用户名: 密码: 验证码:
加速溶剂萃取和分子印迹技术在农药残留分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,农产品质量安全问题日益成为社会关注的焦点之一。在对复杂的农产品农药残留的检测中,前处理是样品分析过程中关键的一步。尤其是一些待测物浓度很低的样品。为了更好分离、纯化和富集,以便获得可靠的结果、较好的重现性和较高的灵敏度,建立更快速、高效、操作简便且环保的前处理方法在生物样品分析中显得尤为重要。
     加速溶剂萃取(ASE)技术已经成为一种常用绿色分离技术,能够在多种样品中萃取出不同种类的农药残留。与传统的提取方法比较,ASE具有操作简便,减少有机溶剂对环境的污染,省时省溶剂,萃取操作完全自动化的特点。分子印迹聚合物(MIPs)是制备对特定分子具有专一性结合能力的高分子技术。MIPs具有亲和性好、选择性高、抗干扰性强、稳定性好,使用寿命长以及应用范围广等优点。目前,两种技术己在农残检测、天然药物分离以及色谱分析等领域得到广泛应用。加速溶剂萃取技术与分子印迹-固相萃取技术相结合可以极大的提高复杂样品前处理的选择性,实现复杂生物样品中农药残留的快速、有效分离。
     本文第一章绪论部分简要的对加速溶剂萃取技术和分子印迹技术的研究进展进行了介绍。
     第二章建立了加速溶剂萃取-硅胶柱净化-高效液相色谱分析的方法,用于检测烟草中氯虫苯甲酰胺和螺螨酯的残留。实验中对萃取条件进行了优化,包括:萃取溶剂、萃取温度和萃取时长等。对硅胶柱净化手段及色谱条件进行了研究,采用高效液相色谱-二极管阵列检测器的方法对待测物进行测定。在最优条件下,氯虫苯甲酰胺和螺螨酯均表现出了良好的线性范围(r>0.999),方法定量限(LOQ)为氯虫苯甲酰胺16.5μg/kg,螺螨酯66.5μg/kg。回收率为氯虫苯甲酰胺88.5–102%(RSDs=2.7–6.9%),螺螨酯87.7–98.5%(RSDs=1.8–5.9%);本方法简单、快速、有效,可以用于烟草中农药残留的分析。
     第三章建立了加速溶剂萃取-固相萃取-高效液相色谱的方法,用于8种根类药食两用植物样品中环丙氨嗪及其代谢物三聚氰胺的测定。实验中分别对分离和检测方法的条件进行了探讨和优化,确定了对环境无污染的水作为萃取溶剂使用,应用Waters C18柱作为反相色谱分离柱。在最佳条件下,得到很好的线性回归方程(R=0.9998)。方法的定量限为环丙氨嗪2.15μg/kg,三聚氰胺2.51μg/kg,均低于各自最大允许残留量三个数量级。本方法能够检测出μg/kg水平的环丙氨嗪和三聚氰胺,已通过液相色谱-质谱的方法进行了确证。方法可以对药食两用植物中环丙氨嗪和三聚氰胺进行快速、高灵敏、高精度测定,且费用低廉。
     第四章通过分子模拟计算和红外及核磁共振氢谱实验验证,对三聚氰胺为模板分子,甲基丙烯酸为功能单体合成分子印迹聚合物的分子识别机理进行了研究。发现三聚氰胺的氨基与甲基丙烯酸的羧基能够结合成比氢键更稳定的酰胺基。键合研究显示三聚氰胺分子印迹聚合物对三聚氰胺显示出极好的结合能力及选择性。
     第五章第一部分建立了一种高选择性和灵敏度的分子印迹固相萃取-超高效液相色谱用来检测牛奶中环丙胺嗪、三聚氰胺、三聚氰胺二酰胺和三聚氰胺一酰胺的方法。方法中应用三聚氰胺分子印迹聚合物做吸附剂可以有效去除牛奶基质对测定的影响。在最佳条件下,方法在0.013~6.667μg/mL范围内具有良好的线性(r>0.999),相对标准偏差介于2.2-4.6%之间。方法定量限介于1.3ng/mL-6.7ng/mL之间。该方法可以用于选择萃取、分离、测定牛奶及其他奶制品中的三聚氰胺及其相关化合物。
     第五章第二部分建立了一种加速溶剂萃取-分子印迹固相萃取-超高效液相色谱的方法来检测肉类中环丙胺嗪、三聚氰胺和双氰胺。方法中采用水作为萃取溶剂,应用三聚氰胺的分子印迹聚合物作为固相萃取的吸附剂对肉类样品进行了处理。实验中对加速溶剂萃取条件和流动相进行了优化。应用ACQUITY UPLC BEH HILIC柱,在最佳条件下,三种待测物线性回归方程的系数均为0.9999。方法定量限低至双氰胺1.675μg/kg、三聚氰胺5μg/kg和环丙胺嗪3.325μg/kg,远低于国家及国际规定的最大允许残留量,方法具有较高的检测能力。三种浓度的标准添加回收率为:88.7–107%,RSDs为1.1–8.3%。方法可以对肉类中双氰胺、三聚氰胺和环丙氨嗪进行快速、高灵敏、高精度测定。
In recent years, increasing attention has been paid to the quality and safety (QS) ofproducts and foodstuffs. In the determination of pesticide residues in agricultural productssamples, sample preparation is very important, because the matrix is complicated andconcentration of analyte is very low. It is important to develop fast, efficient, simple andgreen sample preparation method in order to obtain reliable, repeatable analytical result.
     Accelerated solvent extraction (ASE) is a new green extraction technique. ASE canextract different classes of pesticides residues which exist in numerous kinds of plant originfoods. It possesses many advantages such as easy to operate, less pollution to theenvironment by the organic solvent, less time, less solvent and automatic in the extractionprocedures comparing with other traditional extraction methods. Molecularly imprintedpolymers are specific polymer materials that have the selective binding ability to theparticular molecules. Molecularly imprinted polymers have many advantages of good affinity,high selectivity, powerful anti-interference performance, better stability, as well as long lifeand wide range of applications. Molecular imprinting technology had been used in manyfields such as pesticide residues analysis, food analysis, environmental monitoring, naturalproducts separation and chromatographic analysis. The selectivity of complex samplespretreatment was increased greatly when the accelerated-solvent-extraction technology andmolecularly-imprinted-solid-phase-extraction technology were applied together. And thepesticide residues in complex biological samples can be separated and enriched quickly andeffectively.
     First of all, it is described that the history and development of the accelerated solventextraction technology and molecularly imprinted technology, and the research advance wasreviewed.
     In chapter2, a new method for the determination of chlorantraniliprole (CAP) andspirodiclofen (SDF) residues in tobacco was developed by using liquid chromatography withdiode-array detection (LC-DAD) after accelerated solvent extraction (ASE) and silica gel clean-up. The conditions of ASE, silica gel clean-up and LC were investigated and optimized.A Waters C18column (250×4.6mm ID,5μm) was used for the LC using a mobile phasecomposed of methanol and water (90:10, v/v). Under optimal conditions, the linearity wassatisfactory in the range of0.03–1.5μg/mL with a correlation coefficient of0.9994for CAPand0.13–2.5μg/mL with a correlation coefficient of0.9991for SDF. The method limit ofquantification (LOQ) was16.5μg/kg for CAP, and64.3μg/kg for SDF, which is lower thantheir maximum residue limits (MRLs). The recoveries were88.5–102%with relative standarddeviations (RSDs) of2.7–6.9%for CAP, and87.7–98.5%with RSDs of1.8–5.9%for SDF.The proposed method is simple, rapid and effective, and provides the sensitivity and linearitynecessary for analysis of the pesticides in tobacco.
     In chapter3, a highly sensitive method was developed for the determination of theresidues of cyromazine (CYR) and its metabolite, melamine(MEL), in herbal and edible plantsamples by using reversed phase high-performance liquid chromatography–diode-arraydetection (RP-HPLC-DAD) with accelerated solvent extraction and solid phase extractioncleanup. The conditions of separation and detection were investigated and optimized. AWaters C18column (250x4.6mm,i.d.,5μm) was used for the RP-HPLC, with a mobilephase composed of0.1%trifluoroacetic acid solution and methanol (85:15, v/v, pH2.6).Under the optimized conditions, good linearity was achieved with a correlation coefficient of0.9998. The limits of quantification of the method were2.15μg/kg for CYR and2.51μg/kgfor MEL, which are maximum residue limits as low as three orders of magnitude. Therecovery values at three spiked concentrations were in the range of96.2–107.1%with relativestandard deviations (RSDs) of1.1–5.7%for CYR, and92.7–104.9%with RSDs of1.7–6.1%for MEL. The proposed method allows detection at levels as low as μg/kg levels for CYR andMEL. The method was validated by liquid chromatography–tandem mass spectrometry, andcan be used for the routine determination of CYR and MEL in herbal and edible plantsamples with the characteristics of speed, high sensitivity and accuracy, and low consumptionof reagents.
     In chapter4, molecular recognition mechanisms for melamine molecularly imprintedpolymers synthesized in ethanol-water system with melamine as template and methacrylicacid as organic functional monomer were examined by the molecular simulation and theexperimental validation with IR and1H NMR. It was found that amino in melamin withcarboxyl group of methacrylic can be combined to be more stable amido goup than hydrogenbond. Binding study demonstrated that the MIPs showed excellent affinity and highselectivity to melamine.
     In chapter5section1, a highly selective molecularly imprinted solid-phase extraction(MISPE) combined with ultra-performance liquid chromatography-PDA detection wasdeveloped for the simultaneous isolation and determination of cyromazine, melamine,ammeline and ammelide in milk samples. The new melamine molecularly imprintedpolymers (MIPs) was applied as a special sorbent for the selective solid-phase extraction(SPE) of melamine and it’s analogues from milk samples, showing high selectivity andaffinity to the melamine and cyromazine in milk. Used the MIPs as SPE sorbents couldeffectively eliminate the interferences of the milk matrix. Under the optimized conditions,good linearity of the method was obtained in a range of0.013~6.667μg/mL with thecorrelation coefficient of>0.999and the relative standard division of2.0–7.4%. The limits ofquantitation of this method were in a range of1.3ng/mL-6.7ng/mL. The proposed methodcould be applied for the selective extraction, separation and determination of melamine andit’s related compounds in milk samples.
     In chapter5section2, a highly sensitive method was developed for the determination ofthe residues of cyromazine(CYR), melamine(MEL) anddicyandiamide (DICY) in animaltissue samples by using ultra-high-performance liquid chromatography(UPLC)–PDA eλdetection with accelerated solvent extraction and MISPE cleanup. The conditions ofseparation and detection were investigated and optimized. A ACQUITY UPLC BEH HILIC(100x2.1mm,i.d.,1.7μm) was used for the UPLC, with a mobile phase composed of0.77‰ammonium acetate-acetic acid (pH=4.7) and methanol (4:96, v/v). Under theoptimized conditions, good linearity was achieved with a correlation coefficient of0.9999. The limits of quantification of the method were1.675μg/kg for DICY,5μg/kg for MEL and3.325μg/kg for CYR. The recovery values at three spiked concentrations were in the range of91.2-107%with relative standard deviations (RSDs) of1.7–8.3%for DICY,89.1–105%withRSDs of1.1–6.6%for MEL, and88.7–104%with RSDs of2.1–6.1%for CYR. The proposedmethod can be used for the routine determination of DICY, MEL and CYR in complexbiological samples with the characteristics of high sensitivity, accuracy, and speed.
引文
[1] Picó Y, Font G, Moltó J C, et al. Pesticide residue determination in fruit and vegetables by liquidchromatography-mass spectrometry[J]. Journal of Chromatography A,2000,882(1-2):153-173.
    [2] Gonzólez-Rodriguez R M, Rial-Otero R, Cancho-Grande B, et al. Determination of23pesticideresiduesin leafyvegetables using gas chromatography-ion trap mass spectrometry and analyte protectants[J].Journal of Chromatography A,2008,1196-1197:100-109.
    [3] Lesueur C, Knittl P, Gartner M, et al. Analysis of140pesticides from conventional farming foodstuffsamples after extraction with the modified QuECheRS method[J]. Food Control,2008,19(9):906-914.
    [4]赵海香,袁光耀.加速溶剂萃取技术(ASE)在农药残留分析中的应用[J].农药,2006,45(1):15-17.
    [5] Henion J, Brewer E, Rule G. Peer reviewed: sample preparation for LC/MS/MS: analyzing biologicaland environmental samples[J]. Journal of Analytical Chemistry,1998,70(19):650A–656A.
    [6]韩超,贾婉娉,朱振瓯,等.加速溶剂萃取-固相萃取-液相色谱-电喷雾串联质谱法同时测定羊栖菜中六溴环十二烷异构体[J].分析试验室,2011,30(1):59-62.
    [7] Enke C G. A predictive model for matrix and analyte effects in electrospray ionization ofsingly-charged ionic analytes[J]. Journal of Analytical Chemistry,1997,69(23):4885-4893.
    [8] Kebarle P, Tang L. From ions in solution to ions in the gas phase-the mechanism of electrospray massspectrometry[J]. Journal of Analytical Chemistry,1993,65(22):972A-986A.
    [9] Souverain S, Rudaz S, Veuthey J L. Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line andon-line extraction procedures[J]. Journal of Chromatography A,2004,1058(1-2):61-66.
    [10] Richter B E, Jones B A, Ezzell J L, et al. Accelerated solvent extraction: a technique for samplepreparation[J]. Journal of Analytical Chemistry,1996,68(6):1033-1039.
    [11] Giergielewicz-Mozajska H, Namie nik J, REV C. Accelerated solvent extraction (ASE) in the analysisof environmental solid samples-some aspects of theory and practice[J]. Journal of AnalyticalChemistry,2001,31(3):149-165.
    [12] Smith R M. Extractions with superheated water[J]. Journal of Chromatography A,2002,975(1):31-46.
    [13] Teo C C, Tan S N, Yong J W H, et al. Pressurized hot water extraction (PHWE)[J]. Journal ofChromatography A,2010,1217(16):2484-2496.
    [14] Carabias-Martinez R, Rodriguez-Gonzalo E, Revilla-Ruiz P, et al. Pressurized liquid extraction in theanalysis of food and biological samples[J]. Journal of Chromatography A,2005,1089(1-2):1-17.
    [15] Moreno E, Reza J, Trejo A. Extraction of polycyclic aromatic hydrocarbons from soil using waterunder subcritical conditions[J]. Polycyclic Aromatic Compounds,2007,27(4):239-260.
    [16] Juan C, González L, Soriano J M, et al. Accelerated solvent extraction of ochratoxin a from ricesamples[J]. Journal of Agricultural and Food Chemistry,2005,53(24):9348–9351.
    [17] Urraca J L, Marazuela M D, Moreno-Bondi M C. Analysis for zearalenone and a-zearalenol in cerealsand swine feed using accelerated solvent extraction and liquid chromatography with fluorescencedetection[J]. Analytica Chimica Acta,2004,524(1-2):175–183.
    [18] Pavlovi D M, Babi S, Horvat A J M, et al. Sample preparation in analysis of pharmaceuticals[J].TrAC Trends in Analytical Chemistry,2007,26(11):1062-1075.
    [19] Wasik A, Ciesielski T. Determination of organotin compounds in biological samples using acceleratedsolvent extraction, sodium tetraethylborate ethylation, and multicapillary gas chromatography–flamephotometric detection[J]. Analytical and Bioanalytical Chemistry,2004,378(5):1357-1363.
    [20]范云场,张社利,陈梅兰等。离子液体-加速溶剂萃取-高效液相色谱法测定蜜饯中的有机酸类防腐剂[J].分析化学,2010,38(12):1785-1788.
    [21] Sporring S, Bj rklund E. Selective pressurized liquid extraction of polychlorinated biphenyls fromfat-containing food and feed samples: Influence of cell dimensions, solvent type, temperature andflush volume[J]. Journal of Chromatography A,2004,1040(2):155-161.
    [22] Herrera M C, Prados-Rosales R C, Luque-Garcia J L, et al. Static–dynamic pressurized hot waterextraction coupled to online filtration-solid-phase extraction-high-performance liquidchromatography–post-column derivatization–fluorescence detection for the analysis ofN-methylcarbamates in foods[J]. Analytica Chimica Acta,2002,463(2):189–197.
    [23] Bogialli S, Curini R, Corcia A D, Nazzari M, et al. A liquid chromatography mass spectrometry assayfor analyzing sulfonamide antibacterials in cattle and fish muscle tissues[J]. Journal of AnalyticalChemistry,2003,75(8):1798-1804.
    [24] Font G, Juan-Garcia A, Picó Y. Pressurized liquid extraction combined with capillaryelectrophoresis-mass spectrometry as an improved methodology for the determination of sulfonamideresidues in meat[J]. Journal of Chromatography A,2007,1159(1-2):233-241.
    [25] Fenik J, Tankiewicz M, Biziuk M. Properties and determination of pesticides in fruits andvegetables[J]. TrAC Trends in Analytical Chemistry,2011,30(6):814-826.
    [26]闵光,方国臻,戴炳业,等.加速溶剂萃取-气相色谱-质谱法检测谷物中农药多残留的研究[J].粮食与饲料工业,2008,1:40-42.
    [27]胡贝贞,宋伟华,谢丽萍,等.加速溶剂萃取/凝胶渗透色谱-固相萃取净化/气相色谱-质谱法测定茶叶中残留的33种农药[J].色谱,2008,26(1):22-28.
    [28] Pang Guofang, Liu Yongming, Fan Chunlin, et al. Simultaneous determination of405pesticideresidues in grain by accelerated solvent extraction then gas chromatography-mass spectrometry orliquid chromatography-tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2006,384(6):1366-1408.
    [29]欧阳运富,唐宏兵,吴英,等.加速溶剂萃取在线凝胶渗透色谱气相色谱质谱联用法快速测定蔬菜和水果中多农药残留[J].色谱,2012,30(7):654-659.
    [30] Otake T, Itoh N, Aoyagi Y, et al. Development of certified reference material for quantification of twopesticides in brown rice[J]. Journal of Agricultural and Food Chemistry,2009,57(18):8208–8212.
    [31] Fernandes V C, Domingues V F, Mateus N, et al. Organochlorine pesticide residues in strawberriesfrom integrated pest management and organic farming[J]. Journal of Agricultural and Food Chemistry,2011,59(14):7582-7591.
    [32] Bempah C K, Donkor A, Yeboah P O, et al. A preliminary assessment of consumer’s exposure toorganochlorine pesticides in fruits and vegetables and the potential health risk in Accra Metropolis,Ghana[J]. Food Chemistry,2011,128(4):1058-1065.
    [33] Luise W, Peter P, K ller G, et al. Determination of organochlorine pesticides and chlorobenzenes instrawberries by using accelerated solvent extraction combined with sorptive enrichment and gaschromatography/mass spectrometry[J]. Journal of AOAC International,2001,84(4):1194-1201(8).
    [34] Barriada-Pereira M, González-Castro M J, Muniategui-Lorenzo S, et al. Comparison of pressurizedliquid extraction and microwave assisted extraction for the determination of organochlorine pesticidesin vegetables[J]. Talanta,2007,71(3):1345-1351.
    [35] Zhang Yaping, Yang Jun, Shi Ronghua, et al. Development of an analytical method based onaccelerated solvent extraction, solid-phase extraction clean-up, then GC-ECD for analysis of fourteenorganochlorine pesticides in cereal crops[J]. Chromatographia,2011,73(3-4):385-391.
    [36]邓洁薇,李娜,杨运云.加速溶剂萃取/气相色谱-负化学电离质谱法对广东凉茶冲剂中有机氯杀虫剂残留的测定[J].分析测试学报,2011,30(9):1001-1005.
    [37]胡贝贞,沈国军,邵铁锋,等.加速溶剂萃取-气相色谱-负化学源质谱法测定茶叶中有机氯和拟除虫菊醋类农药残留量[J].分析试验室,2009,28(1):80-83.
    [38]田绍琼,毛秀红,苗水,等.气相色谱串联质谱法测定人参和黄芪中种毒杀芬残留量[J].色谱,2012,30(1):14-20.
    [39] Krieger R. Handbook of pesticide toxicology[M].2th ed. Amsterdam: Elsevier Besloten Vennootschap,2001:913-917.
    [40]王昭妮,姚伟琴,李锋格.加速溶剂萃取-毛细管气相色谱法测定小麦粉中21种有机磷农药残留的研究[J].中国卫生检验杂志,2011,21(3):601-603.
    [41]张晓林,陈溪,刘莹,等.加速溶剂萃取-凝胶渗透色谱净化用于食品中有机磷的检测[J].化学通报,2012,75(6):552-556.
    [42] Obana H, Kikuchi K, Okihashi M, et al. Determination of organophosphorus pesticides in foods usingan accelerated solvent extraction system[J]. Analyst,1997,122:217-220.
    [43] Richter B E, Frank H, Manfred L. Determining organophosphorus pesticides in foods usingaccelerated solvent extraction with large sample sizes[J]. LC GC North America,2001,19(4):408-412.
    [44] Bogialli S, Curini R, Corcia A D, et al. A Simple and rapid assay for analyzing residues of carbamateinsecticides in vegetables and fruits: hot water extraction followed by liquid chromatography-massspectrometry[J]. Journal of Agricultural and Food Chemistry,2004,52(4):665–671.
    [45]Yang Ruzhen, Wang Minglin, Wang Jinhua, et al. Dispersive solid-phase extraction cleanup combinedwith accelerated solvent extraction for the determination of carbamate pesticide residues in radixglycyrrhizae samples by UPLC-MS-MS[J]. Journal of Chromatographic Science,2011,49(9):702-708.
    [46] Feo M L, Eljarrat E, Barceló D, et al. Determination of pyrethroid insecticides in environmentalsamples[J]. TrAC Trends in Analytical Chemistry,2010,27(9):692-705.
    [47]吴胜芳,王利平,刘杨岷,等.加速溶剂萃取-气相色谱串联质谱测定菊花中的3种菊酯类农药残留量[J].分析试验室,2008,27(11):65-67.
    [48]孙聪.全自动加压溶剂萃取仪在测定蔬果中拟除虫菊酯的应用[J].现代科学仪器,2011,4:45-46.
    [49] Zhang Yaping, Yang Jun, Shi Ronghua, et al. Determination of acetanilide herbicides in cereal cropsusing accelerated solvent extraction, solid-phase extraction and gas chromatography-electron capturedetector[J]. Journal of Separation Science,2011,34(14):1675-1682.
    [50] Marchese S, Perret D, Bafile E, et al. Pressurized liquid extraction coupled with LC–ESI–MS–MS forthe determination of herbicides chlormequat and mepiquat in flours[J]. Chromatographia,2009,70(5-6):761-767.
    [51]徐晓琴,李庆玲,袁济端,等.加速溶剂萃取-气相色谱质谱法测定太子参中酰胺类除草剂的含量[J].分析化学,2007,35(2):206-210.
    [52]吴刚,吴俭俭,赵珊红,等.加速溶剂萃取-固相萃取结合液相色谱分析茶叶中多菌灵残留量[J].中国食品学报,2008,8(4):165-168.
    [53] Cho S, Abdelaty A M, Park Y, et al. A multiresidue method for the analysis of pesticide residues inpolished rice (Oryza sativa L.) using accelerated solvent extraction and gas chromatography andconfirmation by mass spectrometry[J]. Biomedical Chromatography,2007,21(6):602–609.
    [54]谭琳,胡秋龙,张建辉,等.加速溶剂萃取气相色谱法测定茶叶中八氯二丙醚残留量及其不确定度评估[J].农药学学报,2011,13(6):621-626.
    [55] Zhang Hongxia, Li Fengge, Li Xiaoyan, et al. Determination of chlormequat and mepiquat residues intomato plants using accelerated solvent extraction-ultra-performance liquid chromatography-tandemmass spectrometry[J]. Advances in Natural Science,2012,5(2):34-40.
    [56] Rocco G, Toledo C, Ahumada I, et al. Determination of polychlorinated biphenyls in biosolids usingcontinuous ultrasound-assisted pressurized solventextraction and gas chromatography-massspectrometry[J]. Journal of Chromatography A,2008,1193(1-2):32-36.
    [57] Pauling L. A theory of the structure and process of formation of antibodies[J]. J.Am.Chem.Soc.,1940,62:2643-2657.
    [58] Diekey FH. The preparation of specific adsorbents[J]. Proe. Natl. Acad. Sei.,1949,35:227-229.
    [59] Wulff G, Sharhan A, Zabrocki K. Enzyme analogue built polyers and their use for the resolution ofracements[J]. Tetrahedron Lett.,1973,14:4329-4332.
    [60] Vlatakis G, Andersson L I, Miller R, et al. Drug assay using antibody mimics made by molecularimprinting[J]. Nature,1993,361:645-647.
    [61] Wulff G, Vesper W. Preparation of chromatographic sorbents with chiral cavities for racemicresolution[J]. J. Chromatography A,1978,167:171-186.
    [62] Wulff G, Vesper R, Grobe-Einsler R, et al. Enzyme-Analogue Built Polymers,4) On the Synthesis ofPolymers Containing Chiral Cavities and Their Use for the Resolution of Racemates[J]. Makromol.Chem.,1977,178:2799-2816.
    [63] Mosbach K. Molecular imprinting[J]. Trends in Biochemical Sciences,1994,19:9-14.
    [64] Whitcombe M J, Rodriguez M E, Villar P, et al. A new method for the introduction of recognition sitefunctionality into polymers prepared by molecular imprinting: synthesis and characterization ofpolymeric receptors for cholesterol[J]. J. Am. Chem. Soc.,1995,117:7105-7111.
    [65] Piletsky S A, Piletskaya E V, Yano Kugimiya A, et al. A biomimetic receptor system for sialic acidbased on molecular imprinting[J]. Anal. Lett.,1996,29(2):157-170.
    [66] Wulff G, Schauhoff S. Racemic Resolution of Free Sugars with Macroporous Polymers Prepared byMolecular Imprinting. Selectivity Dependence on the Arrangement of Functional Groups versusSpatial Requirements[J]. J. Org. Chem.,1991,56(1):395-400.
    [67] Hamase K, Iwashita K, Zaitsu K. Enantio-Selective Derivatization of Amino Compounds in thePresence of a Molecular Imprint Polymer[J]. Anal. Sci.,1999,15(5):411-412.
    [68] Reddy P S, Kobayashi T, Fujii N. Molecular Imprinting in Hydrogen Bonding Networks of PolyamideNylon for Recognition of Amino Acids[J]. Chem. Lett.,1999,4:193-194.
    [69] Lee H S, Hong J. Chiral and electrokinetic separation of amino acids using polypyrrole-coatedadsorbents[J]. J. Chromatography A,2000,868(2):189-196.
    [70] Giraudi G, Giovannoli C, Tozzi C, et al. Molecular recognition properties of peptide mixtures obtainedby polymerisation of amino acids in the presence of estradiol[J]. Anal. Chim. Acta,2003,481:41-53.
    [71] Peng H, Liang C, Zhou A, et al. Development of a new atropine sulfate bulk acoustic wave sensorbased on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine[J].Anal. Chim. Acta,2000,23(2):221-228.
    [72] Hwang C C, Lee W C. Chromatographic resolution of the enantiomers of phenylpropanolamine byusing molecularly imprinted polymer as the stationary phase[J]. J. Chromatogr. B,2001,765(1):45-53.
    [73] Tong A J, Dong H, Li L D. Molecular imprinting-based fluorescent chemosensor for histamine usingzinc II-protoporphyrin as a functional monomer[J]. Anal. Chim. Acta,2002,466:31-37.
    [74] Lee S, Ichinose I, Kunitake T. Molecular Imprinting of azobenzene carboxylic acid on a TiO2ultrathinfilm by surface Sol-Gel process[J]. Langmuir,1998,14:2857-2863.
    [75] Spivak D, Shea K J. Molecular Imprinting of Carboxylic Acids Employing Novel FunctionalMacroporous Polymers[J]. J. Org. Chem.,1999,64(13):4627-4634.
    [76] Yoshikawa M, Izumi J, Guiver M D, et al. Recognition and selective transport of nucleic acidcomponents through molecularly imprinted polymeric membranes[J]. Macromol. Mater. Eng.,2001,286(1):52-59.
    [77] Chen Z D, Nagaoka T. Recognition of vitamin K-1with a molecularly imprinted self-assembledmonolayer film[J]. Bunseki Kagaku.,2000,49(7):543-545.
    [78] Mallik S J, Plunkett S D, Dhal P K, et al. Towards materials for the specific recognition and separationof proteins[J]. New. J. Chem.,1994,18:299-304.
    [79] Shi H Q, Ratner B D. Template recognition of protein-imprinted polymer surfaces[J]. J. Biomed.Mater. Res.,2000,49(1):1-11.
    [80] Hjerten S, Liao J L, Nakazato长Wang Y, et al. Gels mimicking antibodies in their selectiverecognition of proteins[J]. Chromatographia,1997,44:227-234.
    [81] Toshifumi T, Takashi M, Jun M, et al. Molecularly imprinted polymers with metallophorphyrin-basedmolecular recognition sites coassembled with methacrylic acid[J]. Anal. Chem.,1998,70:2025-2030.
    [82] Kempe M, Mosbach K. Receptor binding mimetics: a novel molecularly imprinted polymer[J].Tetrahed Lett.,1995,36:3563-3566.
    [83] Kempe M. Antibody-mimicking polymers as chiral stationary phases in HPLC[J]. Anal. Chem.,1996,68(11):1948-1953.
    [84]郭洪声,贾裕梅,曹现峰,等.微球形4-氨基吡啶分子模板聚合物的合成及结合性质研究[J].高等学校化学学报,2001,22(3):371-375.
    [85] Sellergren B, Dawe C, Schneider T. Pressure-induced binding sites in molecularly imprinted networkpolymers. Macromolecules[J],1997,30:2454-2459.
    [86]郭洪声,何锡文,周杰,等.药物氟呱酸分子模板聚合物的分子识别特性[J].分析化学,2001,29(2):128-132.
    [87]郭洪声,贾裕梅,何锡文,等.微球型4-氨基毗淀分子模板聚合物的合成及结合性质研究[J].高等学校化学学报,2001,22(3):371-37s.
    [88]郭洪声,何锡文,景莹,等.4-氨基毗咙分子模板聚合物选择性识别及结合性质的研究[J].高等学校化学学报,2001,22(s):739-743.
    [89] Idriss Bakas, Najwa Ben Oujji, Ewa Moczko, et al. Molecular imprinting solid phase extraction forselective detection of methidathion in olive oil[J]. Analytica Chimica Acta,2012,734:99–105.
    [90] Whitcombe M J, Martin L, Vulfson E N. Predicting the Selectivity of Imprinted Polymers[J].Chromatographia,1998,47(7l8):457-464.
    [91] Sellergren, B. Direct drug determination by selective sample enrichment on an imprinted polymer[J].Anal. Chem.,1994,66:1578-1582.
    [92] Mehran Javanbakht, Somayeh Mohammadi, Behrouz Akbari-Adergani. Synthesis and application ofmolecularly imprinted polymers for solid-phase extraction of dipyridamole from complex biologicalfluids[J]. Journal of Liquid Chromatography&Related Technologies,2012,35(19):2669-2684.
    [93] Hongyuan Yan, Ning Sun, Yehong Han, et al. Ionic liquid-mediated molecularly imprinted solid-phaseextraction coupled with gas chromatography-electron capture detector for rapid screening of dicofol invegetables[J]. Journal of Chromatography A,2013,1307:21-26.
    [94] L. Nú ez, E. Turiel, A. Martin-Esteban, et al. Molecularly imprinted polymer for the extraction ofparabens from environmental solid samples prior to their determination by high performance liquidchromatography–ultraviolet detection[J]. Talanta,2010,80(5):1782-1788.
    [95] Núria Gilart, Rosa Maria Marcé, Núria Fontanals, et al. A rapid determination of acidicpharmaceuticals in environmental waters by molecularly imprinted solid-phase extraction coupled totandem mass spectrometry without chromatography[J]. Talanta,2013,110(15):196-201.
    [96] Bastide J, Cambon J P, Breton F, et al. The use of molecularly imprinted polymers for extraction ofsulfonylurea herbicides[J]. Anal. Chim. Acta,2005,542:97-103.
    [97] Lanza F, Sellergren B. The application of molecular imprinting technology to solid-phase extraction[J].Chromatographia,2001,53:599-611.
    [98] Eliseo Herrero-Hernández, Encarnación Rodríguez-Gonzalo, María S. Andrades, et al. Occurrence ofphenols and phenoxyacid herbicides in environmental waters using an imprinted polymer as aselective sorbent[J]. Science of The Total Environment,2013,454-455:299-306.
    [99] Yan-Ping Duan, Chao-Meng Dai, Ya-Lei Zhang, et al. Selective trace enrichment of acidicpharmaceuticals in real water and sediment samples based on solid-phase extraction usingmulti-templates molecularly imprinted polymers[J]. Analytica Chimica Acta,2013,758:93-100.
    [100] Luke Chimuka, Manuela van Pinxteren, Johan Billing, et al. Selective extraction of triazineherbicides based on a combination of membrane assisted solvent extraction and molecularly imprintedsolid phase extraction[J]. Journal of Chromatography A,2011,1218(5):647-653.
    [101] Masque N, Marce R M, Borrull F. New Polymeric and other of Sorbents for Solid-Phase Extractionof Polar Organic Micropollutants from Environmental[J]. Trends. Anal. Chem.,1998,17:384-394.
    [102]Theodoridis G, Zaeharis C K, Tzanavaras P D, et al. Automated sample preparation based on thesequential injection Principle Solid-phase extraction on a molecularly imprinted polymer coupledon-line to high-performance liquid chromatography[J]. J.Chromatography A,2004,1030:69-76.
    [103] Vicente B S, Villoslada F N, Moreno-Bondi M C. Continuous solid-phase extraction andPreconcentration of bisphenol A in aqueous samples using molecularly imprinted columns[J]. Ailal.Bioanal. Chem.,2004,380:115-122.
    [104] Lai EPC, Feng SY. Molecularly imprinted solid phase extraction for rapid screening of metformin[J].Microchemical Journal,2003,75:159-168.
    [105] Wu SG, Lai EPC, Mayer PM. Molecularly imprinted solid phase extraction-pulsed elution-massspectrometry for determination of cephalexin and-aminocephalosporin antibiotics in human serum[J].J. Pharm. Biomed. Anal.,2004,36:483-490.
    [106] Lai EPC, Wu SG. Molecularly imprinted solid phase extraction for rapid screening of cephalexin inhuman plasma and serum[J]. Anal. Chim. Acta,2003,481:165-174.
    [1] World Health Organization. Public Health Impacts of Pesticides Used in Agriculture[J]. World HealthOrganization,1990:15-30
    [2] Pimentel D. Pesticides and world food supply[J]. The Science of Global Change,1992,483:309-323
    [3] Tomlin C.D.S., British Crop Protection Council. The pesticide manual: a world compendium (14thed.)[M]. British Crop Protection Council.2006.
    [4] Cordova D., Benner E. A., Sacher M. D., et al. Anthranilic diamides: A new class of insecticides with anovel mode of action, ryanodine receptor activation[J]. Pestic. Biochem. Phys.2006,84:196–214.
    [5] Bassi A., Alber R, Wiles J.A., et al. Chlorantraniliprole: a novel anthranilic diamide insecticide[Z].Proceedings of XVI International Plant Protection Congress.2007,1:52–59.
    [6] Lahm G.P., Stevenson T.M., Selby T.P., et al. Rynaxypyr: A new insecticidal anthranilic diamide thatacts as a potent and selective ryanodine receptor activator. Bioorg[J]. Med. Chem. Lett.2007,17:6274–6279.
    [7] Canada's Pest Management Regulatory Agency (PMRA). Evaluation Report: Chlorantraniliprole(ERC2008-03,23May2008)[R].2008.
    [8] Wachendorff U., Nauen R., Schnorbach H. J., et al. The biological profile of spirodiclofen (envidor)–Anew selective tetronic acid acaricide[J]. Pflanzenschutz Nachrichten Bayer (Alemania),2002,55:149–176.
    [9] European Food Safety Authority. Peer review of the pesticide risk assessment of the active substancespirodiclofen[J]. EFSA Scientific Report,2009,339:1–86.
    [10] Xu P. J., Ren Y., Zhou Z.G., L et al. Determination of chlorantraniliprole in vegetables, fruits andgrains by SPE clean-Up and LC-UV[J]. Chromatographia,2010,72:763–766.
    [11] Caboni P., Sarais G., Angionnni A., et al. Liquid chromatography-tandem mass spectrometricion-switching determination of chlorantraniliprole and flubendiamide in fruits and vegetables[J]. J.Agric. Food Chem.,2008,56:7696–7699.
    [12] Qian M. R., Zhang H., Wu L. Q., et al. Determination of flubendiamide and chlorantraniliproleresidues in vegetables using liquid chromatography-tandem mass spectrometry[J]. Chin. J. Anal.Chem.,2010,38:702–706.
    [13] Grant J., Rodgers C.A., Chickering C. D., et al. Determination of chlorantraniliprole residues in cropsby liquid chromatography coupled with atmospheric pressure chemical ionization massspectrometry/mass spectrometry[J]. J. AOAC Int.,2010,93:1293–1301.
    [14] Henion J., Brewer E., Rule, G.. Sample preparation for LC/MS/MS: analyzing biological andenvironmental samples[J]. Anal. Chem.,1998,70:650A–656A
    [15] Matuszewski B. K., Constanzer M. L., Chavez-Eng C. M. Matrix effects in quantitative LC/MS/MSanalyses of biological fluids: a method for determination of finasteride in human plasma at picogramper millilitre concentrations[J]. Anal. Chem.,1998,70:882–889.
    [16] Enke C.G. A predictive model for matrix and analyte effects in electrospray ionization ofsingly-charged ionic analytes[J]. Anal. Chem.,1997,69:4885–4893.
    [17] Kebarle P., Tang L. From ions in solution to ions in the gas phase–the mechanism of electrospray massspectrometry[J]. Anal. Chem.,1993,65:972A–986A.
    [18] Liu J. N., Han Z. H., Wu G. Q., et al. Gas chromatographic determination of spirodiclofen residues inorange and soil[J]. J. Agro-Environ Sci.,2007,26:647–650.
    [19] Bai Y., Xu P. J., Gao X. S., et al. Determination of residual spirodiclofen in apple and soil[J]. J. Anal.Sci.,2009,25:229–231.
    [20] Xu P. J., Gao X. S., Tao B., et al. Determianion of spirodiclofen residue in nine fruits by gaschromatography-quadrupole mass spectrometry with dispersive solid phase extraction[J]. Chin. J.Anal. Chem.,2008,36:1515–1520.
    [21] Hiemstra M., de Kok A. Comprehensive multi-residue method for the target analysis of pesticides incrops using liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. A,2007,1154:3–25.
    [1] Wang H., Dong Y.H., An Q. Research advance in biotoxicology and environmental behavior ofcyromazine[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24:246–249.
    [2] Cook A.M., Hutter R.S. s-Triazines as nitrogen sources for bacteria[J]. Journal of Agricultural and FoodChemistry,1981,29:1135–1143.
    [3] Keiding J. Review of the global status and recent development of insecticide resistance in fieldpopulations of the housefly[J]. Bulletin of Entomological Research,1999,89:7–67.
    [4] Lim L.O., Scherer S.J., Shuler K.D., et al. Disposition of cyromazine in plants under environmentalconditions[J]. Journal of Agricultural and Food Chemistry,1990,38:860–864.
    [5] Ingelfinger J.R. Melamine and the global implications of food contamination[J]. New England Journalof Medicine,2008,359:2745–2748.
    [6] Brown C.A., Jeong K.S., Poppenga R.H., et al. Outbreaks of renal failure associated with melamine andcyanuric acid in dogs and cats in2004and2007[J]. Journal of Veterinary Diagnostic Investigation,2007,19:525–531.
    [7] GB2763—2012, Chinese National food safety standard: Maximum residue limits for pesticides infood[S].2012.
    [8] Media centre of World Health Organization, News release: International experts limit melamine levelsin food[N].http://www.who.int/mediacentre/news/releases/2010/melamine–food–20100706/en/index.html.
    [9] Ministry of Health, the People’s Republic of China. Information Bulletin:Further regulate themanagement to health food materials[R]. No.200251.2002.
    [10] Sun H.W., Wang L.X., Ge X.S. Research advancement of analytical methodology for melamine andrelated analogues in environment and foods[J]. Chemical Journal on Internet,2009,11(8):37.Available at http://www.chemistrymag.org/cji/2009/118037re.htm.
    [11] Yokley R.A., Mayer L.C., Rezaaiyan R., et al. Analytical method for the determination of cyromazineand melamine residues in soil using LC-UV and GC-MSD[J]. Journal of Agricultural and FoodChemistry,2000,48:33523358.
    [12] Zhu X.L., Wang S.H., Liu Q., et al. Determination of residues of cyromazine and its metabolite,melamine, in animal-derived food by gas chromatography–mass spectrometry with derivatization[J].Journal of Agricultural and Food Chemistry,2009,57:11075–11080.
    [13] Squadrone S., Ferro G.L., Marchis D., et al. Determination of melamine in feed: Validation of a gaschromatography–mass spectrometry method according to2004/882/CE regulation[J]. Food Control,2010,21:714–718.
    [14] Shang B.R., Chen Y.Q., Wang Z.Y., et al. Development and validation of a gas chromatography–massspectrometry method for the simultaneous determination of melamine and cyromazine in animalfeeds[J]. Journal of Animal Veterinaryt Advances,2011,10:73–80.
    [15] Wei R.C., Wang R., Zeng Q.F., et al. High-performance liquid chromatographic method for thedetermination of cyromazine and melamine residues in milk and pork[J]. Journal of ChromatographicScience,2009,47:581–584.
    [16] Hwang D.F., Chou S.S., Lee H.F. High performance liquid chromatographic determination ofcyromazine and its derivative melamine in poultry meats and eggs[J]. Journal of Food and DrugAnalysis,2003,11:290–295.
    [17] Sun H.W., Wang L.X., Liu N., Qiao F.X., et al. SPE then RP-LC for simultaneous analysis ofcyromazine and its metabolite melamine in liquid milk and egg[J]. Chromatographia,2009,70:1685–1689.
    [18] Wang S.S., Li D.M., Hua Z.D., et al. Molecularly imprinted monolith coupled on-line with highperformance liquid chromatography for simultaneous quantitative determination of cyromazine andmelamine[J]. Analyst,2011,136:3672–3679.
    [19] Yu H., Tao Y.F., Chen D.M., et al. Development of a high performance liquid chromatographymethod and a liquid chromatography–tandem mass spectrometry method with pressurized liquidextraction for simultaneous quantification and confirmation of cyromazine, melamine and itsmetabolites in foods of animal origin[J]. Analytica Chimica Acta,2010,682:48–58.
    [20] Sancho J.V., Ibá ez M., Grimalt S., et al. Residue determination of cyromazine and its metabolitemelamine in chard samples by ion-pair liquid chromatography coupled to electrospray tandem massspectrometry[J]. Analytica Chimica Acta,2005,530:237–243.
    [21] Wang X.H., Fang Q.X., Liu S.P., et al. The application of pseudo template molecularly imprintedpolymer to the solid-phase extraction of cyromazine and its metabolic melamine from egg and milk[J].Journal of Separation Scinces,2012,35:1432–1438.
    [22] Sun H.W., Ge X.S., Lv Y.K., et al. Application of accelerated solvent extraction in the analysis oforganic contaminants, bioactive and nutritional compounds in food and feed[J]. Journal ofChromatography A,2012,1237:1–23.
    [23] The National Standards of the People′s Republic of China, Determination of melamine in raw milk anddairy products[S]. GB/T22388–2008.2008.
    [24] Liu J.X., Zhong Y.B., Liu J., et al. An enzyme linked immunosorbent assay for the determination ofcyromazine and melamine residues in animal muscle tissues[J]. Food Control,2010,21:1482–1487.
    [1]王俊敏,葛旭升,刘卉敏,等.Cl原子与HNCO反应机理的量子化学分析[J].河北大学学报(自然科学版),2006,26(5):501-505.
    [2]杨光富,刘华银,杨秀凤,等.以ALS为靶标的新除草剂的分子设计合成及生物活性,磺酰脲类和三唑并嘧啶-2-磺酰胺类ALS抑制剂的比较分子力场分析[J].中国科学(B辑),2000,30(2):160-166.
    [3]杨蕾,王鹏.新型氯喹酸酯类除草剂的定量构效关系分析[J].清华大学自然科学(自然科学版),2004,44(3):323-325.
    [4]苏华庆,王瑾玲,李爱秀,等.嘧啶(氧)苯甲酸类除草剂的3D_QSAR研究[J].化学研究与应用,1999,11(6):626-629.
    [5]汤立红.昆明理工大学硕士学位论文[D]2004.
    [6]赖家平,何锡文,郭洪声,等.分子印迹技术的回顾、现状与展望[J].分析化学,2001,7:94-102.
    [7] Ramstrom O., Skudar K., Haines J., et al. Food Analyses Using Molecularly Imprinted Polymers[J]. J.Agric. Food Chem.,2001,49(5):2105–2114.
    [8] Haupt K. Imprinted polymers-Tailor-made mimics of antibodies and receptors[J]. Chem. Commun.,2003,2:171-178.
    [9] Yu Hoshino, Hiroyuki Koide, Takeo Urakami, et al. Recognition, Neutralization, and Clearance ofTarget Peptides in the Bloodstream of Living Mice by Molecularly Imprinted Polymer Nanoparticles:A Plastic Antibody[J]. J. Am. Chem. Soc.,2010,132(19):6644–6645.
    [10] Wulff G., Knorr K.. Stoichiometric noncovalent interaction in molecular imprinting[J]. Bioseparation,2001,10(6):257-276.
    [11] Sun Hanwen, Qiao Feng-xia. Recognition mechanism of water-compatible molecularly imprintedsolid-phase extraction and determination of nine quinolones in urine by high performance liquidchromatography[J]. J. Chrom. A.,2008,1212(1-2):1-9.
    [12] Melnick R. L., Boorman G. A., Haseman J. K., et al. Urolithiasis and bladder carcinogenicity ofmelamine in rodents[J]. Toxicol. Appl. Pharmacol.,1984,72:292–303.
    [13]贾红梅,张春艳,孟昭兴等. benztropine类三聚氰胺转运蛋白配体的QSAR研究[J].北京师范大学学报(自然科学版).2001,37(1):76-77.
    [14] Limin He, Yijuan Su, Yaqiu Zheng, et al. Novel cyromazine imprinted polymer applied to thesolid-phase extraction of melamine from feed and milk samples[J]. Journal of Chromatography A,2009,1216:6196–6203.
    [15] Huang Hao Yang, Wen Hui Zhou, Xiu Chun Guo, et al. Molecularly imprinted polymer as SPEsorbent for selective extraction of melamine in dairy products[J]. Talanta,2009,80:821–825.
    [16] Mu Li, Liying Zhang, Zihui Meng, et al. Molecularly-imprinted microspheres for selective extractionand determination of melamine in milk and feed using gas chromatography–mass spectrometry[J].Journal of Chromatography B,2010,878:2333–2338.
    [17] Hongyuan Yan, Xiaoling Cheng, Ning Sun, et al. Rapid and selective screening of melamine in bovinemilk using molecularly imprinted matrix solid-phase dispersion coupled with liquidchromatography-ultraviolet detection[J]. Journal of Chromatography B,2012,908:137-142.
    [18] Akila Khlifi, Sarra Gam-Derouich, Mohamed Jouini, et al. Melamine-imprinted polymer graftsthrough surface photopolymerization initiated by aryl layers from diazonium salts[J]. Food Control,2013,31:379-386.
    [19] Dong He, Xiaopan Zhang, Bo Gao, et al. Preparation of magnetic molecularly imprinted polymer forthe extraction of melamine from milk followed by liquid chromatography-tandem massspectrometry[J]. Food Control,2014,36:36-41.
    [1] Alasdair M. Cook, Ralf Hutter. s-Triazines as nitrogen sources for bacteria[J]. Journal of Agriculturaland Food Chemistry,1981,29:1135-1143.
    [2] Kathrin Jutzi, Alasdair M. Cook and Ralf Hutter. The degradative pathway of the s-triazine melamine.The steps to ring cleavage[J]. Biochemical Journal,1982,208:679-684.
    [3] Daniel R. Shelton, Jeffrey S. Karns, Greg W. M ccarty, et al. Metabolism of Melamine by Klebsiellaterragena[J]. Applied and Environmental Microbiology,1997,63(7):2832-2835.
    [4] Xiaojiao Zheng, Aihua Zhao, Guoxiang Xie, et al. Melamine-Induced Renal Toxicity Is Mediated bythe Gut Microbiota[J]. Science Translational Medicine,2013,5(172):172ra22.
    [5] Limin He, Yijuan Su, Yaqiu Zheng, et al. Novel cyromazine imprinted polymer applied to thesolid-phase extraction of melamine from feed and milk samples[J]. Journal of Chromatography A,2009,1216:6196–6203.
    [6] Hanwen Sun, Lixin Wang, Lianfeng Ai, et al. A sensitive and validated method for determination ofmelamine residue in liquid milk by reversed phase high-performance liquid chromatography withsolid-phase extraction[J]. Food Control,2010,21:686–691.
    [7] Xiao-Dong Pan, Ping-gu Wu, Da-Jin Yang, Li-Yuan Wang et al. Simultaneous determination ofmelamine and cyanuric acid in dairy products by mixed-mode solid phase extraction and GC–MS[J].Food Control,2013,30(2):545–548.
    [8] Xiao-min Xu, Yi-ping Ren, Yun Zhu, et al. Direct determination of melamine in dairy products by gaschromatography/mass spectrometry with coupled column separation[J]. Analytica Chimica Acta,2009,650:39–43.
    [9] Hanwen Sun, Na Liu, LixinWang, et al. Determination of Melamine Residue in Liquid Milk byCapillary Electrophoresis with Solid-Phase Extraction[J]. Journal of Chromatographic Science,2010,48:848-853.
    [10] I-Lin Tsai, Shao-Wen Sun, Hsiao-Wei Liao, et al. Rapid analysis of melamine in infant formula bysweeping-micellar electrokinetic chromatography[J]. Journal of Chromatography A,2009,1216(47):8296–8303.
    [11] Huanan Guan, Jia Yu, Defu Chi. Label-free colorimetric sensing of melamine based onchitosan-stabilized gold nanoparticles probes[J]. Food Control,2013,32(1):35–41.
    [12] Wei Chen, Hao-Hua Deng, Lei Hong, et al. Bare gold nanoparticles as facile and sensitive colorimetricprobe for melamine detection[J]. Analyst,2012,22(137):5382-5386.
    [13] Laura C. Mecker, Katherine M. Tyner, John F. Kauffman, et al. Selective melamine detection inmultiple sample matrices with a portable Raman instrument using surface enhanced Ramanspectroscopy-active gold nanoparticles[J]. Analytica Chimica Acta,2012,733:48–55.
    [14] Wei W. Yu, Ian M. White. A simple filter-based approach to surface enhanced Raman spectroscopyfor trace chemical detection[J]. Analyst,2012,137:1168-1173.
    [15] Biyun Cao,Hong Yang,Juan Song,et al. Sensitivity and specificity enhanced enzyme-linkedimmunosorbent assay by rational hapten modification and heterogeneous antibody/coating antigencombinations for the detection of melamine in milk, milk powder and feed samples[J]. Talanta,2013,116:173–180.
    [16] Fengxia Sun, Liqiang Liu, Hua Kuang, et al. Development of ELISA for melamine detection in milkpowder[J]. Food and Agricultural Immunology,2013,24(1):79-86.
    [17] Minwei Zhang, Xianyi Cao, Hongkun Li, et al. Sensitive fluorescent detection of melamine in rawmilk based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots[J].Food Chemistry,2012,135(3):1894–1900.
    [18] Shuang Han, Shuyun Zhu, Zhongyuan Liu, et al. Oligonucleotide-stabilized fluorescent silvernanoclusters for turn-on detection of melamine[J]. Biosensors and Bioelectronics,2012,36(1):267-270.
    [19] Hanwen Sun, Fengxia Qiao. Recognition mechanism of water-compatible molecularly imprintedsolid-phase extraction and determination of nine quinolones in urine by high performance liquidchromatography[J]. Journal of Chromatography A,2008,1212:1–9.
    [20] FDA,2009b. Melamine Pet Food Recall in2007[EB]. Available fromhttp://www.fda.gov/animalveterinary/safetyhealth/recallswithdrawals/ucm129575.htm [accessed onMay21,2011].
    [21] Look Back '08:10Big Events in CHINA (II),2008[N]. China Daily. Available from http://www.chinadaily.com.cn/china/2008-12/31/content_7357389.htm [a ccessed on Apr.6,2009].
    [22] Hanwen Sun, Lixin Wang, Lianfeng Ai, et al. A sensitive and validated method for determination ofmelamine residue in liquid milk by reversed phase high-performance liquid chromatography withsolid-phase extraction[J]. Food Control,2010,21:686–691.
    [23] S.A. Tittlemier. Methods for the analysis of melamine and related compounds in foods: a review[J].Food Additives&Contaminants: Part A,2010,27(2):129-145.
    [24] Fengxia Sun, Wei Ma, Liguang Xu, et al. Analytical methods and recent developments in the detectionof melamine[J]. TrAC Trends in Analytical Chemistry,2010,29(11):1239-1249(BioCop–Monitoring chemical contaminants in foods)].
    [25] WHO (World Health Organization),2009b. Toxicological and health aspects of melamine andcyanuric acid[EB]. Available from http://www.who.int/topics/melamine/en [accessed on May12,2011].
    [26] Wang H., Dong Y.H., An Q. Research advance in biotoxicology and environmental behavior ofcyromazine[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24:246–249.
    [27] Cook A.M., Hutter R.S. s-Triazines as nitrogen sources for bacteria[J]. Journal of Agricultural andFood Chemistry,1981;29:1135–1143.
    [28] Keiding J. Review of the global status and recent development of insecticide resistance in fieldpopulations of the housefly[J]. Bulletin of Entomological Research,1999;89:7–67.
    [29] Lim L.O., Scherer S.J., Shuler K.D., et al. Disposition of cyromazine in plants under environmentalconditions[J]. Journal of Agricultural and Food Chemistry,1990;38:860–864.
    [30] Thomas Güthner, Bernd Mertschenk. Cyanamides[J]. Ullmann's Encyclopedia of Industrial Chemistry,Published Online:15JUL2006, DOI:10.1002/14356007.a08_139.pub2.
    [31] Hong J. Di, Keith C. Cameron, Rob R. Sherlock, et al. Nitrous oxide emissions from grazed grasslandas affected by a nitrification inhibitor, dicyandiamide, and relationships with ammonia-oxidizingbacteria and archaea[J]. Journal of Soils and Sediments,2010,10(5):943-954.
    [32] Min Cui, Xuecheng Sun, Chengxiao Hu, et al. Effective mitigation of nitrate leaching and nitrousoxide emissions in intensive vegetable production systems using a nitrification inhibitor,dicyandiamide[J]. Journal of Soils and Sediments,2011,11(5):722-730.
    [33] C.A.M. de Klein, K.C. Cameron, H.J. Di, et al. Repeated annual use of the nitrification inhibitordicyandiamide (DCD) does not alter its effectiveness in reducing N2O emissions from cow urine[J].Animal Feed Science and Technology,2011,166-167:480-491(Special Issue: Greenhouse Gases inAnimal Agriculture-Finding a Balance between Food and Emissions).
    [34] Sun H.W., Ge X.S., Lv Y.K., et al. Application of accelerated solvent extraction in the analysis oforganic contaminants, bioactive and nutritional compounds in food and feed[J]. Journal ofChromatography A2012;1237:1–23.
    [35] Yu H., Tao Y.F., Chen D.M., et al. Development of a high performance liquid chromatographymethod and a liquid chromatography–tandem mass spectrometry method with pressurized liquidextraction for simultaneous quantification and confirmation of cyromazine, melamine and itsmetabolites in foods of animal origin[J]. Analytica Chimica Acta2010;682:48–58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700