用户名: 密码: 验证码:
地球流体中的非线性Rossby波
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要从准地转位涡方程出发,采用约化摄动法和多重尺度法考虑了正压流体和层结流体中具有推广的β平面近似下Rossby波振幅演变问题(包括地形问题、缓变地形问题、和带有外源、耗散问题、层结效应),以及推广的β平面近似下赤道Rossby包络孤立波和含有地球旋转水平分量的Rossby波等问题进行研究.
     球面效应和旋转效应是地球流体的基本特征,1939年Rossby在其发表的论文“Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action"[1]中提出了用球面上的均质流体层作为研究地球流体中观测到的大尺度波动力学简单而恰当的模式,即把地球的球面效应通过另外一个平面上地球行星涡度的局部垂直分量f=2Ωsinφ进行模拟的模式,而且在动力学上起显著作用.把地球的球面效应通过另外平面上f的线性变化进行模拟的模式,称为β平面模式(β平面近似).其中参数f是行星涡度垂直与地面的局部分量,称为柯里奥利参数(柯氏参数),Ω,φ分别是地球旋转角速度的大小和纬度.当时他指出大气长波是由于f随纬度φ变化造成的(即β效应)结论.为了证实其合理性,许多学者[13,21,56-62]研究了β平面近似下采用诸女(?)Korteweg-de Vries(KdV)方程、改进的KdV(mKdV)方程等非线性方程刻画Rossby波振幅,这些研究极大的丰富了地球物理流体动力学理论,并且取得了许多有意义的结果,例如Kartashova(?)(?)L'vov[2]提出了大气季节内振荡的非线性Rossby波共振的物理机制;罗德海[22,23]利用KdV或者mKdV方程解释了大气阻塞现象.
     本文在以上结论的基础上,从准地转位涡方程出发,将考虑推广的β平面近似即Rossby参数口随纬度变化下,各种效应作用的非线性Rossby波振幅所满足的非线性方程,以及地球旋转水平分量对Rossby波的影响.
     首先,研究了正压流体中非线性Rossby波在推广的β平面近似下的问题.在不考虑地形效应的情况下,利用约化摄动法推导了Rossby波振幅所满足的非线性方程,得到正压流体中Rossby孤立波满足mKdV方程的结果.然后只考虑地形对Rossby波影响,得出线性地形和非线性地形效应下非线性Rossby波振幅满足mKdV方程;进一步,考察了推广的β平面近似下,具有外源、耗散和地形的准地转位涡方程,得出了Rossby孤立波满足非齐次Boussinesq方程与mKdV方程.
     由于地球流体具有多时空尺度的特点,我们采用多重尺度法导出了Rossby波满足非线性Schrodinger方程.在考虑地形随时间缓慢变化下,得到了非线性Rossby波振幅演变满足非齐次Benjamin-Davis-Ono(BDO)方程的结论,并且分析了地形强迫和耗散是影响Rossby瓜立波质量、能量变化的原因.
     同时本文还研究了层结流体中推广的β平面下,地形效应和层结效应共同作用的Rossby孤立波,应用约化摄动法推导了Rossby波振幅满足mKdV方程,给出了层结流体中地形强迫也是引起Rossby孤立波质量和能量变化的原因.另外,研究了正压流体中赤道Rossby包络孤立波,采用多重尺度法导出来Rossby包络孤立波振幅满足非线性Schrodinger方程.最后,文章还研究了在推广的β平面近似下地球旋转水平分量对Rossby波的影响,从大气方程组出发,应用Taylor级数方法导出Rossby波满足KdV(?)PKdV-mKdV方程的结论.
     全文包含八个部分:
     1.研究问题的背景和主要结论;
     2.正压流体中推广的β平面近似下的非线性Rossby波;
     3.正压流体只有地形作用的非线性Rossby波;
     4.正压流体中β效应和地形共同作用的非线性Rossby波与Rossby包络孤立波的问题;
     5.层结流体中具有β效应、地形效应和层结效应的Rossby孤立波;
     6.正压流体中具有缓变地形和耗散作用的非线性Rossby波;
     7.推广的β平面近似下赤道Rossby包络孤立波问题;
     8.推广的β平面近似下地球旋转水平分量对非线性Rossby波的作用.
In this dissertation, based on the quasi-geostrophic potential vorticity equation, we investigate the evolution of the amplitude of Rossby waves with the generalized beta-plane approximation by employing the reduc-tive perturbation method and multiple scale method (including topography problems; slowly changing topography problems; external source and dissi-pation problems; stratification effect), equatorial envelope Rossby solitons and action of the horizontal component of the earth's rotation on nonlinear Rossby waves in barotropic fluid and stratified fluid.
     The basic features of geophysical fluid are spherical effect and ro-tational effect of the earth's. In1939, Rossby in his article "Relation between variations in the intensity of the zonal circulation of the atmo-sphere and the displacements of the semi-permanent centers of action"[1] suggested the study of a homogeneous sheet of fluid on a sphere as the simplest relevant model for the dynamics of the observed large-scale waves in the earth's atmosphere, namely that the effect of spherical earth so that only the local vertical component of the earth's planetary vorticity another plane f=2Ω sin φ simulation mode, but it is dynamically significant. Such the model, in which the effect of earth's sphericity is modeled by a linear variation of f in an otherwise planar geometry, is called the β model (β plane approximation), where the parameter f is the local component of the planetary vorticity normal to the earth's surface and is called the Cori-olis parameter, Ω, φ is the earth rotation angular velocity and latitude. He pointed out that the atmospheric long wave is due to f with latitude φ change(i.e. β effect). In order to confirm Rossby's this argument is rationali-ty, Many scholars[13,21,56-60]have studied the Rossby waves problems in β plane approximation, they give Rossby waves amplitude satisfy Korteweg-de Vries(KdV)equation, the modified Korteweg-de Vries(mKdV) equation for a class of nonlinear equations. These research greatly enriched the geo-physical fluid dynamics theory, and have achieved many significant results. For example, Kartashova and L'vov[2] proposed the physical mechanism of resonance of the nonlinear Rossby waves intraseasonal oscillation; Luo De-hai[22,23]used KdV or mKdV equation explains the atmospheric blocking phenomenon.
     In this dissertation, based on the results mentioned above, using the quasi-geostrophic vorticity equation, we will consider the approximate Rossby parameter β vary with latitude β plane under the generalized non-linear equations, nonlinear Rossby wave amplitude of the various effect, and influence of Rossby waves under the horizontal component of the earth's rotation.
     Firstly, we consider nonlinear Rossby waves under the generalized β plane approximation in barotropic fluids problem. Without considering the effect of topography condition, by using the reductive perturbation method for nonlinear equations is derived for nonlinear Rossby waves, we obtain Rossby solitary waves satisfy mKdV equation in barotropic fluids. Then only consider the influence of topography on Rossby waves, getting Rossby waves amplitude satisfies the mKdV equation under the effect of linear and nonlinear topography. Further, under the generalized β plane approximation condition, we investigated the quasi-geostrophic vorticity equation with external source, dissipation and topography, obtaining Ross-by solitary waves satisfied inhomogeneous Boussinesq equation dan mKdV equation.
     Because of the characteristics of the geophysical fluid with multi tem-poral and spatial scales, hence we use the method of multiple scales is derived for the Rossby waves satisfy nonlinear Schrodinger equation. By considering topography varies slowly with time, we give the amplitude non-linear Rossby waves satisfy inhomogeneous Benjamin-Davis-Ono(BDO) e-quation results, and analysis of the topographic forcing and dissipation effect Rossby solitary wave quality, energy change.
     At the same time, under the generalized β plane approximation con-dition, the dissertation also studied Rossby solitary wave interaction effect of topography and stratification effect in stratified fluid, using the pertur-bation method is used to deduce the Rossby wave amplitude satisfies the mKdV equation, we give topograph force in stratified fluid also caused the Rossby solitary waves of mass and energy change. In addition, we consid-ered equatorial envelope solitary Rossby wave, in barotropic fluids, based on the equatorial potential vorticity equation, the nonlinear equatorial en-velope solitary Rossby wave are investigated by the asymptotic method of multiple scales. The inhomogeneous Schrodinger equation, satisfied by Rossby solitary waves packet is derived.
     Finally, this dissertation also studies the influence of the horizontal component of earth rotation approximation of Rossby wave in β plane promotion, starting from the atmospheric equations, using Taylor series method to derive the Rossby wave to satisfy KdV and KdV-mKdV equa-tions of the conclusion.
     This dissertation contains eight parts:
     1. The background and the main results of study problem;
     2. Nonlinear Rossby waves under the generalized beta-plane approxima- tion in barotropic fluid;
     3. Nonlinear Rossby waves with topography effect in barotropic fluid;
     4. Nolinear Rossby waves and envelop Rossby solitary waves problems with beta effect and topography synergism in barotropic;
     5. Rossby solitary waves with beta effect, topography effect and stratifica-tion effect in stratified fluid;
     6. Nonlinear Rossby waves problem excited slowly changing topography and dissipation in barotropic;
     7. Equatorial envelope solitary Rossby waves under the generalized beta-plane approximation;
     8. Action of the horizontal component of the earth's rotation on nonlinear Rossby waves.
引文
[1]Rossby C.G.. Relation between variations in the intensity of the zonal circulation ofthe at-mosphere and the displacements of the semi-permanent centers of action. J. Marine Res.[J], 1939,2:38-55
    [2]Kartashova E., L'VoV V.S.. Model of intraseasonal oscillations in earth's atmosphere. Phy. Rev. Lett.[J],2007,98:198501
    [3]G.K.Batchelor. An introduction to fluid dynamics[M]. Cambridge:Cambridge University Press,1970.1-171
    [4]James Lighthill. Waves in fluids[M]. Cambridge:Cambridge University Press,1978.1-279
    [5]J.Pedlosky. Geophysical fluid dynamics[M]. Berlin:Springer-Verlag,1987.1-169
    [6]James C. McWilliams. Foundamentals of geophysical fluid dynamics[M]. Cambridge:Cam-bridge University Press, 2006. 15-161
    [7]Adrian E. Gill. Atmosphere-Ocean Dynamics[M]. New York: Academic Press, 1982.189-243,429-482
    [8]James R. Holton, An introduction to dynamic meteorology[M]. New York: Academic Press, 1979.27-74
    [9]王斌,翁衡毅.地球物理流体动力学[M].北京:海洋出版社,1981.1-300
    [10]余志豪,杨大升,贺海晏等.地球物理流体动力学[M].北京:气象出版社,1996.1-145,277-337
    [11]Sherrvwin A.Maslowe. Critical layers in shear flows. Ann. Rev. Fluid Mech. [J],1986,18:405-432
    [12]M.V.Nezlin, E. N. Snezhkin. Rsooby Vortices, Spiral Structures, Solitons[M]. Berlin: Springer-Verlag, 1987.5-26,129-149
    [13]Long R.. Solitart waves in the westerlies. J. Atmos. Sci.[J],1964,21(2):197-200
    [14]Tony Maxworthy, Lawreence G. Redekopp. New theory of the great red spot from solitary waves in the Jovian atmosphere. Nature[J],1976,260:509-511
    [15]Tony Maxworthy, Lawreence G. Redekopp. A solitary wave theory of the great red spot and other observed features in the Jovian atmosphere. Icarus[J],1976,29:261-271
    [16]Tony Maxworthy, Lawreence G. Redekopp, Patrick D. Weidman. On the production and interaction of planetary solitary waves:application to a the Jovian atmosphere. Icarus[J], 1978,33:388-409
    [17]H. P. Greenspan. The Theory of Rotating Fluids[M]. Cambridge:Cambridge University Press,1969.133-181
    [18]罗德海.大气中大尺度包络孤立子理论与阻塞环流[M].北京:气象出版社,1999.5-11,22-29,46-48
    [19]罗德海.大气中大尺度包络孤立子理论与阻塞环流[M].北京:气象出版社,2000.5-11,26-37
    [20]Chraney J. G.,Straus D. M.. From-drag instability, multiple equilibria and propagating planetary waves in baroclinic, ographically force, planetary waves systems. J. Atmos. Sci.[J], 1980,37(6):1157-1176
    [21]刘式适,谭本馗.考虑β变化下的Rossby波.应用数学与力学[J],1992,13(1):35-43
    [22]Luo De Hai. Nonlinear Schrodinger equation in the rotating barotropic atmosphere and atmospheric blocking. Acta. Meteorologica Sinica.[J],1991,5:5875-97.
    [23]罗德海.考虑β随纬度变化下的Rossby孤立波与偶极子阻塞.应用气象学报[J],1995,6:220-227
    [24]赵强.地形对热带大气超长尺度Rossby波动的影响.热带气象学报[J]1997,13(2):140-145
    [25]Zhao Qiang, Fu Zun Tao, Liu Shi Kuo. Equatorial envelope Rossby solitons in a shear flow. Adv. Atmos. Sci.[J],2001,18(3):418-428
    [26]Meng Lv, Lv Ke Li. Nonlinear long waves disturbances excited by localized forcing. Chin. J. Comp. Phy.[J],2000,17(3):259-267
    [27]Meng Lv, Lv Ke Li. Dissipation and algebraic solitary long waves excited by localized topography. Chin. J. Comp. Phy.[J],2002,19(2):159-167
    [28]达朝究,丑纪范.缓变地形下Rossby波振幅演变满足的带有强迫项的mKdV方程.物理学报[J],2008,57(4):2595-2599
    [29]Sun W. Y.. Unsymmetrical symmetric instability, Quart. J. Roy. Meteor. Soc.[J],1995,121: 419-431.
    [30]White A. A., Bromley R. A.. Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Quart. J. R. Meteor. Soc.[J], 1995,121:339-418
    [31]Draghici I.. Non-hydrostatic Coriolis effects in an isentropic coordinate frame. Meteor. Hydrol.[J],1987,17:45-54
    [32]Salmon R.. New equations for nearly geostrophic flow. J. Fluid Mech.[J],1985,153:461-477
    [33]Burger A. P.. The potential vorticity equation:from planetary to small scale. Tellus[J], 1991,43A:191-197
    [34]Wippermann F. The orientation of vortices due to instability of Ekman boundary layer. Beitr. Phys. Atmos.[J],1969,42:225-244
    [35]Leibovich S., Lele S. K.. The influence of the horizontal component of the Earth's angular velocity on the instability of the Ekman layer. J. Fluid Mech.[J],1985,150:41-87
    [36]Wang D., W.G. Large, J. C. MecWilliams. Large-eddy simulation of the equatorial o-cean boundary layer:Diurnal cycling, eddy viscosity, and horizontal rotation. J. Geophys. Res.[J],1996,101:3649-3662
    [37]Hassid S., B. Galperin. Modeling rotation flows with neutral and unstable stratification. J. Geophys. Res.[J],1994,99C6:12533-12549
    [38]Kasahara A.. The role of the horizontal component of the earth's angular velocity in non-hydrostatic linear models. J. Atmos. Sci.[J],2003,60:1085-1095
    [39]Itano T., Kasahara A.. Effect of top and bottom boundary conditions on symmetric insta-bility under full-component Coriolis force. J. Atmos. Sci.[J],2011,68:2771-2782
    [40]T. Gerkema, V. I. Shrira. Near-inertial waves in the ocean:beyond the'traditional ap-proximation'. J. Fluid Mech.[J],2005,529:195-219
    [41]T. Gerkema, V. I. Shrira. Near-inertial waves on the'nontraditional'plane. J. Geophys. Res.[J],2005,11:1-10
    [42]吕克利,朱永春.大地形对Rossby波波射线的影响.气象学报[J],1994,52(4):405-413
    [43]吕克利.大地形对切变基流上罗斯贝波稳定性的影响.大气科学[J],1986,10(3):327-331
    [44]吕克利.大地形和正压Rossby波的稳定性.气象学报[J],1986,44(3):275-281
    [45]吕克利.大地形与正压Rossby孤立波.气象学报[J],1987,45(3):267-273
    [46]吕克利,蒋后硕.近共振地形强迫Rossby孤立波.气象学报[J],1996,54(2):142-153
    [47]张志强,孙成权.国际全球变化研究十年新进展.科学通报[J],1999,44(5):464-477
    [48]沙万英,邵雪梅,黄玫.20世纪80年代以来中国的气候变暖及其对自然区域界线的影响.中国科学(D辑)[J],2002,32(4):317-326
    [49]刘时银,丁永建,李晶等.中国西部冰川对近期气候变暖的响应.第四纪研究[J],2006,26(5):762-771
    [50]周广胜,王玉辉.土地利用覆盖变化对气候的反馈作用.自然资源学报[J],1999,14(4):318-322
    [51]王澄海,董文杰.韦志刚.青藏高原季节性冻土年际变化的异常特征.地理学报[J],2001,56(5):523-531
    [52]杨桂山,施雅风.海平面上升对中国沿海重要工程设施与城市发展的可能影响.地理学报[J],1995,50(4):302-309
    [53]施雅风.全球变暖影响下中国自然灾害的发展趋势.自然灾害学报[J],1996,5(2):106-116
    [54]宗序平,李明辉,胡经国等.全球变暖对高温破纪录事件规律性的影响物理学报[J],2010,59(11):8272-8279
    [55]达朝究,冯爱霞,龚志强等.缓变下垫面对浅水方程的动力学订正.物理学报[J],2013,62(3):039202
    [56]Benney D. J.. Long nonlinear waves in fluid flow. J. Math. Phy.[J],1966,45(3):52-63
    [57]Larsen L. N.. Comments on:Solitary waves in the Westerlies. J. Atmos. Sci.[J],1965,22(2): 222-224
    [58]Clarke A.. Solitary and cnoidal planetary waves. Geophy. Fluid Dynam.[J],1971,2(1): 343-354
    [59]Redekopp L. G.. On the theory of solitary Rossby waves. J. Fluid Mech.[J],1977,82(4): 725-745
    [60]Wadati M.. The modified Korteweg-de Vries equation. J. Phys. Soc. Japan[J],1973,34: 1289-1296
    [61]达朝究.正压流体中Rossby波振幅的KdV方程.内蒙古大学硕士论文,2005.
    [62]宋健.层结流体中Rossby波振幅的mKdV方程.内蒙古大学硕士论文,2006
    [63]朱抱真,金飞飞,刘征宇.大气和海洋的非线性动力学概论[M].北京:海洋出版社,1999.75-93
    [64]Jeffrey A., Kawahara T.. Asymptotic methods in nonlinear wave theory. Boston:Pitman Advanced Publishing Program,1982.1-45
    [65]Patione A., Warn T.. The interaction of long, quasi-stationary baroclinic waves with to-pography. J. Atmos. Sci.[J],1982,39(5):1018-1025
    [66]Warn T., Brasnett B.. The amplification and capture of atmospheric solitons by topography a theory of the onset of regional blocking. J. Atmos. Sci.[J],1983,40(1):28-38
    [67]蒋后硕,吕克利.切变气流中地形强迫激发的非线性长波.高原气象[J],1998,17(3):231-244
    [68]Kuo H L.. Dynamical instability of two dimensional nondivergent flow in a barot ropic atmosphere. J. Meteor.[J],1949,6:105-122
    [69]Domaracki A., Loesch A. Z.. Nonlinear interactions among equatorial waves. J. Atmos. Sci.[J],1977,34:486-498
    [70]Yih Chia Shun. Stratified Flows[M]. New York:Academic Press,1980.19-210
    [71]Wang Y.C.. The interaction of internal waves with an unsteady non-uniform current. J. Fluid Mech.[J] 1969,37:761-772
    [72]Wu T.Y.-T., Mei C.C.. Two-dimensional gravity waves in a stratified ocean. Phys. Fluids[J], 1967,10:482-486
    [73]Pedlosky J.. Resonant topographic waves in barotropic and baroclinic flows. J. Atmos. Sci. [J],1981,38(12):2626-2641
    [74]Ono H.. Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japa.[J],1975,39(4): 1082-1091
    [75]Ono H.. Algebraic Rossby wave soliton. J. Phys. Soc. Japa.[J],1981,50(8):2757-2761
    [76]刘秦玉,李丽娟.北太平洋副热带向东逆流区Rossby波斜压稳定性.地球物理学报[J],2007,50(1):83-91
    [77]张永垂,张立凤,王业桂.北太平洋海表面高度的年际变化及其机制.地球物理学报[J],2010,53(2):247-255
    [78]赵强,刘式达,刘式适.切变基本纬向流中非线性赤道Rossby长波.地球物理学报[J],2000,43(6):746-753
    [79]Charney J. G.. A note on large scale mot ions in the tropics. J. Atmos. Sci.[J],1963,20: 607-609
    [80]P.G.Drazin, R.S. Johnson. Solitons:an introduction[M]. Cambridge:Cambridge University Press,1989.1-33
    [81]刘式适,刘式达.物理学中非线性方程[M].北京:北京大学出版社,2001.167-230
    [82]Phillips N. A.. The equations of motion for a shallow rotating atmosphere and the 'traditional approximation'. J. Atmos. Sci.[J],1966,23(5):626-628
    [83]Philips N. A.. Reply to G.Veronis's comments on Phillips(1966). J. Atmos. Sci.[J],1968, 25(6):1155-1157
    [84]Veronis G.. Comments on Phillips's(1966) proposed simplification of the equations of mo-tion for a shallow rotating atmosphere. J. Atmos. Sci.[J],1968,25(6):1154-1155
    [85]Wangsness R. K.. Comments on " The equations of motion for a shallow rotating atmosphere and the traditional approximation". J. Atmos. Sci.[J],1970,27(3):504-506
    [86]Beckman A., Diebels S.. Effects of the horizontal component of the Earth's rotation on waves propagation on the f-plane, Part I:Barotropic Kevlin waves and amphidromic sys-tems. Geophys. Astrophys. Fluid Dyn.[J],1994,76(1-4):95-119
    [87]Durran D., Bretherton C. Comments on "the roles of the horizontal component of the Earth's angular velocity in nonhydrostatic linear models". J. Atmos. Sci.[J],2004,61(15): 1982-1986
    [88]Hoskins B.J.. The geostrophic moment approximation and semi-geostroph, icequations. J. Atmos. Sci.[J],1975,32(2):233-242
    [89]赵强,刘式适.地球旋转水平分量对Rossby波的影响.大气科学[J],2004,28(2):146-150
    [90]Grimshaw R.H.J.. A note on the β-plane approximation. Tellus[J],1975,27(4):351-357
    [91]赵强,于鑫.完整Coriolis力作用下非线性Rossby波的精确解.地球物理学报[J],2008,51(5):1304-1308
    [92]刘式适,刘式达.半地转近似下的非线性波.气象学报[J],1978,45(3):257-266
    [93]刘式适,刘式达.大气动力学[M].北京:北京大学出版社,1999.196-206
    [94]杨洁,赵强.有完整Coriolis力和热源影响下超长波的解析解.物理学报[J],2010,59(2):750-753

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700