z. Q.; Cui, M. M.; Hong, C. Y, Preparation of Photoluminescent Nanorings with Controllable Bioreducibility and Stimuli-Responsiveness. Angew Chem Int Ed 2010,49 (6),1099-1102.
    9. Gaynor, S. G; Edelman, S.; Matyjaszewski, K., Synthesis of branched and hyperbranched polystyrenes. Macromolecules 1996,29 (3),1079-1081.
    10. Frechet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M. R.; Grubbs, R. B., Self-Condensing Vinyl Polymerization-an Approach to Dendritic Materials. Science 1995, 269(5227),1080-1083.
    11. Tao, L.; Liu, J. Q.; Tan, B. H.; Davis, T. P., RAFT Synthesis and DNA Binding of Biodegradable, Hyperbranched Poly(2-(dimethylamino)ethyl Methacrylate. Macromolecules 2009,42 (14),4960-4962.
    12. Vogt, A. P.; Sumerlin, B. S., Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization. Soft Matter 2009,5 (12),2347-2351.
    13. Saudan, C.; Balzani, V.; Gorka, M.; Lee, S. K.; Maestri, M.; Vicinelli, V; Vogtle, F., Dendrimers as ligands. formation of a 2:1 luminescent complex between a dendrimer with a 1,4,8,11-tetraazacyclotetradecane (Cyclam) core and Zn2+. J Am Chem Soc 2003,125 (15), 4424-4425.
    14. Guan, Z. B.; Cotts, P. M.; McCord, E. F.; McLain, S. J., Chain walking:A new strategy to control polymer topology. Science 1999,283 (5410),2059-2062.
    15. Wang, F.; Zhang, J. Q.; Ding, X.; Dong, S. Y; Liu, M.; Zheng, B.; Li, S. J.; Wu, L.; Yu, Y. H.; Gibson, H. W.; Huang, F. H., Metal Coordination Mediated Reversible Conversion between Linear and Cross-Linked Supramolecular Polymers. Angew Chem Int Ed 2010,49 (6), 1090-1094.
    16. Hong, C. Y; You, Y Z.; Wu, D. C.; Liu, Y.; Pan, C. Y, Thermal control over the topology of cleavable polymers:From linear to hyperbranched structures. JAm Chem Soc 2007,129 (17), 5354-5355.
    17. Wu, D. C.; Liu, Y.; He, C. B.; Chung, T. S.; Goh, S. T., Effects of chemistries of trifunctional amines on mechanisms of Michael addition polymerizations with diacrylates. Macromolecules 2004,37 (18),6763-6770.
    18. Wan, W. M.; Pan, C. Y, A facile strategy to control polymer topology by variation of controlled radical polymerization mechanisms. Chem Commun 2008, (43),5639-5641.
    19. Moad, G; Rizzardo, E.; Thang, S. H., Toward living radical polymerization. Accounts Chem Res 2008,41 (9),1133-1142.
    20. Boyer, C.; Bulmus, V.; Davis, T. P.; Ladmiral, V.; Liu, J. Q.; Perrier, S., Bioapplications of RAFT Polymerization. Chem Rev 2009,109 (11),5402-5436.
    21. You, Y. Z.; Oupicky, D., Synthesis of temperature-responsive heterobifunctional block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide). Biomacromolecules 2007,8(1),98-105.
    22. Benaglia, M.; Chiefari, J.; Chong, Y K.; Moad, G; Rizzardo, E.; Thang, S. H., Universal (Switchable) RAFT Agents. JAm Chem Soc 2009,131 (20),6914-6915.
    23. Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process. Aust J Chem 2005,58 (6),379-410.
    24. You, Y Z.; Hong, C. Y; Pan, C. Y; Wang, P. H., Synthesis of a dendritic core-shell nanostructure with a temperature-sensitive shell. Adv Mater 2004,16 (21),1953-1957.
    25. Boyer, C.; Stenzel, M. H.; Davis, T. P., Building Nanostructures Using RAFT Polymerization. JPolym Sci Pol Chem 2011,49 (3),551-595.
    26. You, Y Z.; Kalebaila, K. K.; Brock, S. L.; Oupicky, D., Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chemistry of Materials 2008,20 (10),3354-3359.
    27. Qiu, X. P.; Winnik, F. M., Facile and efficient one-pot transformation of RAFT polymer end groups via a mild aminolysis/Michael addition sequence. Macromol Rapid Comm 2006,27 (19),1648-1653.
    28. Boyer, C.; Davis, T. P., One-pot synthesis and biofunctionalization of glycopolymers via RAFT polymerization and thiol-ene reactions. Chem Commun 2009, (40),6029-6031.
    29. Boyer, C.; Liu, J.; Wong, L.; Tippett, M.; Bulmus, V.; Davis, T. P., Stability and Utility of Pyridyl Disulfide Functionality in RAFT and Conventional Radical Polymerizations. J Polym Sci Pol Chem 2008,46 (21),7207-7224.
    30. Liu, J.; Bulmus, V.; Barner-Kowollik, C.; Stenzel, M. H.; Davis, T. P., Direct synthesis of pyridyl disulfide-terminated polymers by RAFT polymerization. Macromol Rapid Comm 2007,28(3),305-314.
    31. Zugates, G. T.; Anderson, D. G.; Little, S. R.; Lawhorn, I. E. B.; Langer, R., Synthesis of poly(beta-amino ester)s with thiol-reactive side chains for DNA delivery. J Am Chem Soc 2006,128 (39),12726-12734.
    32. Bontempo, D.; Heredia, K. L.; Fish, B. A.; Maynard, H. D., Cysteine-reactive polymers synthesized by atom transfer radical polymerization for conjugation to proteins. J Am Chem Soc 2004,126(47),15372-15373.
    33. Xu, J. T.; Tao, L.; Liu, J. Q.; Bulmus, V.; Davis, T. P., Synthesis of Functionalized and Biodegradable Hyperbranched Polymers from Novel AB(2) Macromonomers Prepared by RAFT Polymerization. Macromolecules 2009,42 (18),6893-6901.
    34. Wong, L. J.; Boyer, C.; Jia, Z. F.; Zareie, H. M.; Davis, T. P.; Bulmus, V., Synthesis of versatile thiol-reactive polymer scaffolds via RAFT polymerization. Biomacromolecules 2008, 9 (7),1934-1944.
    35. Hong, C. Y.; Pan, C. Y.; Huang, Y.; Xu, Z. D., Synthesis of hyperbranched polymethacrylates in the presence of a tetrafunctional initiator. Polymer 2001,42 (16),6733-6740.
    36. Burchard, W., Static and Dynamic Light-Scattering from Branched Polymers and Bio-Polymers. Adv Polym Sci 1983,48,1-124.
    37. You, Y. Z.; Pan, C. Y, Confined space regulated polymerization. J Polym Scl Pol Chem 2008, 46(5),1730-1737.
    38. Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad, G.; Postma, A.; Thang, S. H., Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents:ABA triblock copolymers by radical polymerization in two steps. Macromolecules 2000,33 (2),243-245.
    39. You, Y. Z.; Manickam, D. S.; Zhou, Q. H.; Oupicky, D., A versatile approach to reducible vinyl polymers via oxidation of telechelic polymers prepared by reversible addition fragmentation chain transfer polymerization. Biomacromolecules 2007,8 (6),2038-2044.
    40. Wu, D. C.; Liu, Y.; Chen, L.; He, C. B.; Chung, T. S.; Goh, S. H.,2A(2)+BB'B " approach to hyperbranched poly(amino ester)s. Macromolecules 2005,38 (13),5519-5525.
    41. You, Y. Z.; Zhou, Q. H.; Manickam, D. S.; Wan, L.; Mao, G. Z.; Oupicky, D., Dually responsive multiblock copolymers via reversible addition-fragmentation chain transfer polymerization:Synthesis of temperature-and redox-responsive copolymers of poly(N-isopropylacrylamide) and poly(2-(dimethylamino)ethyl methacrylate). Macromolecules 2007,40 (24),8617-8624.
    42. Jia, Z. F.; Liu, J. Q.; Boyer, C.; Davis, T. P.; Bulmus, V., Functional Disulfide-Stabilized Polymer-Protein Particles. Biomacromolecules 2009,10 (12),3253-3258.
    43. Tsarevsky, N. V.; Matyjaszewski, K., Combining atom transfer radical polymerization and disulfide/thiol redox chemistry:A route to well-defined (bio)degradable polymeric materials. Macromolecules 2005,38 (8),3087-3092.
    44. Li, C. M.; Madsen, J.; Armes, S. P.; Lewis, A. L., A new class of biochemically degradable, stimulus-responsive triblock copolymer gelators. Angew Chem Int Ed 2006,45 (21), 3510-3513.
    1. Kirshenbaum, K.; Barron, A. E.; Goldsmith, R. A.; Armand, P.; Bradley, E. K.; Truong, K. T. V.; Dill, K. A.; Cohen, F. E.; Zuckermann, R. N., Sequence-specific polypeptoids:A diverse family of heteropolymers with stable secondary structure. P Natl Acad Sci USA 1998,95 (8), 4303-4308.
    2. Odian, G., Principles of polymerization. John Wiley & Sons:2004.
    3. Badi, N.; Lutz, J. F., Sequence control in polymer synthesis. Chem Soc Rev 2009,38 (12), 3383-3390.
    4. Satoh, K.; Ozawa, S.; Mizutani, M.; Nagai, K.; Kamigaito, M., Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization. Nat Commun 2010,1.
    5. Beck, S.; Geraghty, D.; Inoko, H.; Rowen, L.; Aguado, B.; Bahram, S.; Campbell, R. D.; Forbes, S. A.; Guillaudeux, T.; Hood, L.; Horton, R.; Janer, M.; Jasoni, C.; Madan, A.; Milne, S.; Neville, M.; Oka, A.; Qin, S.; Ribas-Despuig, G.; Rogers, J.; Shiina, T.; Spies, T.; Tamiya, G.; Tashiro, H.; Trowsdale, J.; Vu, Q.; Williams, L.; Yamazaki, M.; Consortium, M. S., Complete sequence and gene map of a human major histocompatibility complex. Nature 1999, 401 (6756),921-923.
    6. Ouchi, M.; Badi, N.; Lutz, J. F.; Sawamoto, M., Single-chain technology using discrete synthetic macromolecules. Nat Chem 2011,3 (12),917-924.
    7. Zamfir, M.; Lutz, J. F., Ultra-precise insertion of functional monomers in chain-growth polymerizations. Nat Commun 2012,3.
    8. Schmidt, B. V. K. J.; Fechler, N.; Falkenhagen, J.; Lutz, J. F., Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nat Chem 2011,3 (3), 234-238.
    9. Kleiner, R. E.; Brudno, Y.; Birnbaum, M. E.; Liu, D. R., DNA-templated polymerization of side-chain-functionalized peptide nucleic acid aldehydes. J Am Chem Soc 2008,130 (14), 4646-4659.
    10. Thomas, C. M., Stereocontrolled ring-opening polymerization of cyclic esters:synthesis of new polyester microstructures. Chem Soc Rev 2010,39 (1),165-173.
    11. Kramer, J. W.; Treitler, D. S.; Dunn, E. W.; Castro, P. M.; Roisnel, T.; Thomas, C. M.; Coates, G W., Polymerization of Enantiopure Monomers Using Syndiospecific Catalysts:A New Approach To Sequence Control in Polymer Synthesis. J Am Chem Soc 2009,131 (44), 16042-16044.
    12. Ida, S.; Terashima, T.; Ouchi, M.; Sawamoto, M., Selective Radical Addition with a Designed Heterobifunctional Halide:A Primary Study toward Sequence-Controlled Polymerization upon Template Effect. JAm Chem Soc 2009,131 (31),10808-10809.
    13. Nakatani, K.; Ogura, Y.; Koda, Y.; Terashima, T.; Sawamoto, M., Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification. JAm Chem Soc 2012,134 (9),4373-4383.
    14. Satoh, K.; Matsuda, M.; Nagai, K.; Kamigaito, M., AAB-Sequence Living Radical Chain Copolymerization of Naturally Occurring Limonene with Maleimide:An End-to-End Sequence-Regulated Copolymer. JAm Chem Soc 2010,132 (29),10003-10005.
    15. Li, Z. L.; Li, L.; Deng, X. X.; Zhang, L. J.; Dong, B. T.; Du, F. S.; Li, Z. C., Periodic Vinyl Copolymers Containing gamma-Butyrolactone via ADMET Polymerization of Designed Diene Monomers with Built-in Sequence. Macromolecules 2012,45 (11),4590-4598.
    16. Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E., Michael addition reactions in macromolecular design for emerging technologies. Prog Polym Sci 2006,31 (5),487-531.
    17. Hong, C. Y.; You, Y. Z.; Wu, D. C.; Liu, Y; Pan, C. Y, Thermal control over the topology of cleavable polymers:From linear to hyperbranched structures. JAm Chem Soc 2007,129 (17), 5354-5355.
    18. Akinc, A.; Lynn, D. M.; Anderson, D. G; Langer, R., Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery. JAm Chem Soc 2003,125 (18),5316-5323.
    19. Ma, X. P.; Tang, J. B.; Shen, Y. Q.; Fan, M. H.; Tang, H. D.; Radosz, M., Facile Synthesis of Polyester Dendrimers from Sequential Click Coupling of Asymmetrical Monomers.J Am Chem Soc 2009,131 (41),14795-14803.
    20. Benesch, R.; Benesch, R. E., Formation of Peptide Bonds by Aminolysis of Homocysteine Thiolactones. JAm Chem Soc 1956,78 (8),1597-1599.
    21. Espeel, P.; Goethals, F.; Du Prez, F. E., One-Pot Multistep Reactions Based on Thiolactones: Extending the Realm of Thiol-Ene Chemistry in Polymer Synthesis. J Am Chem Soc 2011, 133 (6),1678-1681.
    22. Tedaldi, L. M.; Smith, M. E. B.; Nathani, R. I.; Baker, J. R., Bromomaleimides:new reagents for the selective and reversible modification of cysteine. Chem Commun 2009, (43), 6583-6585.
    23. Smith, M. E. B.; Schumacher, F. F.; Ryan, C. P.; Tedaldi, L. M.; Papaioannou, D.; Waksman, G.; Caddick, S.; Baker, J. R, Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides. JAm Chem Soc 2010,132 (6),1960-1965.
    24. Jones, M. W.; Strickland, R. A.; Schumacher, F. F.; Caddick, S.; Baker, J. R.; Gibson, M. I.; Haddleton, D. M., Polymeric Dibromomaleimides As Extremely Efficient Disulfide Bridging Bioconjugation and Pegylation Agents. JAm Chem Soc 2012,134 (3),1847-1852.
    25. Robin, M. P.; Jones, M. W.; Haddleton, D. M.; O'Reilly, R. K., Dibromomaleimide End Functional Polymers by RAFT Polymerization Without the Need of Protecting Groups. Acs Macro Lett 2012,1 (1),222-226.
    26. Robin, M. P.; Wilson, P.; Mabire, A. B.; Kiviaho, J. K.; Raymond, J. E.; Haddleton, D. M.; O'Reilly, R. K., Conjugation-Induced Fluorescent Labeling of Proteins and Polymers Using Dithiomaleimides. JAm Chem Soc 2013,135 (8),2875-2878.
    1. Kim, J. H.; Lee, M.; Lee, J. S.; Park, C. B., Self-Assembled Light-Harvesting Peptide Nanotubes for Mimicking Natural Photosynthesis. Angew Chem Int Ed 2012,51 (2),517-520.
    2. Freemantle, M., Mimicking natural photosynthesis. Chem Eng News 1998,76 (43),37-46.
    3. Zhou, H.; Li, X. F.; Fan, T. X.; Osterloh, F. E.; Ding, J.; Sabio, E. M.; Zhang, D.; Guo, Q. X., Artificial Inorganic Leafs for Efficient Photochemical Hydrogen Production Inspired by Natural Photosynthesis. Adv Mater 2010,22 (9),951-956.
    4. Gust, D.; Moore, T. A.; Moore, A. L., Mimicking photosynthetic solar energy transduction. Accounts Chem Res 2001,34 (1),40-48.
    5. Ciamician, G., THE PHOTOCHEMISTRY OF THE FUTURE. Science 1912,36 (926), 385-394.
    6. Nicewicz, D. A.; MacMillan, D. W. C., Merging photoredox catalysis with organocatalysis: The direct asymmetric alkylation of aldehydes. Science 2008,322 (5898),77-80.
    7. Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P., Efficient visible light photocatalysis of [2+2] enone cycloadditions. JAm Chem Soc 2008,130 (39),12886-12887.
    8. Narayanam, J. M. R.; Stephenson, C. R. J., Visible light photoredox catalysis:applications in organic synthesis. Chem Soc Rev 2011,40 (1),102-113.
    9. Zhang, G.; Song, I. Y.; Ahn, K. H.; Park, T.; Choi, W., Free Radical Polymerization Initiated and Controlled by Visible Light Photocatalysis at Ambient Temperature. Macromolecules 2011,44 (19),7594-7599.
    10. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G; Carlsson, J. M.; Domen, K.; Antonietti, M., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 2009,8 (1),76-80.
    11. Yoon, T. P.; Ischay, M. A.; Du, J. N., Visible light photocatalysis as a greener approach to photochemical synthesis. Nat Chem 2010,2 (7),527-532.
    12. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001,293 (5528),269-271.
    13. Wang, Y.; Li, L.; Yang, K.; Samuelson, L. A.; Kumar, J., Nanocrystalline TiO2-catalyzed solid-state polymerization of diacetylene in the visible region. JAm Chem Soc 2007,129 (23), 7238-7239.
    14. Shi, Y; Liu, G. H.; Gao, H.; Lu, L. C.; Cai, Y. L., Effect of Mild Visible Light on Rapid Aqueous RAFT Polymerization of Water-Soluble Acrylic Monomers at Ambient Temperature: Initiation and Activation. Macromolecules 2009,42 (12),3917-3926.
    15. Yilmaz, G; Aydogan, B.; Temel, G; Arsu, N.; Moszner, N.; Yagci, Y., Thioxanthone-Fluorenes as Visible Light Photoinitiators for Free Radical Polymerization. Macromolecules 2010,43 (10),4520-4526.
    16. Tehfe, M. A.; Lalevee, J.; Gigmes, D.; Fouassier, J. P., Green Chemistry:Sunlight-Induced Cationic Polymerization of Renewable Epoxy Monomers Under Air. Macromolecules 2010, 43(3),1364-1370.
    17. Fors, B. P.; Hawker, C. J., Control of a Living Radical Polymerization of Methacrylates by Light. Angew Chem Int Ed 2012,51 (35),8850-8853.
    18. Hawker, C. J.; Lee, R.; Frechet, J. M. J., One-Step Synthesis of Hyperbranched Dendritic Polyesters. JAm Chem Soc 1991,113 (12),4583-4588.
    19. Kim, Y. H.; Webster, O. W., Hyperbranched Polyphenylenes. Abstr Pap Am Chem S1988,196, 104-POLY.
    20. Voit, B. I., Hyperbranched polymers:a chance and a challenge. Cr Chim 2003,6 (8-10), 821-832.
    21. ten Brummelhuis, N.; Diehl, C.; Schlaad, H., Thiol-Ene Modification of 1,2-Polybutadiene Using UV Light or Sunlight. Macromolecules 2008,41 (24),9946-9947.
    22. Hoyle, C. E.; Bowman, C. N., Thiol-Ene Click Chemistry. Angew Chem Int Ed 2010,49 (9), 1540-1573.
    23. Benesch, R.; Benesch, R. E., Thiolation of Proteins. P Natl Acad Sci USA 1958,44 (9), 848-853.
    24. Espeel, P.; Goethals, F.; Du Prez, F. E., One-Pot Multistep Reactions Based on Thiolactones: Extending the Realm of Thiol-Ene Chemistry in Polymer Synthesis. J Am Chem Soc 2011, 133 (6),1678-1681.
    25. Han, J.; Zhao, B.; Tang, A. J.; Gao, Y. Q.; Gao, C., Fast and scalable production of hyperbranched polythioether-ynes by a combination of thiol-halogen click-like coupling and thiol-yne click polymerization. Polym Chem-Uk 2012,3 (7),1918-1925.
    26. Konkolewicz, D.; Gray-Weale, A.; Perrier, S., Hyperbranched Polymers by Thiol-Yne Chemistry:From Small Molecules to Functional Polymers. J Am Chem Soc 2009,131 (50), 18075-18077.
    27. Rahane, S. B.; Hensarling, R. M.; Sparks, B. J.; Stafford, C. M.; Patton, D. L., Synthesis of multifunctional polymer brush surfaces via sequential and orthogonal thiol-click reactions. J Mater Chem 2012,22 (3),932-943.
    28. Liu, W. H.; Greytak, A. B.; Lee, J.; Wong, C. R.; Park, J.; Marshall, L. F.; Jiang, W.; Curtin, P. N.; Ting, A. Y; Nocera, D. G.; Fukumura, D.; Jain, R. K.; Bawendi, M. G., Compact Biocompatible Quantum Dots via RAFT-Mediated Synthesis of Imidazole-Based Random Copolymer Ligand. J Am Chem Soc 2010,132 (2),472-483.
    1. Sangeetha, N. M.; Maitra, U., Supramolecular gels:Functions and uses. Chem Soc Rev 2005, 34 (10),821-836.
    2. Yang, Z. M.; Liang, G L.; Xu, B., Enzymatic control of the self-assembly of small molecules: a new way to generate supramolecular hydrogels. Soft Matter 2007,3 (5),515-520.
    3. Chatterjee, J.; Haik, Y.; Chen, C. J., Biodegradable magnetic gel:synthesis and characterization. Colloid Polym Sci 2003,281 (9),892-896.
    4. Taylor, M. J.; Tanna, S.; Taylor, P. M.; Adams, G., The Delivery of Insulin from Aqueous and Nonaqueous Reservoirs Governed by a Glucose-Sensitive Gel Membrane. JDrug Target 1995, 3 (3),209-216.
    5. Mano, J. F., Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 2008,10 (6),515-527.
    6. Matsumoto, A.; Yoshida, R.; Kataoka, K., Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromolecules 2004,5 (3),1038-1045.
    7. Suzuki, H., Stimulus-responsive gels:Promising materials for the construction of micro actuators and sensors. J Intel Mat Syst Str 2006,17 (12),1091-1097.
    8. Goto, H.; Zhang, H. Q.; Yashima, E., Chiral stimuli-responsive gels:Helicity induction in poly(phenylacetylene) gels bearing a carboxyl group with chiral amines. JAm Chem Soc 2003, 125 (9),2516-2523.
    9. Li, Y.; Hu, Z. B.; Chen, Y. Y, Shape memory gels made by the modulated gel technology. J Appl Polym Sci 1997,63 (9),1173-1178.
    10. Yagai, S.; Iwashima, T.; Kishikawa, K.; Nakahara, S.; Karatsu, T; Kitamura, A., Photoresponsive self-assembly and self-organization of hydrogen-bonded supramolecular tapes. Chem-Eur J 2006,12 (15),3984-3994.
    11. Eastoe, J.; Sanchez-Dominguez, M.; Wyatt, P.; Heenan, R. K., A photo-responsive organogel. Chem Commun 2004, (22),2608-2609.
    12. Kato, T.; Hirai, Y.; Nakaso, S.; Moriyama, M., Liquid-crystalline physical gels. Chem Soc Rev 2007,36(12),1857-1867.
    13. Tong, X.; Zhao, Y.; An, B. K.; Park, S. Y., Fluorescent liquid-crystal gels with electrically switchable photoluminescence. Adv Funct Mater 2006,16 (14),1799-1804.
    14. Shen, L.; Pich, A.; Fava, D.; Wang, M. F.; Kumar, S.; Wu, C.; Scholes, G. D.; Winnik, M. A., Loading quantum dots into thermo-responsive microgels by reversible transfer from organic solvents to water. JMater Chem 2008,18 (7),763-770.
    15. Li, J.; Hong, X.; Liu, Y.; Li, D.; Wang, Y. W.; Li, J. H.; Bai, Y. B.; Li, T. J., Highly photoluminescent CdTe/Poly(N-isopropylacrylamide) temperature-sensitive gels. Adv Mater 2005,17(2),163-166.
    16. Sheeney-Haj-Ichia, L.; Sharabi, G; Willner, I., Control of the electronic properties of thermosensitive poly(N-isopropylacrylamide) and Au-nanoparticle/poly(N-isopropylacrylamide) composite hydrogels upon phase transition. Adv Funct Mater 2002,12 (1),27-32.
    17. Arachchige, I. U.; Brock, S. L., Sol-gel methods for the assembly of metal chalcogenide quantum dots. Accounts Chem Res 2007,40 (9),801-809.
    18. Pala, I. R.; Arachchige, I. U.; Georgiev, D. G.; Brock, S. L., Reversible Gelation of II-VI Nanocrystals:The Nature of Interparticle Bonding and the Origin of Nanocrystal Photochemical Instability. Angew Chem Int Ed 2010,49 (21),3661-3665.
    19. Chan, W. C. W.; Maxwell, D. J.; Gao, X. H.; Bailey, R. E.; Han, M. Y.; Nie, S. M., Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotech 2002,13 (1),40-46.
    20. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels. Science 1998,281 (5385),2013-2016.
    21. Gao, X. H.; Cui, Y. Y; Levenson, R. M.; Chung, L. W. K.; Nie, S. M., In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004,22 (8),969-976.
    22. Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G; Frangioni, J. V., Renal clearance of quantum dots. Nat Biotechnol 2007,25 (10),1165-1170.
    23. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A., In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002,298 (5599),1759-1762.
    24. Chan, W. C. W.; Nie, S. M., Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998,281 (5385),2016-2018.
    25. Kim, S.; Lim, Y. T.; Soltesz, E. G; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V., Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004,22 (1),93-97.
    26. Wu, X. Y.; Liu, H. J.; Liu, J. Q.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N. F.; Peale, F.; Bruchez, M. P., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots (vol 21, pg 41,2003). Nat Biotechnol 2003,21 (4), 452-452.
    27. Bardelang, D.; Zaman, M. B.; Moudrakovski, I. L.; Pawsey, S.; Margeson, J. C.; Wang, D. S.; Wu, X. H.; Ripmeester, J. A.; Ratcliffe, C. I.; Yu, K., Interfacing Supramolecular Gels and Quantum Dots with Ultrasound:Smart Photoluminescent Dipeptide Gels. Adv Mater 2008,20 (23),4517-4520.
    28. Gattas-Asfura, K. M.; Zheng, Y. J.; Micic, M.; Snedaker, M. J.; Ji, X. J.; Sui, G. D.; Orbulescu, J.; Andreopoulos, F. M.; Pham, S. M.; Wang, C. M.; Leblanc, R. M., Immobilization of quantum dots in the photo-cross-linked poly(ethylene glycol)-based hydrogel. JPhys Chem B 2003,107(38),10464-10469.
    29. Wu, D. C.; Liu, Y; Chen, L.; He, C. B.; Chung, T. S.; Goh, S. H.,2A(2)+BB'B " approach to hyperbranched poly(amino ester)s. Macromolecules 2005,38 (13),5519-5525.
    30. Zhang, Y. W.; Huang, W.; Zhou, Y. F.; Yan, D. Y, A physical gel made from hyperbranched polymer gelator. Chem Commun 2007, (25),2587-2589.
    31. Wu, D. C.; Liu, Y.; He, C. B.; Chung, T. S.; Goh, S. T., Effects of chemistries of trifunctional amines on mechanisms of Michael addition polymerizations with diacrylates. Macromolecules 2004,37 (18),6763-6770.
    32. Liu, Y.; Wu, D. C.; Ma, Y X.; Tang, G P.; Wang, S.; He, C. B.; Chung, T. S.; Goh, S., Novel poly(amino ester)s obtained from Michael addition polymerizations of trifunctional amine monomers with diacrylates:safe and efficient DNA carriers. Chem Commun 2003, (20), 2630-2631.
    33. Hong, C. Y.; You, Y. Z.; Wu, D. C.; Liu, Y; Pan, C. Y, Thermal control over the topology of cleavable polymers:From linear to hyperbranched structures. J Am Chem Soc 2007,129 (17), 5354-5355.
    34. You, Y. Z.; Yan, J. J.; Yu, Z. Q.; Cui, M. M.; Hong, C. Y; Qu, B. J., Multi-responsive carbon nanotube gel prepared via ultrasound-induced assembly. J Mater Chem 2009,19 (41), 7656-7660.
    35. Wang, X. S.; Dykstra, T. E.; Salvador, M. R.; Manners, I.; Scholes, G D.; Winnik, M. A., Surface passivation of luminescent colloidal quantum dots with poly(dimethylaminoethyl methacrylate) through a ligand exchange process. JAm Chem Soc 2004,126 (25),7784-7785.
    36. Wang, M. F.; Dykstra, T. E.; Lou, X. D.; Salvador, M. R.; Scholes, G. D.; Winnik, M. A., Colloidal CdSe nanocrystals passivated by a dye-labeled multidentate polymer:Quantitative analysis by size-exclusion chromatography. Angew Chem Int Ed 2006,45 (14),2221-2224.
    37. Bae, W. K.; Char, K.; Hur, H.; Lee, S., Single-step synthesis of quantum dots with chemical composition gradients. Chem Mater 2008,20 (2),531-539.
    38. Cravotto, G.; Cintas, P., Molecular self-assembly and patterning induced by sound waves. The case of gelation. Chem Soc Rev 2009,38 (9),2684-2697.
    39. Shibayama, M.; Tsujimoto, M.; IkKai, F., Static inhomogeneities in physical gels:Comparison of temperature-induced and concentration-induced sol-gel transition. Macromolecules 2000, 33 (21),7868-7876.
    40. Badjic, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F., Multivalency and cooperativity in supramolecular chemistry. Accounts Chem Res 2005,38 (9),723-732.
    41. Mulder, A.; Huskens, J.; Reinhoudt, D. N., Multivalency in supramolecular chemistry and nanofabrication. OrgBiomol Chem 2004,2 (23),3409-3424.
    42. Wu, D. C.; Liu, Y.; He, C. B., Thermal-and pH-responsive degradable polymers. Macromolecules 2008,41 (1),18-20.
    43. Wang, R. B.; Zhou, L. Z.; Zhou, Y. F.; Li, G. L.; Zhu, X. Y.; Gu, H. C.; Jiang, X. L.; Li, H. Q.; Wu, J. L.; He, L.; Guo, X. Q.; Zhu, B. S.; Yan, D. Y, Synthesis and Gene Delivery of Poly(amido amine)s with Different Branched Architecture. Biomacromolecules 2010,11 (2), 489-495.
    1. Feng, F. D.; Liu, L. B.; Wang, S., Fluorescent conjugated polymer-based FRET technique for detection of DNA methylation of cancer cells. Nat Protoc 2010,5 (7),1255-1264.
    2. You, C. C.; Miranda, O. R.; Gider, B.; Ghosh, P. S.; Kim, I. B.; Erdogan, B.; Krovi, S. A.; Bunz, U. H. F.; Rotello, V. M., Detection and identification of proteins using nanoparticle-fluorescent polymer'chemical nose'sensors. Nat Nanotechnol 2007,2 (5), 318-323.
    3. Thomas, S. W.; Joly, G. D.; Swager, T. M., Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 2007,107 (4),1339-1386.
    4. Beija, M.; Charreyre, M. T.; Martinho, J. M. G., Dye-labelled polymer chains at specific sites: Synthesis by living/controlled polymerization. Prog Polym Sci 2011,36 (4),568-602.
    5. Yang, J.; Zhang, Y.; Gautam, S.; Liu, L.; Dey, J.; Chen, W.; Mason, R. P.; Serrano, C. A.; Schug, K. A.; Tang, L., Development of aliphatic biodegradable photoluminescent polymers. P Natl Acad Sci USA 2009,106 (25),10086-10091.
    6. Cadena-Nava, R. D.; Hu, Y. F.; Garmann, R. F.; Ng, B.; Zelikin, A. N.; Knobler, C. M.; Gelbart, W. M., Exploiting Fluorescent Polymers To Probe the Self-Assembly of Virus-like Particles. JPhys Chem B 2011,115 (10),2386-2391.
    7. Disney, M. D.; Zheng, J.; Swager, T. M.; Seeberger, P. H., Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J Am Chem Soc 2004,126 (41), 13343-13346.
    8. Liu, B.; Gaylord, B. S.; Wang, S.; Bazan, G. C., Effect of chromophore-charge distance on the energy transfer properties of water-soluble conjugated oligomers. J Am Chem Soc 2003,125 (22),6705-6714.
    9. Dore, K.; Dubus, S.; Ho, H. A.; Levesque, I.;. Brunette, M.; Corbeil, G.; Boissinot, M.; Boivin, G.; Bergeron, M. G.; Boudreau, D.; Leclerc, M., Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level. J Am Chem Soc 2004,126 (13),4240-4244.
    10. Kim, K.; Lee, M.; Park, H.; Kim, J. H.; Kim, S.; Chung, H.; Choi, K.; Kim, I. S.; Seong, B. L.; Kwon, I. C., Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging. J Am Chem Soc 2006,128 (11),3490-3491.
    11. Charreyre, M.; Mandrand, B.; Martinho, J. M. G; Relogio, P.; Sequeira Farinha, J. P.; Charreyre, M. T.; Farinha, J. P. S.; Martinho, J.; Sequeira Farinha, J.; Sequeira, F. J. P. Fluorescent polymer soluble in an aqueous solution, useful in medical diagnostics or therapeutics to detect a target molecule, comprises fluorophores, which are distributed on a polymer and exhibit specific properties. WO2007003781-A1; FR2887892-A1; EP1899434-A1; US2008290321-A1; US8133411-B2, WO2007003781-A1 11 Jan 2007 C09K-011/06 200722 Pages:59 French FR2887892-A1 05 Jan 2007 200722 Pages:57 EP1899434-A1 19 Mar 2008 200822 French US2008290321-A1 27 Nov 2008 C09K-011/06 200881 English US8133411-B2 13 Mar 2012 C09K-011/08 201219 English.
    12. Chen, M.; Ghiggino, K. P.; Rizzardo, E.; Thang, S. H.; Wilson, G. J., Controlled synthesis of luminescent polymers using a bis-dithiobenzoate RAFT agent. Chem Commun 2008, (9), 1112-1114.
    13. Dietrich, M.; Delaittre, G; Blinco, J. P.; Inglis, A. J.; Bruns, M.; Barner-Kowollik, C., Photoclickable Surfaces for Profluorescent Covalent Polymer Coatings. Adv Funct Mater 2012,22 (2),304-312.
    14. Moad, G; Rizzardo, E.; Thang, S. H., Living Radical Polymerization by the RAFT Process-A Second Update. Aust J Chem 2009,62 (11),1402-1472.
    15. Moad, G; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process-A first update. AustJChem 2006,59 (10),669-692.
    16. Coessens, V.; Pintauer, T.; Matyjaszewski, K., Functional polymers by atom transfer radical polymerization. Prog Polym Sci 2001,26 (3),337-377.
    17. Yan, J. J.; Hong, C. Y.; You, Y. Z., An Easy Method To Convert the Topologies of Macromolecules after Polymerization. Macromolecules 2011,44 (6),1247-1251.
    18. Zhou, Y. M.; Jiang, K. Q.; Song, Q. L.; Liu, S. Y, Thermo-induced formation of unimolecular and multimolecular micelles from novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide. Langmuir 2007,23 (26),13076-13084.
    19. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process. Macromolecules 1998,31 (16),5559-5562.
    20. Wang, W.; Han, J. J.; Wang, L. Q.; Li, L. S.; Shaw, W. J.; Li, A. D. Q., Dynamic pi-pi stacked molecular assemblies emit from green to red colors. Neno Lett 2003,3 (4),455-458.
    21. Yuan, W. Z.; Lu, P.; Chen, S. M.; Lam, J. W. Y.; Wang, Z. M.; Liu, Y; Kwok, H. S.; Ma, Y. G.; Tang, B. Z., Changing the Behavior of Chromophores from Aggregation-Caused Quenching to Aggregation-Induced Emission:Development of Highly Efficient Light Emitters in the Solid State. Adv Mater 2010,22 (19),2159-2163.
    22. Liu, Y; Tang, Y. H.; Barashkov, N. N.; Irgibaeva, I. S.; Lam, J. W. Y; Hu, R. R.; Birimzhanova, D.; Yu, Y; Tang, B. Z., Fluorescent Chemosensor for Detection and Quantitation of Carbon Dioxide Gas. JAm Chem Soc 2010,132 (40),13951-13953.
    23. Wang, J.; Mei, J.; Yuan, W. Z.; Lu, P.; Qin, A. J.; Sun, J. Z.; Ma, Y. G.; Tang, B. Z., Hyperbranched polytriazoles with high molecular compressibility:aggregation-induced emission and superamplified explosive detection. J Mater Chem 2011,21 (12),4056-4059.
    24. Enderlein, J., Theoretical study of single molecule fluorescence in a metallic nanocavity. Appl Phys Lett 2002,80 (2),315-317.
    25. Adkins, C. T.; Harth, E., Synthesis of star polymer architectures with site-isolated chromophore cores. Macromolecules 2008,41 (10),3472-3480.
    26. Freeman, A. W.; Koene, S. C.; Malenfant, P. R. L.; Thompson, M. E.; Frechet, J. M. J., Dendrimer-containing light-emitting diodes:Toward site-isolation of chromophores. J Am Chem Soc 2000,122 (49),12385-12386.
    27. Furuta, P.; Brooks, J.; Thompson, M. E.; Frechet, J. M. J., Simultaneous light emission from a mixture of dendrimer encapsulated chromophores:A model for single-layer multichromophoric organic light-emitting diodes.J Am Chem Soc 2003,125 (43), 13165-13172.
    28. Sista, S.; Hong, Z. R.; Park, M. H.; Xu, Z.; Yang, Y, High-Efficiency Polymer Tandem Solar Cells with Three-Terminal Structure. Adv Mater 2010,22 (8), E77-E80.
    29. Gao, H. F.; Poulsen, D. A.; Ma, B. W.; Unruh, D. A.; Zhao, X. Y; Millstone, J. E.; Frechet, J. M. J., Site Isolation of Emitters within Cross-Linked Polymer Nanoparticles for White Electroluminescence. Nano Lett 2010,10 (4),1440-1444.
    30. Liu, Y Q.; Cavicchi, K. A., Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization with a Polymeric RAFT Agent Containing Multiple Trithiocarbonate Groups. Macromol Chem Physic 2009,210 (19),1647-1653.
    31. Bussels, R.; Bergman-Gottgens, C.; Meuldijk, J.; Koning, C., Multiblock copolymers synthesized by miniemialsion polymerization using multifunctional RAFT agents. Macromolecules 2004,37 (25),9299-9301.
    32. You, Y. Z.; Hong, C. Y; Wang, W. P.; Wang, P. H.; Lu, W. Q.; Pan, C. Y, A novel strategy to synthesize graft copolymers with controlled branch spacing length and defined grafting sites. Macromolecules 2004,37 (19),7140-7145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700