用户名: 密码: 验证码:
汶川地震后川西地区温泉水地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
于2008年6月、2008年10月、2009年6月和2010年4月在川西地区的32个温泉点采集了4次水样。测量了120个温泉水样的水化学组分(K+、Na+、 Ca2+、Mg2+、Cl-、SO42-、HCO3和C032-)的含量和氢氧同位素的组成(δD和δ18O)。测量结果表明120个温泉水样的水温和总溶解固体(TDS)分别为8.8℃~83.0℃和151.69mg/1~2159.43mg/1.根据C.A.舒卡列夫的分类方法,将温泉水划分为9种化学类型:Na(Ca)-HCO3(SO4), Na(Mg)-HCO3(SO4) Ca(Na)-HCO3(SO4), Mg(Ca)-SO4, Ca(Mg)-SO4, Ca(Mg)-HCO3, Mg(Ca)-HCO3, Na-Cl (HCO3)和Ca(Na)-SO4(HCO3)。温泉水样的δD、δ18O值均沿当地大气降水线分布,表明该区的温泉水主要接受大气降水的补给。受控于温泉水深循环过程中的水岩反应及深部来源水体的混入,川西地区温泉水样的地球化学特征及热储温度存在明显的空间分布特征。鲜水河断裂带的10-25号温泉水的δD、δ18O值低于其他断裂带温泉的δD、δ18O值,但是其温泉水温、TDS及C1-均较高,这表明该断裂带的温泉水受到深部高温凝结蒸汽的影响。汶川地震前,康定地区的灌顶温泉、龙头沟温泉及二道桥温泉水样的K+浓度升高,增幅为19.3%~54.4%;灌顶温泉和二道桥温泉水样的S042-浓度分别上升了32.0%和59.6%,地震后均降至上升前水平。这可能是震前区域构造挤压应力增强,高K+及SO42-浓度的深部地下水供给量的增加所致。汶川地震后,龙门山断裂带温泉水的化学组分的变化较为明显,其2008年10月采集水样的水化学组分的下降幅度为23%~95%,氢氧同位素组成也回归至大气降水线附近。其他断裂带的温泉水样的水化学组分的变化幅度大多在10%以内,δD、δ18O值的也无明显变化。该断裂带温泉距震中的距离较近,为50-110km。另外,该断裂带为余震的集中发生区。该区温泉水样的水化学组分及氢氧同位素组成的显著变化可能是该区的地壳应力调整造成的。此外,80%以上的余震发生在第一批水样采集的前后两个月(2008年8月21~2009年1月1),因此,2008年10月在龙门山断裂带采集水样的水化学组分的大幅下降,氢氧同位素的与大气降水线同位素趋于一致,可能是地壳应力调整过程中,随余震的衰减,深部流体补给量的减少所致。另外,鲜水河断裂带的八美温泉水样的Na+、HCO3-浓度和TDS在2010年4月17日明显上升,幅度分别为53%、38%和38%,可能与2010年4月28日在距离其15km处发生的5.4级地震有关。
Hydrogeochemistry of120water samples from32hot springs in the western Sichuan Province after the Wenchuan Ms8.0earthquake was investigated by analyzing the concentrations of cation(K+, Na+, Ca2+and Mg2+), anion(Cl-, SO42-, HCO3-and CO32-) and the isotopic compositions of hydrogen and oxygen (δD and δ18O). The water samples of the hot springs were collected four times in June2008, October2008, June2009and April2010. Hydrogeochemical data indicated the spring waters can be classified into9chemical types:Na(Ca)-HCO3(SO4), Na(Mg)-HCO3(SO4), Ca(Na)-HCO3(SO4), Mg(Ca)-SO4, Ca(Mg)-SO4, Ca(Mg)-HCO3, Mg (Ca)-HCO3, Na-Cl (HCO3) and Ca(Na)-SO4(HCO3). The values of δD and δ18O of the120water samples were plotted along the local meteoric water line with different extent shifts in the diagram of δD vs δ18O, which indicated that the spring waters were mainly originated from meteoric water and with different extent alteration. Attributed to water-rock interaction and mixture of deep fluids, the geochemical characteristics and the temperatures of the geothermal reservoir showed spatial differences. The values of δD and δ18O for the water samples of the springs nos.10-25from the higher mountain area were more negative, but the temperatures, TDS and Cl-of the springs were higher, which may result from the contribution of condensated water of deep vapor. Concentrations of K+and SO42-of the water samples of the Guanding Spring, Longtougou Spring and Erdaoqiao Spring in the Kangding district exhibited evident increases before the mainshock, with the amplitude ranging from19.3%to59.6%, indicating more supplement of deep fluids enriched in K+and SO42-under the increase of tectonic stress during the before the Wenchuan earthquake. Most of the aftershocks occurred in the Longmenshan fault zone, and more than80%occurred two months before and after the first sampling. The chemical and isotopic variations of the water samples nos.1-5from the Longmenshan fault zone closer to the epicenter area more obviously decreased after the mainshock, with the chemical parameters of the water samples collected in October2008by some23%to95%, and the δD-δ18O plots approached the local meteoric water line after sizeable shift in June2008, indicating less supplement of deep fluids under the stress adjustment. For the water samples from other fault zones, the amplitudes of the chemical variations were less than10%, and no marked changes for the δD and δ18O were observed. Na+, HCO3-and TDS of the water sample from Bamei Spring in the Xianshuihe fault zone increased obviously, with the amplitudes of53%,38%and38%respectively on17April,2010, which may be related to the Ms5.4event of28April,2010with an epicenter distance of15km.
引文
[1]Bahati G, Pang Z, Armannsson A, et al. Hydrology and reservoir characterises of three geothermal systems in western Uganda[J]. Geothermics,2005,34:568-591.
    [2]Bolognesi L. Earthquake-induced variations in the composition of the water in the geothermal reservoir at Vulcano Island, Italy [J]. Journal of Volcanology and Geothermal Research,2000, 99:139-150.
    [3]Chamberlain C, Poage M. Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals [J]. Geology,2000:28(2):115-118.
    [4]Claesson L, Skelton A, Graham C, et al. Hydrogeochemical changes before and after major Earthquake [J]. Geol. Soc. Am.,2004,328,641-644.
    [5]Dadomo A, Lemmi M, Martinelli G, et al. Springwater continuous monitoring in the L'Aquila area in concomitance with the April 2009 seismic swarm in central Italy: constraining factors to possible deep-seated fluid emissions [J]. Chemical Geology,2013, 339:169-176.
    [6]Dajun Qin, Jeffrey V, Turner, et al. Hydrogeochemistry and groundwater circulation in the Xi'an geothermal field, China [J]. Geothermics,2005,34(4):471-494.
    [7]Dobrovolsky P, Gershenzon I, Gokhberg B. Theory of electrokinetic effects occurring at the final stage in the preparation of a tectonic earthquake [J]. Phys. Earth Planet. Int.,1989,57, 144-156. Doi:10.1186/1467-4866-11-5.
    [8]Du J., Liu C., Fu B., Zhang Y., Wang C., Wang H., and Sun Z., Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, Southwest China. J. Volcano. Geotherm. Res.,2005,142(3-4):243-261.
    [9]Favara R, Grassa F, Inguaggiato S, et al. Hydrogeochemistry and stable isotopes of thermal springs:earthquake-related chemical changes along Belice Fault (Western Sicily) [J]. Appl. Geochem.,2001,16:1-17.
    [10]Favara R, Italiano F, Martinelli G. Earthquake-induced chemical changes in the thermal waters of the Umbria region during the 1997-1998 seismic swarm[J]. Terra Nova,2001, 13(3):227-233.
    [11]Floyd M, Czerewko M, Cripps J, et al. Pyrite oxidation in Lower Lias Clay at concrete highway structures affected by thaumasite, Gloucestershire, UK [J]. Cement and Concrete Composites,2003,25(8):1015-1024.
    [12]Geller R, Jackson D, Kagan Y, et al. Earthquakes cannot be predicted [J]. Science,1996, 275(5306):1616.
    [13]Geochemistry, Geophysics, Geosystems,2007,8 (2):1-19.
    [14]Giggenbach W. Geothermal solute equilibria:derivation of Na-K-Ma-Ca geoindicators [J]. Geochimica et Cosmochimica Acta,1988,52:2749-2765.
    [15]Hartmann J, Levy J. Hydrogeological and gasgeochemical earthquake precursors-A review for application [J]. Nat. Hazards,2005,34,279-304.
    [16]Hitchon B, Friedman I. Geochemistry and origin of formation waters in the Western Canada Sedimentary Basin-I.Stable isotopes of hydrogen and oxygen [J]. Geochimica et Cosmochimica Acta,1969,33,1321-1349.
    [17]Huang H, Lin C, Yeh Y, et al. Attenuation relations of Arias intensity based on the Chi-Chi Taiwan earthquake data [J]. Soil Dynamics and Earthquake Engineering,2004,24/7:509-517. Doi:10.1016/j.soildyn.2004.04.001:
    [18]Inan S, Balderer W, Leuenberger-West F, et al. Springwater chemical anomalies prior to the Mw=7.2Van earthquake(Turkey) [J]. Geochemical Journal,2012,46(1):11-16.
    [19]Italiano F, Bonfanti P, Pizzino L, et al. Geochemistry of fluids discharged over the seismic area of the Southern Apennines (Calabria region, Southern Italy):Implications for Fluid-Fault relationships [J]. Applied Geochemistry,2010,25(4):540-554.
    [20]Kennedy, B.M., Kharaka, Y.K., Evans, W.C., et al.1997. Mantle fluids in the San Andreas fault system, California [J]. Science,278:1278-1281.
    [21]King C, Basler D, Presser T, et al. In search of earthquake-related hydrologic and chemical changes [J]. Appl. Geochem,1994,9:83-91.
    [22]King C, Koizumi N, Kitagawa Y. Hydrogeochemical anomalies and the 1995 Kobe earthquake [J]. Science,1995,269(5220):38-39.
    [23]Kingsley S, Biagi P, Piccolo R, et al. Hydrogeochemical precursors of strong earthquakes:a realistic possibility in Kamchatka [J]. Phys. Chem. Earth,2001,26:769-774.
    [24]Leonardi V, Kharatian K, Igumnov V, et al. Changes in water level, chemistry and helium emission induced by seismicity in confined aquifers in Armenia [J]. Earth Planet. Sci.,1999, 328:51-58.
    [25]Li X, Masuda H, Ono M, et al. Contribution of atmospheric pollutants into groundwater in the northern Sichuan Basin, China [J]. Geochemical Journal,2006,40(1):103-119.
    [26]Li Y, Tian L, Zhou Z, et al. Advanced materials research [J].2012:140-143.
    [27]Lillemor C, Alasdair S, Colin G, et al. Hydrogeochemical changes before and after a major earthquake [J]. Geology,2004,32(8):641-644.
    [28]Lu K, Hou M, Ze H, et al. To understand earthquake from the granular physics point of view-causes of earthquakes, earthquake precursors and prediction [J]. Acta Phys. Sin.,2012, 61(11):119103.
    [29]Malakootian M, Nouri J. Chemical variations of ground water affected by the earthquake in bam region[J]. International Journal of Environmental Research,2010,4(3):443-454.
    [30]Matter J, Takahashi T, Goldberg D. Experimental evaluation of in situ CO2-water-rock reactions during CO2 injection in basaltic rocks:Implications for geological CO2 sequestration [J].
    [31]Miller M, Allam A, Becker T. Constraints on the geodynamic evolution of the westernmost Mediterranean and northwestern Africa from shear wave splitting analysis [J]. Earth and Planetary Science Letters,2013,375,234-243.
    [32]Nemesio M, Sergio G, Chi Y, et al. Terrestrial fluids, earthquakes and volcanoes [J]. Hiroshi Wakita v.3-Pageoph Topical Volumes (Paperback),2008:10-50.
    [33]Nishizawa S, Igarashi G, et al. Cl-and SO42- anomalies in hot spring water associated with the 1995 earthquake swarm off the east coast of the Izu Peninsula, central Japan [J]. Applied Geochim,1998, Radon,13:89-94.
    [34]Okada H, Yasuda Y, Yagi M, et al. Geology and fluid chemistry of the Fushime geothermal field, Kyushu, Japan [J]. Geothermics,2000,29,279-311.
    [35]Pang Z, Shivanna K, Abidin Z, et al. Isotope composition of geothermal waters in East Asia and the Pacific region:hydrological and geothermal energy implications [J]. Proceedings of the Asian Geothermal Symposium,2006:17-22.
    [36]Pece R, Tranfaglia G. Hydrological and geochemical changes related to earthquakes-examples: three great earthquakes of the XX century in the Southern Apennines (Italy). Earthquake research and analysis-seismology[J]. Seismotectonic and Earthquake Geology,2012. DOI: 10.5772/28594.
    [37]Poitrasson F, Dundas S, Toutain J, et al. Earthquake-related elemental and isotopic lead anomaly in a spring water [J]. Earth and Planetary Science Letters,1999,169:269-276.
    [38]Quattrocchi F, Favara R, Capasso G, et al. Thermal anomalies and fluid geochemistry framework in occurrence of the 2000-2001 Nizza Monferrate seismic sequence (northern Italy): episodic changes in the fault zone heat flow or chemical mixing phenomena [J]. Natural Hazards and Earth System Sciences,2003,3(3-4):269-277.
    [39]Reddy D, Nagabhushanam P, Sukhija B. Earthquake (M 5.1) induced hydrogeochemical and 18O changes:validation of aquifer breaching-mixing model in Koyna, India [J]. Geophysical Journal International,2011,184(1):359-370.
    [40]Rikitake T. Recurrence of great earthquakes at subduction zones [J]. Tectonophysics,1976,35, 335-362.
    [41]Rikitake T. Earthquake precursors in Japan:precursor time and detectability [J]. Tectonophysics,1987,136,265-282.
    [42]Roeloff. Hydrological precursors to earthquakes [J]. PAG-EOPH,1988,126:177-209.
    [43]Rogi A. Precursors and fluids in the case of the 1996 ML=5.2 Saint-Paul-de-Fenouillet earthquake (Pyrenees, France):A complete pre-, co-and post-seismic scenario[J]. Tectonophysics,2010,480(1-4):109-118.
    [44]Song S, Chen Y, Liu C, et al. Hydrochemical changes in spring waters in Taiwan:implications for evaluating sites for earthquake precursory monitoring [J]. Terres trial, at mospheric and Oceanic Sciences,2005, (16)4:745-762.
    [45]Song S, KuW, Chen Y, et al. Hydrogeochemical anomaly in springs of Chaiyi Area, Southern Taiwan and possible relation to earthquakes [J]. Pure and Applied Geophysics,2006,163: 675-691.
    [46]Sultankhodzhayev A, Latipov S, Zakirov T, et al. Dependence of hydrogeoseismological anomalies on the energy and epicentral distance of earthquakes[J]. Dokl. AN Uzb. SSR,1980, 5:57-59.
    [47]Taran Y, Ramirez-Guzman A, Bernard R, et al. Seismic-related variations in the chemical and isotopic composition of thermal springs near Acapulco, Guerrero, Mexico[J]. Geophysical Research Letters,2005,32. Doi:10.1029/2005GL022726. Issn: 0094-8276.
    [48]Thomas D. Geochemical precursors to seismic activity [J]. Pure and Applied Geophysics,1988, 126(2-4):241-266.
    [49]Toutain J, Munoz F, Poitrasson F, et al. Springwater chloride ion anomaly prior to a ML=5.2 Pyrenean earthquake [J]. EPLS,1997,149:113-119.
    [50]Urchfiel B C, Chen Z, Liu Y, et al. Tectonics of the Longmen Shan and adjacent regions central China [J]. International Geology Review,1995,37 (8):661-735.
    [51]Vallianatos F, Triantis D, Tzanis A, et al. Electric earthquake precursors:from laboratory results to field observations [J]. Phys. Chem. Earth.,2004,29,339-351.
    [52]Wang C, Manga M, Wang C, et al. Transient change in groundwater temperature after earthquakes [J]. Geology,2012,40(2):119-122.
    [53]White. Thermal waters of volcanic origin [J]. Bull. Geol. Soc. Amer,1957,68:1637-1658.
    [54]Woith H, Wang R, Maiwald U, et al. On the origin of geochemical anomalies in groundwaters induced by the Adana 1998 earthquake [J]. Chemical Geology,2013.339:177-186.
    [55]Jianguo Du, Amida K, Ohsawa S, et al. Experimental evidence on imminent and short-term hydrochemical precursors for earthquake[J]. App. Geochem,2010.25:586-592.
    [56]Du J, Liu C, Fu B, et al.2005. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, southwestern China [J]. Journal of Volcanology and Geothermal Research,142:243-261.
    [57]Du J, Si X, Chen Y, et al. Geochemical anomalies connected with great earthquakes in China. In:O.Stefansson (Ed)[J]. Geochemistry Research Advances, New York:Nova Science Publishers,2008:57-92.
    [58]Yamada A, Takeuchi K, Tanabayashi K, et al. Sequence variation of the Gene among mumps virus strains [J]. Virology,1989,172:374-376.
    [59]Yan L, Hai L, Zou Z, et al. The potential effect of CO2-water-rock reaction on the caprock formation (mudstone) case study [J]. Advanced Materials Research,2012,140(518-523): 140-143.
    [60]Yang T, Fu C, Walia V, et al. Seismo-geochemical variations in SW Taiwan:multiparameter automatic gas monitoring results [J]. Pure Appl. Geophys.,2006,163(4),693-709.
    [61]Zhi C, Jianguo D, Xiaocheng Z, et al. Hydrogeochemistry of the hot springs in western Sichuan province related to the Wenchuan MS 8.0 earthquake[J]. The Scientific Word Journal, 2014. http://dx.doi.org/10.1155/2014/901432.
    [62]Zhou X C, Du J G, Chen Z, et al. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China [J]. Geochemical Transactions,2010, 11 (5). Doi:10.1186/1467-4866-11-5.
    [63]Rybach L, Muffler L(北京大学地质学系地热研究室译)地热系统-原理和典型地热系统分析[J].北京:地质出版社,1986,79-104.
    [64]杜建国,康春丽.地震地下流体发展概述[J].地震,2000,20(增刊):107-114.
    [65]陈华静.深部特征组分锂、锶与地震活动关系的研究[J].地震,1996,16(3):291-295.
    [66]陈辉.氢在地球演化中的同位素分馏[J].地质科学,1996,31(3):238-249.
    [67]陈建民.大同-阳高Ms 6.1地震水文地球化学前兆特征的初步分析[J].地震,1990,4:58-64.
    [68]陈颙,黄廷芳.岩石物理学[M].北京:北京大学出版社,2001.
    [69]陈俊,王鹤年.地球化学[M].北京:科学出版社,2007.
    [70]陈志,杜建国,周晓成,崔月菊,刘雷,李营.2012年6月30日新源MS 6.6地震前后北天山泥火山及温泉的水化学变化[J].地震,2014.
    [71]程建武,郭桂红,岳志军.安宁河断裂带晚第四纪活动的基本特征及强震危险性分析[J].地震研究,2010,33(3):265-272.
    [72]程建武.川西安宁河断裂带晚第四纪地层地貌序列和构造活动性研究[J].国际地震动态,2011,8:42-45.
    [73]邓起东,陈社发,赵小麟.龙门山及其邻区的构造和地震活动及动力学[J].地震地质,1994,16(4):389-403.
    [74]杜建国,康春丽.地震地下流体发展概述[J].地震,2000,20(增刊):107-114.
    [75]邓绍辉.鲜水河断裂带上的历史地震[J].文史杂志,2012,2:68-73.
    [76]范国胜,焦青.汶川地震前川滇地区断裂活动特征分析[J].大地测量与地球动力学,2008,(6):27-30
    [77]高清武,李霓.腾冲和五大连池火山区流体地球化学特征及其成因探讨[J].地质论评,1999,5(4):345-351.
    [78]高志友,尹观,范晓,等.四川稻城地热资源的分布特点及温泉水的同位素地球化学特征[J].矿物岩石地球化学通报,2004,23(2):134-140.
    [79]辜学达,李宗凡,黄盛碧.川西地区地层多重划分对比研究新进展[J].中国区域地质,1996,2:114-122.
    [80]郭啟良,王成虎,马洪生,等.汶川Ms 8.0级大震前后的水压致裂原地应力测量[J].地球物理学报,2009,52(5):1395-1401.
    [81]国家地震局科技监测司.地震水分手册-地震监测与预报方法清理成果汇编[M].北京:地震出版社,1988,138-140.
    [82]国家地震局监测预报司.地震地下流体观测技术[M].北京:地震出版社,1995,1-263.
    [83]韩渭宾,蒋国芳.川青块体及其向南东方向运动的新证据[J].西北地震学报,2003,25(2):175-178.
    [84]何宏林,池田安隆.安宁河断裂带晚第四纪运动特征及模式的探讨[J].地震学报,2007,29(5):537-548.
    [85]胡海英,包为民,瞿思敏,等.稳定性氢氧同位索在水体蒸发中的研究进展[J].水文, 2007,27(3):1-5.
    [86]胡玉台,张玉松,李建华.地下热水井中某些微量元素动态变化与地震活动的关系[J].地震地质,1995,17(1):54-58.
    [87]贾东,孙圣思,胡潜伟,等.鲜水河断裂同构造花岗岩的流体包裹体面(FIP)研究[A].全国岩石学与地球动力学研讨会论文摘要集,2006.
    [88]江小林,安明智.四川省地震监测志[M].成都:成都地图出版社,2004.
    [89]江在森,方颖,武艳强,等.汶川8.0级地震前区域地壳运动与变形动态过程[J].地球物理学报.2009,52(2).
    [90]江在森,牛安福,王敏,等.活动断裂带构造变形定量分析[J].地震学报,2005,27(6):610-619.
    [91]李传友,宋方敏,冉永康.龙门山断裂系北段第四纪活动性讨论[J].地震地质,2004,26(2):248-258.
    [92]李桂如,蒋凤亮,Melvin J,等.地震地球化学某些前兆机理的模拟实验研究[J].地震地质,1984,6(1):41-46.
    [93]李宏业,尹观,杨俊义,等.四川牟尼沟水体的同位素地球化学特征[J].地球学报,2005,26(3):255-258.
    [94]李勇,周荣军,Densmore A L,等.映秀-北川断裂的地表破裂与变形特征[J].地质学报,2008,82(12):1688-1706.
    [95]廖丽霞.水化前兆观测的探讨和反思[J].地震学刊,2002,2:45-50.
    [96]刘和甫,梁慧社,蔡立国,等.川西龙门山冲断系构造样式与前陆盆地演化[J].地质学报,1994,68(2):100-117.
    [97]刘民生,毛郁,袁丙华.川南地区岩溶地下水开发利用方式初探[C].中国岩溶地下水与石漠化研究.南宁:广西科学技术出版社,2003:23-243.
    [98]刘树根.龙门山冲断带与川西前陆盆地的形成演化[M].成都:成都科技大学出版社,1993.
    [99]刘耀炜.关于地震预报研究问题的几点思考[J].国际地震动态,2002,8:29-32.
    [100]刘耀炜,陈华静,车用太.我国地震氡观测值震后效应特征初步分析[J].地震,2009,29(1):121-131.
    [101]刘耀炜,任宏微.汶川8.0级地震地下流体观测研究40年发展与展望[J].国际地震动态,2006,7:3-12.
    [102]刘再华,袁道先,何师意,等.地热CO2-水-碳酸盐岩系统的地球化学特征及其CO2来-以四川黄龙沟、康定和云南中甸下给为例[J].中国科学(D辑),2000,30(2):209-214.
    [103]龙德雄,黄辅琼,官致君.四川理塘毛垭温泉地质构造环境及成因分析[J].四川地震,2006,1(118):34-40.
    [104]龙学明.龙门山中北段地史发展的若干问题[J].成都地质学院学报,1991,18(1):8-14.
    [105]鲁人齐,王多义,左银辉,等.四川松潘卡卡沟出露温泉及其遥感地质特征分析[J].四川地质学报,2008,28(1):74-76.
    [106]罗来麟.川西地区温泉的分布及成因[J].重庆师范学院学报(自然科学版),1994,11(2):39-47.
    [107]罗灼礼,孟国杰.关于地震丛集特征、成因及临界状态的讨论[J].地震,2002,22(3):1-14.
    [108]马保起,苏刚,侯治华,等.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率[J].地震地质,2005,27(2):234-242.
    [109]马丽芳.中国地质图集[M].北京:地质出版社,2002.
    [110]马宗晋,傅征祥,张黔珍,等.1966-1976年中国九大地震[M].北京:地震出版社,1982.
    [111]裴锡瑜,王新民,张成贵.晚第四纪安宁河断裂分段的基本特征[J].四川地震,1997,4:52-61.
    [112]钱洪,马声浩,龚宁.关于岷江断裂若干问题的讨论[J].中国地震,1995,11(2):140-146.
    [113]钱洪,周荣军,马声浩,等.岷江断裂南段与1933年叠溪地震研究[J].中国地震,1999,15(4):333-338.
    [114]上官志冠,都吉夔,臧伟,等.郯庐断裂及胶辽断块区现代地热流体地球化学[J].中国科学(D辑),1998,28(1):23-29.
    [115]上官志冠,孙明良,李恒忠.云南腾冲地区现代地热流体活动类型[J].地震地质,1999,21(4):436-442.
    [116]上官志冠,孙明良.长白山天池火山区幔源稀有气体释放特征[J].科学通报,1996,41(17):1695-1698.
    [117]沈立成.中国西南地区深部脱气(地质)作用与碳循环研究[D].重庆:西南大学出版社,2007.
    [118]四川省地质矿产局.四川区域地质志[M].北京:地质出版社,1991.
    [119]唐荣昌,韩渭宾.四川活动断裂与地震[M].北京:地震出版社,1993,7-272.
    [120]唐荣昌,黄祖智,文德华,等.试论安宁河断裂带新活动的分段性和地震活动[J].地震研究,1989,12(4):37-347.
    [121]汪成民,李宣瑚,魏柏林.1991.断层气测量在地震科学中的应用[D].北京:地震出版社,1-197.
    [122]汪集旸,孙占学.神奇的地热[D].北京:清华大学出版社,2000.
    [123]汪集旸,熊亮萍,庞忠和.中低温对流性地热系统[J].北京:科学出版社,1993,1-207.
    [124]王多义.四川绵竹酿春池温泉地质成因分析[J].成都理工大学学报(自然科学版),2005,32(5):479-485.
    [125]王二七,孟庆任,陈智粱,等.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘,2001,8(2):375-383.
    [126]万永革,吴忠良,周公威,等.地震静态应力触发模型的全球检验[J].地震学报,2002,24(3):302-316.
    [127]王辉,刘杰,石耀霖,等.鲜水河断裂带强震相互作用的动力学模拟研究[J].中国科学D辑:地球科学,2008,38(7),808-818.
    [128]王凯.鲜水河断裂带关键地段构造应力场数值模拟研究[D].西安:长安大学出版社,2011.
    [129]王肖凤.南阳盆地地热田类型划分及地热地质特征[D].河南:河南理工大学出版社,2011.
    [130]王莹.北京-河北北部中低温温泉的特征和流量、温度变化的模型研究[D].北京:中国地质大学(北京)出版社,2010.
    [131]闻学泽,Allen C R,罗灼礼,等.鲜水河全新世断裂带的分段性、几何特征及其地震构造意义[J].地震学报,1989,11(4):362-372.
    [132]闻学泽,张培震,杜方,等.2008年汶川8.0级地震发生的历史与现今地震活动背景[J].地球物理学报,2009,52(2):444-454.
    [133]闻学泽.川西地区鲜水河-安宁河-则木河断裂带的地震破裂分段特征[J].地震地质,2000,22(3):239-249.
    [134]吴满路,张岳桥,廖椿庭,等.汶川地震后沿龙门山裂断带原地应力测量初步结果[J].地质学报,2010,84(9):1292-1299.
    [135]吴山,赵兵,苟宗海,等.龙门山中-南段构造格局及其形成演化[J].矿物岩石,1999,19(3):82-85.
    [136]肖琼,沈立成,衰道先等.重庆北温泉水化学特征对汶川8.0级地震的响应[J].中国岩溶,2009,28(4):385-390.
    [137]星球地图出版社.汶川地震区域简明地图册[M].北京:星球地图出版社,2008.
    [138]徐步台,周树根,章秋芳,等.浙江武义地热田水化学特征和同位素示踪研究[J].科学通报,1997,13(6):373-377.
    [139]徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造变形样式及其动力来源[J].中国科学(D辑),2003,33(4):151-162.
    [140]徐锡伟,张培震,闻学泽,等.川西及其邻近地区活动构造基本特征与强震复发模型[J].地震地质,2005,27(3):446-461.
    [141]徐则民,雍自权,孙世雄.西藏朗久地热田水文地球化学特征[J].桂林工学院学报,1997,17(1):63-69.
    [142]杨宗让.川西松潘-甘孜弧前盆地的形成及演化[J].沉积与特提斯地质,2002,22(3):53-58.
    [143]尹观,范晓,郭建强.四川九寨沟水循环系统的同位素失踪[J].地理学报,2000,55(4):487-494.
    [144]于湲.北京城区地热田地下热水的水化学及同位素研究[D].北京:中国地质大学(北京)出版社,2006.
    [145]张百鸣,王心义,林建旺等.天津地热田热水的同位素特征分析[J].西部探矿工程,2006,119:85-88.
    [146]张国宏,单新建,李卫东.汶川Ms8.0地震库仑破裂应力变化及断层危险性初步研究[J].地震地质,2008,30(4):935-944.
    [147]张恒,李晓.四川西北部漳腊盆地地下水化学特征研究[J].地球与环境,2004,32(3-4):39-44.
    [148]张宏宇.水文地球化学异常前兆在地震预报中的应用[D].桂林:桂林理工大学硕士学位论文,2009.
    [149]张加桂,胡海涛.四川省鲜水河断裂带温泉的CO2释放量的定量化研究[J].水文地质工程地质,2000,3:19-21.
    [150]张培震,王敏,甘卫军,等.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,2003,10(增刊):81-92.
    [151]张炜,王吉易,鄂秀满.水文地球化学预报地震的原理与方法[M].北京:教育科学出版社,1988,162-167.
    [152]张炜.水文地球化学地震前兆观测与预报[M].北京:地震出版社,1992:95-105.
    [153]张炜斌,杜建国,周晓成,等.首都圈西部盆岭构造区地热水水文地球化学研究[J].矿物岩石地球化学通报,2013,32(4):489-496.
    [154]张炜斌.京西北盆岭构造区温泉流体地球化学[D].北京:中国地震局地震预测研究所,2013.
    [155]张学民,李美,关华平.汶川8.0级地震前的地电阻率异常分析[J].地震,2009,29(1):108-115.
    [156]张岳桥,杨农,陈文,等.中国东西部地貌边界带晚新生代构造变形历史与青藏高原东缘隆起过程初步研究[J].地学前缘,2003,10(4):599-609.
    [157]张岳桥,杨农,孟晖,等.四川攀西地区晚新生代构造变形历史与隆升过程初步研究[J].中国地质,2004,31(1):23-33.
    [158]赵小麟,邓起东,陈社发,等.龙门山逆断裂带中段的构造地貌学研究[J].地震地质,1994,16(4):422-428.
    [159]赵永红,白竣天,李小凡,等.活动断裂带附近地下水中的氢同位素变化与地震关系的研究[J].岩石学报,201 1,27(6):1909-1914.
    [160]中国地震局监测预报司.汶川8.0级地震科学研究报告[M].北京,地震出版社,2009.
    [161]中国科学院地理科学与资源研究所.汶川地震区域简明地图册[M].星球地图出版社,2008.
    [162]周荣军.四川岷江断裂带北段的新活动,岷山断块的隆起及其与地震活动的关系[J].地震地质,2000,22(3).285-294.
    [163]周晓成.汶川Ms 8.0地震后川西地区的气体地球化学[D].合肥:中国科学技术大学出版社,2011.
    [164]周晓成,杜建国,陈志等.地震地球化学研究进展[J].矿物地球化学通报,2012,31(4):340-346.
    [165]朱命和,付中,刘彦兵.应用地球化学方法讨论开封地热田地下热水的补给来源[J].物探与化探,2005,29(6):493-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700