用户名: 密码: 验证码:
珍珠的结构和光学效果的形成机理及体外合成探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软体动物的贝壳和珍珠一直以来都是生物矿化材料的典型代表,它们具有与众不同的光学效果,并且强度和韧性均比其主要组成材料-CaCO3-高出数倍。这些卓越的性质使得越来越多的科学家展开对贝壳材料的研究。然而,珍珠的生长机制和光学效果却很少受到关注,因此人们对珍珠的认识还不甚清晰。本文从珍珠的结构和光学效果出发,利用显微技术分别研究了珍珠的微观结构生长机制和光学效果,并进一步阐释了珍珠微观结构和光学效果的产生机制。我们还通过CaCl2和(NH2)2CO的混合溶液进行了CaCO3的合成实验。
     首先,我们利用扫描电子显微镜、拉曼光谱仪、透射电子显微镜和原子力显微镜研究了珍珠初期生长和后续砖墙状结构的形成机制。首次发现了珍珠形成初期的另一种矿物相,即辐射针状文石相;经过测试又进一步证实,这种辐射针状文石相是由文石纳米晶畴组成的。由此我们提出了珍珠形成初期的两种可能的生长机制。在后续文石板片“砖墙状”结构形成机制的研究中,我们发现文石板片并非单晶而是由有机质分隔的文石纳米晶畴组成,除了早期发现的纳米颗粒状晶畴,我们还发现了另一种纳米条纹状的晶畴。鉴于有机质的穿晶生长,我们重新考虑了文石板片“砖墙状”结构的形成机理,提出了一种矿化机制对此加以阐释。
     然后,我们利用激光共聚焦显微镜结合高分辨扫描电子显微镜和原子力显微镜研究了珍珠光学表现(包括光学特征、体色和结构致色)与其微观结构的关系。
     珍珠的光学特征分为以下三类:1)反射-衍射光谱形成的光源的投影;2)围绕光源投影的彩色光环;3)回音廊效应,即珍珠外围发光效应。通过对珍珠结构的观察,我们发现第一种光学特征的产生是由于表面漫反射的作用,多层干涉和光栅结构的衍射对此几乎没有贡献。通过原子力显微镜对珍珠结构进一步的测试发现,珍珠表层文石板片并非单晶而是由很多被有机质分隔的纳米晶畴构成,这种结构最终导致了第二种光学特征,即彩色漫射光环的产生。至于第三种光学特征,则是由于文石板片的“砖墙状”多级结构导致的。当入射光照射到珍珠表层时,光线将会被靠近表面的几层结构连续反射而非穿透整个珍珠,所以即使在没有光照射到的珍珠外围也会有亮光产生。
     为了获得珍珠体色与结构的关系,我们利用拉曼光谱仪和高分辨扫描电子显微镜对四种不同体色的淡水养殖珍珠进行了测试和观察,发现不同体色珍珠表面和剖面的断裂面形貌都不同。白色和黄色珍珠表面具有相对比较整齐的生长台阶,而紫罗兰色和紫色珍珠表面的生长台阶杂乱无章。尤其是紫色珍珠,不仅生长台阶不平行整齐,而且存在台阶聚并现象以及缺陷。对于珍珠剖面的断裂面的观察,发现白色和黄色珍珠的文石板片层厚度约为200nm~400nm;而紫罗兰色和紫色珍珠的约为100nm~300nm,且排列更致密。进一步对剖面进行EDTA腐蚀后发现,珍珠文石板片层之间的CaCO3首先被腐蚀,之后在片层之间留下网格状的有机质;紫罗兰色珍珠的最易被腐蚀,而紫色珍珠最难被腐蚀,由此判断紫色珍珠的结构致密性明显优于其他颜色珍珠。
     我们还研究了一粒具有黄绿色伴色的紫色珍珠的结构致色机理。我们利用高分辨扫描电子显微镜测试观察其表面结构,发现该粒珍珠表层具有六边形套构的多级光子晶体结构。利用时域差分方法对这种六方嵌套多级结构和“砖墙状”多层结构进行了模拟计算。计算结果表明,该粒珍珠黄绿色伴色是由于表层六方嵌套结构导致的。
     最后,我们在实验室环境下利用CaCl2和(NH2)2CO的混合溶液进行了CaCO3合成探索,研究了温度、PH值等环境因素对反应产物的影响。实验结果表明,在温度80℃和PH=8的条件下更容易获得文石晶体。但是,一般很难获得纯的文石。
     通过向CaCl2和(NH2)2CO混合溶液中添加正硅酸四乙酯,我们可以通过控制水解缩聚及合成反应过程来控制CaCO3产物的结构形态。在室温下(22℃),我们通过电机匀速搅拌获得了牡丹花状的方解石团聚体,而在80℃下不加搅拌则可以得到菊花状针形文石的团聚体。我们还在介孔状硅胶的支撑下获得了稳定的无定形碳酸钙。介孔硅胶是通过控制正硅酸四乙酯水解缩聚的条件而得到的。激光共聚焦显微镜观察结果显示,CaCO3产物呈现十字叉状或花朵状的分支结构。拉曼光谱测试结果和扫描电子显微镜观察结果均表明这种分支结构是由稳定的无定形碳酸钙和介孔硅胶复合而成。由此,我们提出了一种生长机制来解释上述产物的形成原因。本项研究对于无定形碳酸钙储存、晶体工程学和生物仿生合成均具有一定的意义。
Mollusk shell and pearl are well-known examples of biomaterials that exhibit distinctive optical behavior and an orders-of-magnitude increase in toughness and strength over their predominant constituent material:CaCCO. These remarkable properties have attracted scientists to study the architecture and nucleation mechanism of shell. However, the growth mechanism and optical effects of pearl are still not clear. The structure and optical effects of pearl have been studied by micro-techniques in this work and the formation mechanism of pearl has been discussed. What's more, synthesis of CaCO3through CaCl2and (NH2)2CO solution was also tried.
     First, the initial formation stage and succedent biomineralization of pearl were studied using scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and atomic force microscopy. Another initial formation phase with needle-like structure which is found to be nanocrystallites of aragonite was discovered. As a result, two possible formation modes are proposed to describe the initial formation stage of pearl. As for the succedent mineralization of "brick and mortar" structure, nanostripes were first discovered inside the "brick"(aragonite platelet), compared with the foregoing finding of nanograins. The various nanostructure of aragonite platelet allow us to reconsider the role of the inter-and intracrystalline organic material surrounding CaCO3, and a possible biomineralization mechanism was proposed.
     Second, the relationship between optical behavior (optical effects, body color and structural color) and microstructure of pearl was studied by laser scanning confocal microscopy, high-resolution scanning electron microscopy and atomic force microscopy.
     There are three optical effects in pearls, i.e., a) the reflection-diffraction effect; b) a chromatic diffusion halo; c) the whispering gallery effect. From the observation for the structure of pearls, we proposed that the first optical effect exhibited by pearls is dominated by the surface diffuse-reflection. In addition, the multilayer interference and diffraction have little contribution. With the delicate observation for the structure of pearl by atomic force microscope, it is revealed that the polygon platelets of pearl are not single crystals but nano-grains of aragonite in the network of organic matrix, which is responsible for the chromatic diffusion halo. As for the third optical effect, it originates from the stratifications structure which is composed of aragonite platelets. When the light falls on the surface of pearl, it will travel along the laminations of its structure rather than through the whole pearl, so the rim of pearl is bright even if no light falls on the surface directly.
     In order to find out the relationship between body color and structure for pearl, four fresh-water cultured pearls with different colors were measured and observed by Raman spectroscopy and high resolution scanning electron microscopy. It was found that the morphologies of the exterior surface and fracture profile for the four pearls showed different characteristics. The surface of white and yellow pearls presents trim growth steps, but the growth steps of violet and purple pearls are disordered. Especially for the purple pearl, not only the growth steps are irregular, but also the surface owns more bunching steps and defects than others. As for the fracture surface, we found that the aragonite platelets thicknesses of white and yellow pearls were in the range of200nm-400nm whereas the aragonite lamina of violet and purple pearls ranked more densely and the thicknesses were in the range of100nm-300nm. After etching by EDTA, it was discovered that there is organic matrix left between the lamina. The violet pearl was the easiest one to be etched by EDTA, and the purple pearl was the most difficult one, so it can be concluded that the purple pearl was very dense. That's why the purple pearl owns the best luster in the situation of bad exterior surface.
     We also investigated the structural color of a purple pearl that exhibits angle-dependent yellow-green iridescence. Surprisingly, a hierarchical hexagonal photonic crystal structure was discovered on the pearl surface through HRSEM observation. A finite-difference time-domain calculation was performed on this structure, and also a multilayer structure which was located beneath the surface layer. The calculations show that the nested hexagonal photonic crystal structure is actually the origin of the yellowish-green iridescence of the pearl.
     We investigated the effect of environmental conditions on the synthesis of CaCO3through CaCl2and (NH2)2CO solution. It was found that more aragonite can be synthesized at around80℃and PH=8. However, it is hard to obtained pure aragonite.
     By adding ethyl silicate to CaCl2and (NH2)2CO solution, the structure of CaCO3can be tailored by controlling the hydrolytic polycondensation and synthesis procedure. At room temperature(22℃, clusters of calcite platelets in peony shape were formed with stirring; but at80℃, chrysanthemum-like aragonite clusters were obtained. Stable amorphous calcium carbonate supported by mesoporous silica gel was successfully synthesized. The silica gel support is prepared through the hydrolytic polycondensation of ethyl silicate under suitable conditions. LSCM observations reveal that the morphology of the product is branched with cruciform-like and flower-like structure. Raman spectroscopic analysis and SEM observation for the products confirm the combination of stable ACC nanoparticles and mesoporous silica gel. A possible growth mechanism for the branched structure has been proposed. Results indicate potential application of this work to ACC storage, crystal engineering, biomimetic synthesis, etc.
引文
[1]H. L. Jameson. The formation of pearls. Nature 1903; 67(1737):280-282.
    [2]H. Y. Ma, I-S. Lee. Characterization of vaterite in low quality freshwater-cultured pearls. Materials Science and Engineering C 2006; 26:721-723.
    [3]谢雷,王小祥,郦剑。三角帆蚌珍珠质层结构和珍珠质涂层的研究。无机材料学报2008;23(3):617-620。
    [4]G. Mayer. Materials and biology 2005; 310:1144-1147.
    [5]H.M. Leung, Sujeet K. Sinha. Scratch and indentation test on seashells. Tribology International 2009;42:40-49.
    [6]F. Barthelat, H. Tang, P.D. Zavattieri, C.-M. Li, H.D. Espinosa. On the mechanics of mother-of-pearl:A key feature in the material hierarchical structure. Journal of Mechanics and Physics of Solids 2007; 55:306-337.
    [7]L. J. Bonderer, A. R. Studart, L. J. Gauckler. Bioinspired design and assembly of platelet reinforced polymer films. Science 2008; 319:1069-1073.
    [8]P. Pldsiadlo, Z.Q. Liu, D. Paterson, P. B. Messersmith, N. A. Kotov. Fusion of seashell narce and marine bioadhesive analogs:high-strength nanocomposite by layer-by-layer assembly of clay and L-3,4-dihydroxyphenylalanine polymer. Adv Mater 2007; 19:949-955.
    [9]J. H.E. Cartwright, A. G. Checa. The dynamics of narce self-assembly. J R Soc Interface 2007; 4:491-504.
    [10]D. Gebauer, A. Volkel, H. Colfen. Stable Prenucleation Calcium Carbonate Clusters. Science 2008; 322:1819-1822.
    [11]L. Addadi, D. Joester, F. Nudelman, S. Weiner. Mollusk shell formation:a source of new concepts for understanding biomineralization processes. Chem. Eur. J.2006; 12: 980-987.
    [12]I. M. Weiss, N. Tuross, L. Addadi, S. Weiner. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J. Exp. Zool.2002; 293:478-491.
    [13]G. Bevelander, H. Nakahara. An electron microscope study of the formation of nacreous layer in the shell of certain bivalve molluscs. Calc Tiss Res 1969; 3:84-92.
    [14]S. W.Wise. Microarchitecture and deposition of gastropod nacre. SCIENCE 1970; 167:1486-1488.
    [15]M. Rousseau, E.Lopez, A. Coute, G. Mascarel, D. C. Smith, R. Naslain, X. Bourrat. Sheet narce growth mechanism:a voronoi model. Journal of Structural Biology 2005; 149:149-157.
    [16]K. Wada. Nucleation and growth of aragonite crystals in the narce of some bivalve molluscs. Biomineralization 1972; 4:141-159.
    [17]T. E. Schaffer, C. Ionescu-Zanetti, R. Proksch, M. Fritz, D. A. Walters, N. Almqvist, C. M. Zaremba, A. M. Belcher, B. L. Smith, G. D. Stucky, D. E. Morse, P. K. Hansma. Does abalone narce form by heteroepitaxial nucleation or by growth through mineral bridges? Chem. Master 1997; 9:1731-1740.
    [18]F. Song, A. K. Soh, Y. L. Bai. Structural and mechanical of properities of the organic matrix layers of narce. Biomaterials 2003; 24:3623-3631.
    [19]A. G. Checa, J. H.E. Cartwright, M. G. Willinger. Mineral bridges in nacre. Journal of Structural Biology 2011; 176:330-339.
    [20]W.T. Hou, Q.L. Feng. Crystal orientation preference and formation mechanism of nacreous layer in mussel. Journal of Crystal Growth 2003; 258:402-408.
    [21]S. Weiner, W. Traub. Macromolecules in mollusk shells and their functions in biomineralization. Phil Trans R Soc London Ser B 1984; 304:421-438.
    [22]M. Rousseau, E. Lopez, P. Stempfle, M. Brendle, L. Franke, A. Guette, R. Naslain, X. Bourrat. Multiscale structure of sheet nacre. Biomaterials 2005; 26:6254-6262.
    [23]K. Saruwatari, T. Matsui, H. Mukai, H. Nagasawa, T. Kogure. Nucleation and growth of aragonite crystals at the growth front nacres in pearl oyster, Pincatada fucata. Biomaterials 2009; 30:3028-3034.
    [24]S. C. Raman, D. Krishnamurti. The structure and optical behavior of pearls. Proc. Indian Acad. Sci 1954; A39:215-222.
    [25]N. Nagata, T. Dobashi, Y. Manabe, T. Usami, S. Inokuchi. Modeling and Visualization for a Pearl-Quality Evaluation Simulator. IEEE Trans. Visual. Comput. Graphics,1997; 3:307-315.
    [26]T. Dobashi, N. Nagata, Y. Manabe, S. Inokuchi. Implementation of a Pearl Visual Simulator Based on Blurring and Interference. IEEE/ASME Trans. Mech,1998; 3: 106-112.
    [27]S. Karampelas, E. Fritsch, J.-Y. Mevellec, et al. Determination by Raman scattering of the nature of pigments in cultured freshwater pearls from the mollusk Hyriopsis cumingi. J. Raman Spectrosc.2007; 38:217-230.
    [28]高岩,张蓓莉。淡水养殖珍珠的颜色与拉曼光谱的关系。宝石和宝石学杂质2001,3(3):17-20。
    [29]秦作路,马红艳,木士春,等。优质淡水珍珠的体色及其与拉曼光谱的关系。矿物学报,2007,27(1):73-76
    [30]郝玉兰,王学生,张刚生。优、劣质淡水养殖珍珠的显微激光拉曼光谱特征。桂林理工大学学报2010,30(1):140-143。
    [31]李耿,林瓴,沙拿利,等。淡水养殖珍珠的光泽、颜色与有机质关系初探。桂林工学院学报200727(4):569-571。
    [32]张妮,郭继春,张学云,等。珍珠表面形貌的AFM和SEM研究。岩石矿物学杂志2004,23(4):370-374。
    [33]H. M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, B. J. Glover. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 2009; 323(2):130-133.
    [34]Y. Liu, J. E. Shigley, K. N. Hurwit. Iridesence color of a shell of the mollusk pinctada margaritifera caused by diffraction. Optics Express 1999; 4:177-182.
    [35]T.L. Tan, D. Wong, and P. Lee. Iridescence of a shell of mollusk Haliotis Glabra. Optics Express 2004; 12:4847-4854.
    [36]N. Watabe. J. Ultrastruct. Res.12,351(1965).
    [37]S. Weiner, L. Hood. Soluble Protein of the Organic Matrix of Mollusk Shells: A Potential Template for Shell Formation. Science 190,987(1975).
    [38]L. Addadi, S. Weiner. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc. Natl. Acad. Sci. U.S.A.82, 4110(1985).
    [39]S. Weiner, L. Addadi, Trends Biochem, Sci.16,252(1991).
    [40]Y. Levi-Kalisman, G. Falini, L. Addadi, S. Weiner. Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J. Struct. Biol.135(2001) 8-17.
    [41]L. Pereira-Mouries, M.J. Almeida, C. Ribeiro, J. Peduzzi, M. Barthelemy, C. Milet, E. Lopez. Eur. J. Biochem.2002,269,4994-5003.
    [42]A.Sugawara. T.Kato. Chem. Commun.2000,186.
    [43]N.A.J.M. Sommerdijk, G.D. With. Biomimetic CaCO3 mineralization using designer molecules and interfaces.Chem. Rev.2008,108:4499-4550.
    [44]F. Marin, G. Luquet. Molluscan shell proteins. C.R. Palevol 2004; 3:469-492.
    [45]Z.G. Yan, Z. Fang, Z. J Ma, J. Deng, S. Li, L.P. Xie, et al. Biomineralization: Functions of calmodulin-like protein in the shell formation of pearl oyster. Biochimica etBiophysica Acta 2007; 1770:1338-1344.
    [46]T. Takeuchi, I. Sarashina, M. Iijima, K. Endo. In vitro regulation of CaC03 crystal polymorphism by the highly acidic molluscan shell protein Aspein. FEBS letters 2008; 582:591-596.
    [47]B. Marie, G. Luquet, L. Bedouet, C. Milet, N. Guichard, D. Medakovic, et al. Nacre calcification in the freshwater mussel unio pictorum:carbonic anhydrase activity and purification of a 95Kda calcium-binding glycoprotein. ChemBioChem 2008; 9:2515-2523.
    [48]C. Cheng, Z.Z. Shao, F. Vollrath. Silk fibroin-regulated crystallization of calcium carbonate. Adv. Funct. Mater.2008; 18:2172-2179.
    [49]B. Marie, I. Zanella-Cleon, M. Corneillat, M. Becchi, G. Alcaraz, L. Plasseraud, et al. Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphalus. FEBS Journal 2011; (278):2117-2130.
    [50]R.S.K. Lam, J.M. Charnock, A. Lennie, F.C. Meldrum. CrystEngComm 2007; 9: 9073-9075.
    [51]C.L. Freeman, J.H. Harding, D.M. Duffy. Simulations of calcite crystallization on self-assembled monolayers. Langmuir 2008; 24:9607-9615.
    [52]Z.H. Xue, B.B. Hu, S.X. Dai, Z.L. Du. Crystallization and self-assembly of flowerlike superstructures of calcium carbonate regulated by pepsin langmuir monolayers. Mater. Chem. Phys.2012; 136:771-777.
    [53]W.Y. Dong, H.X. Cheng, Y. Yao, Y.F. Zhou, G.S. Tong, D.Y. Yan, et al. Bioinspired synthesis of calcium carbonate hollow spheres with a nacre-type laminated microstructure. Langmuir 2011; 27(1):366-370.
    [54]N. Wada, Y. Tanaka, M. Nakamura, K. Kanamura, K. Yamashita. Controlled crystallization of calcite under surface electric field due to polarized hydroxyapatite ceramics. J. Am. Ceram. Soc.,2009; 92(7):1586-1591.
    [55]A.W. Xu, W.F. Dong, M. Antonietti, H. Colfen. Polymorph switching of calcium carbonate crystal by polymer-controlled crystallization. Adv. Funct. Mater.2008; 18: 1307-1313.
    [56]Y.X. Gao, S.H. Yu, X.H. Guo. Double hydrophilic block copolymer controlled growth and self-assembly of CaCO3 multilayered structures at the air/water interface. Langmuir 2006; 22:6125-6129.
    [57]Y.X. Gao, S.H. Yu, H.P. Cong, J. Jiang, A.W. Xu, W.F. Dong, et al. Block-copolymer controlled growth of CaCO3 microrings. J. Phys. Chem. B.2006; 110(13):6432-6436.
    [58]N. Nassif, N. Gehrke, N. Pinna, N. Shirshova, K. Tauer, M. Antonietti, et al. Synthesis of stable aragonite superstructure by a biomimetic crystallization pathway. Angew. Chem. Int. Ed.2005; 44:6004-6009.
    [59]T. Kato. Polymer/Calcium carbonate layered thin-film composites. Adv. Mater. 2000.12:1543-1546.
    [60]X. Q. Li, H. C. Zeng. Calcium Carbonate Nanotablets:Bridging Artificial to Natural Nacre. Adv. Mater.2012,24,6277-6282.
    [61]J. Chen, L. Xiang. Controllable synthesis of calcium carbonate polymorphs at different temperatures. Powder Technology 2009; 189:64-69.
    [62]Gen-Tao Zhou, Ye-Bin Guan, Qi-Zhi Yao, Sheng-Quan Fu. Biominetic mineralization of prismatic calcite mesocrystals:Relevance to biomineralization. Chemical Geology 2010; 279:63-72.
    [63]M. Faatz, F. Grohn, and G. Wegner. Amorphous Calcium Carbonate synthesis and potential intermediate in biominerlization. Adv. Mater.2004.16:996-1000.
    [64]P. Kaempfe, V. R. Lauth, T. Halfer, L. Treccani, M. Maas, K. Rezwan. Micromolding of calcium carbonate using a bio-inspired, coacervation-mediated process. J. Am. Ceram. Soc 2013; 96(3):736-742.
    [65]S. Bentov, S. Weil, L. Glazer, A. Sagi, A. Berman. Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. Journal of Structural Biology 2010; 171:207-215.
    [66]K. Maruyama, T. Yoshino, H. Kagi. Synthesizing a composite material of amorphous calcium carbonate and aspartic acid. Materials Letters 2011; 65:179-181.
    [67]K. Gorna, M. Hund, M. Vucak, F. Grohn, G. Wegner. Amorphous calcium carbonate in form of spherical nanosized particles and its application as fillers for polymers. Materials Science and Engineering A 2008; 477:217-225.
    [1]H.M. Leung, S.K. Sinha. Scratch and indentation test on seashells. Tribology International 2009; 42:40-49.
    [2]F. Barthelat, H. Tang, P.D. Zavattieri, C.M. Li, H.D. Espinosa. On the mechanics of mother-of-pearl:A key feature in the material hierarchical structure. Journal of Mechanics and Physics of Solids 2007; 55:306-337.
    [3]许振嘉,半导体的检测与分析,科学出版社,2007年。
    [4]刘建辉,王弘,孙大亮,王民,姚伟峰,杨雪娜。原子力显微镜及其在各个研究领域的应用。科技导报2003;第三期:9-12。
    [5]E.M. Pouget, P.H.H. Bomans, J.A.C.M. Goos, P.M. Frederik, G.D. With, N.A.J.M. Sommerdijk. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 2009; 323:1455-1458.
    [6]D. Gebauer, A. Volkel, H. Colfen. Stable Prenucleation Calcium Carbonate Clusters. Science 2008; 322:1819-1822.
    [7]N.A.J.M. Sommerdijk, G.D. With. Biomimetic CaCO3 Mineralization using Designer Molecules and Interfaces. Chem Rev 2008; 108:4499-4550.
    [8]A.W. Xu, Y.R Ma, H. Colfen. Biomimetic mineralization. J. Mater. Chem 2007; 17: 415-449.
    [9]I.M. Weiss, N. Tuross, L. Addadi, S. Weiner. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. Journal of experimental zoology 2002; 293:478-491.
    [10]K. Saruwatari, T. Matsui, H. Mukai, H. Nagasawa, T. Kogure. Nucleation and growth of aragonite crystals at the growth front nacres in pearl oyster, Pincatada fucata. Biomaterials 2009; 30:3028-3034.
    [11]C. Ortiz, M.C. Boyce. Bioinspired structural materials. Science 2008; 319: 1053-1054.
    [12]R.S.K. Lam, J.M. Charnock, A. Lennie, F.C. Meldrum. CrystEngComm 2007; 9: 9073-9075.
    [13]D. Gebauer, A. Volkel, H. Colfen. Stable Prenucleation Calcium Carbonate Clusters. Science 2008; 322:1819-1822.
    [14]L. Addadi, D. Joester, F. Nudelman, S. Weiner. Mollusk shell formation:a source of new concepts for understanding biomineralization processes. Chem. Eur. J.2006; 12: 980-987.
    [15]D.E. Jacob, R. Wirth, A.L. Soldati, U. Wehrmeister, A. Schreiber. Amorphous calcium carbonate in the shell of adult Unionoida. Journal of Structural Biology 2011; 173:241-249.
    [16]S. Karampelas, E. Fitsch, J.-Y. Mevellec, J.-P. Gauthier, S.Sklavounos and T. Soldatos. Determination by Raman scattering of the nature of pigments in cultured freshwater pearls from the mollusk Hyriopsis cumingi. J. Raman Spectrosc.2007; 38: 217-230.
    [17]A.L. Soldati, D.E. Jacob, U. Wehrmeister, T. Hager and W. Hofmeister. Micro-Raman spectroscopy of pigments contained in different calcium carbonate polymorphs from freshwater cultured pearls. J. Raman Spectrosc.2008; 39:525-536.
    [18]L. Addadi, S. Raz, S. Weiner. Taking advantage of disorder:Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater 2003; 15:959-957.
    [19]J. Aizenberg, D.A. Muller, J.L. Grazul, D.R. Hamann. Direct fabrication of large micropatterned single crystals. Science 2003; 299:1205-1208.
    [20]Y. Levi-Kalisman, G. Falini, L. Addadi, S. Weiner. Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. Journal of Structural Biology 2001; 135:8-17.
    [21]M. Rousseau, E. Lopez, P. Stempfle, M. Brendle, L. Franke, A. Guette, et al. Multiscale structure of sheet nacre. Biomaterials 2005; 26:6254-6262.
    [22]X.D. Li. Nanoscale structural and mechanical characterization ofnatural nanocomposites:seashells. Nanocomposite Materials 2007; JOM.
    [23]K. Takahashi, H. Yamamoto, A. Onoda, T. Inaba, M. Chiba, A. Kobayashi, et al. Highly oriented aragonite nanocrystal-biopolymer composites in an aragonite brick of the nacreous layer of Pinctada fucata. Chemical Communications 2004; 8:996-997.
    [1]S. C. Raman, D. Krishnamurti. The structure and optical behavior of pearls. Proc. Indian Acad. Sci 1954; A39:215-222.
    [2]T. Dobashi, N. Nagata, Y. Manabe, S. Inokuchi. Implementation of a Pearl Visual Simulator Based on Blurring and Interference. IEEE/ASME TRANSACTIONS ON MECHATRONICS 1998.3:106-112.
    [3]G. Mayer. Rigid Biological Systems as Models for Synthetic Composites. Science 2005; 310:1144-1147.
    [4]H.M. Leung, S.K. Sinha. Scratch and indentation tests on seashells.Tribology International 2009; 42:40-49.
    [5]Y. Liu and J. E. Shigley. Iridesence color of a shell of the mollusk pinctada margaritifera caused by diffraction. Optics Express 1999; 4:177-182.
    [6]T.L. Tan, D. Wong, and P. Lee. Iridescence of a shell of mollusk Haliotis Glabra. Optics Express 2004; 12:4847-4854.
    [7]F. Barthelat, H. Tang, P.D. Zavattieri, C.-M. Li, H.D. Espinosa. On the mechanics of mother-of-pearl:A key feature in the material hierarchical structure. Journal of the Mechanics and Physics of Solids 2007; 55:306-337.
    [8]M. Rousseau, E. Lopez, P. Stempfle, M. Brendle, L. Franke, A. Guette, et al. Multiscale structure of sheet nacre. Biomaterials 2005; 26:6254-6262.
    [9]X.D. Li:'Nanoscale structural and mechanical characterization of natural nanocomposites:seashells', Nanocompos. Mater.,2007,71-74.
    [10]F. Marin, G. Luquet. Molluscan shell proteins. Comptes Rendus Palevol 2004; 3:469-492.
    [11]Y. Levi-Kalisman, G. Falini, L. Addadi, S. Weiner. Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. Journal of Structural Biology 2001; 135:8-17.
    [12]L. Addadi, D. Joester, F. Nudelman, S. Weiner. Mollusk shell formation:a source of new concepts for understanding biomineralization processes. Chem. Eur. J.2006; 12: 980-987.
    [13]S. Karampelas, E. Fritsch, J.-Y. Mevellec, et al. Determination by Raman scattering of the nature of pigments in cultured freshwater pearls from the mollusk Hyriopsis cumingi. J. Raman Spectrosc.2007; 38:217-230.
    [14]高岩,张蓓莉。淡水养殖珍珠的颜色与拉曼光谱的关系。宝石和宝石学杂质2001,3(3):17-20。
    [15]秦作路,马红艳,木士春,等。优质淡水珍珠的体色及其与拉曼光谱的关系。矿物学报,2007,27(1):73-76
    [16]郝玉兰,王学生,张刚生。优、劣质淡水养殖珍珠的显微激光拉曼光谱特征。桂林理工大学学报2010,30(1):140-143。
    [17]李耿,林瓴,沙拿利,等。淡水养殖珍珠的光泽、颜色与有机质关系初探。桂林工学院学报200727(4):569-571。
    [18]张妮,郭继春,张学云,等。珍珠表面形貌的AFM和SEM研究。岩石矿物学杂志2004,23(4):370-374。
    [19]H.M. Whitney, M. Kolle, P. Andrew, L. Chittka, U. Steiner, B.J. Glover. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. SCIENCE 2009; 323(2):130-133.
    [20]V. Sharma, M. Crne, J. O. Park, M. Srinivasarao. Structural Origin of C ircularly P olarizedIridescence in Jeweled Beetles. SCIENCE VOL 325 24 JULY 2009.
    [21]B.Li, J.Zhou, L.T.Li, Q.Li, S.Han, Z.B.Hao. Chin. Sci.Bull.50,1529(2005).
    [22]W. G. Zhang, G. Y. Xu, R. Y. Ding, K. G. Duan and J. L. Qiao. Nacre biomimetic design-a possible approach to prepare low infrared emissivity composite coatings. Materials Science and Engineering C 33,99-102(2013).
    [23]G. Pfaff, P. Reynders. Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem. Rev.99,1963-1981(1999).
    [24]T. L. Tan, D. Wong and P. Lee. Iridescence of a shell of mollusk Haliotis Glabra. Optics Express 12(20),4847-4854(2004).
    [25]P. Zhang and A.C. To. Broadband wave filtering of bioinspired hierarchical phononic crystal. Appl. Phys. Lett.102(12),121910(2013).
    [1]N.A.J.M. Sommerdijk, G.D. With. Biomimetic CaCO3 mineralization using designer molecules and interfaces.Chem. Rev.2008,108:4499-4550.
    [2]T. Takeuchi, Ⅰ. Sarashina, M. Iijima, K. Endo. In vitro regulation of CaCO3 crystal polymorphism by the highly acidic molluscan shell protein Aspein. FEBS letters 2008; 582:591-596.
    [3]C. Cheng, Z.Z. Shao, F. Vollrath. Silk fibroin-regulated crystallization of calcium carbonate. Adv. Funct. Mater.2008; 18:2172-2179.
    [4]C.L. Freeman, J.H. Harding, D.M. Duffy. Simulations of calcite crystallization on self-assembled monolayers. Langmuir 2008; 24:9607-9615.
    [5]Z.H. Xue, B.B. Hu, S.X. Dai, Z.L. Du. Crystallization and self-assembly of flowerlike superstructures of calcium carbonate regulated by pepsin langmuir monolayers. Mater. Chem. Phys.2012; 136:771-777.
    [6]W.Y. Dong, H.X. Cheng, Y. Yao, Y.F. Zhou, G.S. Tong, D.Y. Yan, et al. Bioinspired synthesis of calcium carbonate hollow spheres with a nacre-type laminated microstructure. Langmuir 2011; 27(1):366-370.
    [7]N. Wada, Y. Tanaka, M. Nakamura, K. Kanamura, K. Yamashita. Controlled crystallization of calcite under surface electric field due to polarized hydroxyapatite ceramics. J. Am. Ceram. Soc.,2009; 92(7):1586-1591.
    [8]A.W. Xu, W.F. Dong, M. Antonietti, H. Colfen. Polymorph switching of calcium carbonate crystal by polymer-controlled crystallization. Adv. Funct. Mater.2008; 18: 1307-1313.
    [9]J.C. Jamieson. Phase equilibrium in the system calcite-aragonite. The Journal of Chemical Physics 1953; 21(8):1385-1390.
    [10]J.L. Wray, F. Daniels. Precipitation of calcite and aragonite. Physical and Inorganic Chemistry 1957; 79(9):2031-2034.
    [11]N.H.D. Leeuw, S.C. Parker. Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite:an atomistic approach. J. Phy. Chem. B 1998; 102:2914-2922.
    [12]J. Chen, L. Xiang. Controllable synthesis of calcium carbonate polymorphs at different temperatures. Powder Technology 2009; 189:64-69.
    [13]许兢,陈庆华,钱庆荣。尿素水解法制备晶须碳酸钙。结构化学2003;22(2):233-237。
    [14]S. Karampelas, E. Fitsch, J.-Y. Mevellec, J.-P. Gauthier, S.Sklavounos and T. Soldatos. Determination by Raman scattering of the nature of pigments in cultured freshwater pearls from the mollusk Hyriopsis cumingi. J. Raman Spectrosc.2007; 38: 217-230.
    [15]A. L. Soldati, D. E. Jacob, U. Wehrmeister, T. Hager and W. Hofmeister. Micro-Raman spectroscopy of pigments contained in different calcium carbonate polymorphs from freshwater cultured pearls. J. Raman Spectrosc.2008; 39:525-536.
    [16]R. Ciriminna, A. Fidalgo, V. Pandarus, F. Beland, L.M. Ilharco, M. Pagliaro. Chem Rev 2013,113(8):6592-620.
    [17]C.R. Blue, J.D. Rimstidt, P.M. Dove. Method Enzymol 2013; 532:557-68.
    [18]D.E. Jacob, R. Wirth, A.L. Soldati, U. Wehrmeister, A. Schreiber. Amorphous calcium carbonate in the shell of adult Unionoida. Journal of Structural Biology 2011; 173:241-249.
    [21]G.T. Zhou, Y.B. Guan, Q.Z. Yao, S.Q. Fu. Biominetic mineralization of prismatic calcite mesocrystals:Relevance to biomineralization. Chemical Geology 2010; 279:63-72.
    [22]W.Y. Dong, H.X Cheng, Y. Yao, Y.F. Zhou, G.S. Tong, D.Y. Yan,.et al. Bioinspired synthesis of calcium carbonate hollow spheres with a nacre-type laminated microstructure. Langmuir 2011; 27(1):366-370.
    [23]I.M. Weiss, N. Tuross, L. Addadi, S. Weiner. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. Journal of experimental zoology 2002; 293:478-491.
    [16]D. Gebauer, A. Volkel, H. Colfen. Science 2008; 322:1819-22.
    [17]E.M. Pouget, P.H.H. Bomans, J.A.C.M. Goos, P.M. Frederik, G.D. With, N.A.J.M Sommerdijk. Science 2009; 323:1455-8.
    [18]A. Wallace, L.O. Hedges, A. Fernandez-Martinez, P. Raiteri, J.D. Gale, G.A. Waychunas, et al. Science 2013; 341:885-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700