用户名: 密码: 验证码:
华北平原德州地面沉降成生机理、监测预警与可控性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水开采引发的地面沉降严重影响区域经济、社会的可持续发展和生态文明建设,自上世纪50年代以来,地面沉降问题作为一种缓变地质灾害现象越来越受到全世界的广泛关注。地面沉降会对高速铁路、城市环境及生态、生命线工程、建筑物及基础设施等产生重大的不良影响。截至2011年12月,中国有90余个城市出现地面沉降,长三角地区、华北平原和汾渭盆地已成重灾区,沉降面积达9万平方公里,并伴生了地裂缝灾害。在山东省范围内,地面沉降主要发生在鲁北、鲁西等深层地下水开采量较大、地表建筑较为集中的德州、滨州、东营、济宁、菏泽、济南(部分)、淄博(部分)和潍坊(部分)等平原城市的中心城区和部分县城城区。德州所在的鲁北平原地面沉降存在发展空间大、发展趋势强、地下流体采源深和影响因素复杂等特点,对工农业生产、水利设施、城市建设、高速公路、京沪高速铁路建设和运行等造成了一定的影响,已成为影响鲁北区域经济社会可持续发展的重要因素之一。德州深层地下水最大开采深度已达940m,是华北平原目前地下水开采最深的层位。德州市城区由于长期超量开采深层地下水,形成了区域性的深层地下水降落漏斗,地面沉降、(地下)咸水界面下侵、南移等地质环境问题业已出现。现在随着德城区深层地下水位降漏斗深度与广度的不断加大,与周边的沧州漏斗、衡水漏斗、文安-大成漏斗、天津漏斗、临邑漏斗联为一片,形成区域性复合式深层地下水位降落漏斗分布区,成为华北大漏斗的一部分。德州漏斗是华北平原最为典型的深层地下水降落漏斗之一。黄河三角洲高效生态经济区、山东半岛蓝色经济区部分地段、黄河沿线、小清河以及一些重要工矿区也位于华北平原(山东部分)地面沉降区(或易发区)范围内,也是地面沉降重点防控区;京沪高铁、京沪高速公路、南水北调输水工程纵贯鲁北平原区,高铁、水利、市政等建设项目应严格控制地面沉降量。德州市区(德城区为主)是鲁北平原地面沉降出现最早、影响最大、最为严重的地区。本课题研究的目标是以德城区为背景,综合水文地质、工程地质学、地下水动力学和岩土力学等学科,通过现场监测、室内试验、理论研究、数值分析等手段,研究该区域地下水流场时空动态分布规律、地下水开采引发的地面沉降成生发展演化的宏细观机理及规律、基于层次分析法的可拓学易发性分区研究、三维流固全耦合本构模型等关键科学问题,研究具有一定创新性。并通过比较调整开采量、开采层位、开采井布局等方案,为区域地面沉降的防治提供理论依据,提出可以经济、合理、高效的控制地面沉降的工程、非工程措施。
     本次研究重点开展了地面沉降调查、水文地质钻探、物探测井、抽水试验、岩土力学测试、地面沉降监测(GPS测量、二等水准测量)、地下水动态监测、地面沉降预警预报模型建设和数值计算等工作,主要成果如下:
     (1)通过现场钻探进行深部地层勘查,准确确定研究区域的地层结构分布,钻孔全孔取芯,并对各地层取样,对试样进行室内试验,测定各地层的物理力学参数和水文地质参数;同时对关键压缩层岩芯进行电镜扫描等测试,获得该层位岩土体的微观结构参数。
     (2)通过现场抽水试验及原有资料分析,建立地下水三维非稳定流数值模型,预测地下水流场的时空动态分布规律。
     (3)利用地下水开采动态资料和地面沉降监测资料,结合研究区域的水文地质资料,以达西定律、Biot固结理论等为基础,运用COMSOL Multiphysies软件,建立渗流场和应力场相互耦合的三维地面沉降的预警预报数值模型。
     (4)根据现场实验、室内试验、理论分析、数值分析的结果,初步确定德州地区地下水开采诱发地面沉降的规律。通过数值模拟试验,比较调整开采量、开采层位、开采井布局和回灌地下水等方案对控制德州市地面沉降作用效果,为德州市地面沉降的防治提供理论依据,并提出了可以经济、合理、高效的控制地面沉降的工程、非工程措施。
     本次研究工作对德州市的地面沉降防治工程具有重要的理论和实际意义,不仅为区内重大基础工程的结构安全稳固性提供技术依据,对于维护人民群众生命财产安全具有重要意义,对于德州市的城市规划及建设具有重要的指导意义,对于山东省其他地区的地面沉降防治工作具有示范效应,完善和推动了地面沉降领域的理论发展和工程实践应用。研究成果可为地质环境保护、促进地质环境和生态文明的良性发展提供依据,促进经济社会又好又快地可持续发展。
Land subsidence seriously affected the sustainable development of regional economic, social and ecological civilization construction. Since the50's of last century, the problem of land subsidence as a slowly varying geological disaster phenomenon was paid more and more close attention all over the world. Land subsidence will have a significant adverse effect on high-speed railway, city environment and ecology, lifeline engineering, buildings and infrastructure. By December2011, more than90cities in China were come about land subsidence, such as the heavy disaster area of the Yangtze River Delta region, North China Plain and Fenwei basin, which area was90000square kilometers, and associated with the ground fissure. In Shandong Province, land subsidence occurred mainly in the deep groundwater exploitation, the place where the ground buildings are concentrated, in Dezhou, Binzhou, Dongying, Jining, Heze, Ji'nan (part), Zibo (part) and Weifang (part) et al. plain city center city and partial county city. Dezhou is located in Lubei plain where land subsidence has large development space, the development trend of strong, underground fluid source of deep and complex factors, and was caused some impact on industrial and agricultural production, water conservancy facilities, city construction, highway, the Beijing-Shanghai high-speed railway construction and operation, and has become one of the important factors affecting the economic and society sustainable development of Lubei region. The largest exploitation depth of deep groundwater in Dezhou has reached940m, which is the most deep layer groundwater exploitation in North China Plain. Due to the long-term over exploitation of deep groundwater, a deep groundwater regional cone of depression, land subsidence, seawater intrusion (underground) interface, geological environment problems have appeared in Dezhou city. Now with the deep water table depth and breadth in drop continuously, and the surrounding Cangzhou, Hengshui, WenAn-DaCheng funnel, Tianjin funnel, Linyi funnel connected into a sheet, forming deep regional groundwater level combined funnel distribution area, and become a part of the North China funnel. Dezhou funnel is the most typical of deep groundwater drawdown funnel of North China Plain. Efficient ecological economic zone of the Yellow River Delta in Shandong, Shandong Peninsula blue economic zone, the Yellow River part area, along the Xiaoqing River, and some important industrial zone are located in subsidence area (or prone areas) range of the North China Plain (Shandong), which are also the focus of prevention and control of land subsidence. High-speed Rail district of Beijing-Shanghai, Beijing-Shanghai Expressway, the south to North Water Diversion Project water runs through the northern plain areas, strict control of land subsidence should be controlled for High-speed Rail, water conservancy, municipal construction projects. Dezhou city of Lubei plain land subsidence was appeared the earliest,and the impact was the biggest, the most serious areas. The goal of this research is to Decheng district as background, comprehensive engineering geology hydrogeology, groundwater dynamics, rock and soil mechanics, through field monitoring, laboratory test, theoretical research, numerical analysis, to study the temporal and spatial dynamic distribution of regional groundwater flow, land subsidence as the development and evolution of the macro micro mechanism and rules, the extension study based on AHP, primary partition of3D fluid solid coupling constitutive model of key scientific problem. This research is more innovative in some way. By comparison, the exploited horizon, adjusting production wells layout scheme, and provides theoretical basis for the prevention and treatment for the regional land subsidence, proposed control land subsidence can be economical and reasonable, efficient settlement, non engineering measures.
     This reasearch focuses on the ground investigation, hydrogeological drilling, geophysical logging, pumping test, rock mechanics test, land subsidence monitoring (GPS measurement, two leveling), groundwater dynamic monitoring, land subsidence prediction model construction and numerical calculation, the main results are as follows:
     (1) For the deep strata exploration through the field drilling, accurately determine the distribution of stratum structure in the study area, drilling cores, and the stratum sampling, laboratory testing of samples, determination of the physical and mechanical parameters of stratum and hydrogeological parameters; At the same time the scanning electron microscopy test of key compression layer core, obtain the micro structural parameters of the layer of rock and soil.
     (2) Through the pumping test and the original data analysis, a three-dimensional groundwater unsteady flow numerical model, prediction of dynamic changes of groundwater flow.
     (3) The exploitation of groundwater dynamic data and surface subsidence monitoring data, combined with hydrological data of the study area, using Darcy's law, Biot's consolidation theory, the use of COMSOL Multiphysies software, numerical model of seepage field and forecast of ground stress coupling field of settlement building.
     (4) According to the field experiments, laboratory test, theoretical analysis, numerical analysis results, preliminary determine the law of groundwater exploitation induced subsidence area of Dezhou. Through numerical simulation, comparison adjustment exploitation, exploitation layers, exploitation and recharge of groundwater scheme to control the land subsidence of Dezhou city effect well layout, and provide a theoretical basis for the prevention and control of land subsidence in Dezhou City, and put forward the economic, reasonable, effective control of land subsidence engineering and the non engineering measures.
     There are the important theory and the practical significance of the research work of Dezhou land subsidence control project, which not only to provide technical basis for the structural safety zone major foundation engineering firm, and has an important significance for protecting the safety of people's lives and property, and have important guiding significance for city planning and construction of Dezhou City, with a demonstration effect on other areas of Shandong province land subsidence prevention and controlling work, and continue to improve and promote the development of land subsidence theory and engineering practice application. The research results can provide a basis for the protection of geological environment, and promote the benign development of geological environment and ecological civilization, and promote sound and rapid economic and social sustainable development.
引文
[1]国土资源部水利部关于印发《全国地面沉降防治规划(2012-2020年)》的通知(国土资发(2012)43号),2012年3月2日.
    [2]Yongwei Zhang, Shucai Li, Xuguang Chen. et al. GEOTECHNICAL ENGINEERING CONTROL ON THE SCENIC AREA-RESEARCH ON THE METHOD FOR GEOLOGICAL DISASTERS-ROCKFALL, LANDSLIDE AND DEBRIS FLOW IN LAOSHAN DISTRICT OF QINGDAO [J]. Advanced Materials Research Vols.594-597 (2012) pp 3072-3079 (?) (2012) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMR594-597.3072.
    [3]张永伟,刘文峰,王治良等,青岛市崂山区典型地质灾害危险性分析及治理施工方案[J].山东国土资源,2010,26(04):20-24.
    [4]Yongwei Zhang, Shucai Li, Fanqi Meng et al.. Geo-environment evaluation of damaged mountains based on efficacy coefficient method in Jinan, China [J]. Advanced Materials Research Vols.838-841 (2014) pp 2503-2506, doi:10.4028/www.scientific.net/AMR.838-841.2503.
    [5]Yongwei Zhang, Shucai Li, Fanqi Meng. Application of extenics theory for evaluating effect degree of damaged mountains based on analytic hierarchy process[J]. Environmental Earth Sciences, DOI 10.1007/s12665-013-2840-y.
    [6]Yongwei Zhang, Shucai Li, Bo Zhang et al.. Application research of Landscape Effect Degree (LED) in Damaged mountain restoration (Green mine) in beautiful JiNan city[J]. Applied Mechanics and Materials Vols.357-360(2013) pp 2110-2113(?)(2013) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.357-360.2110.
    [7]山东省人民政府关于组织实施《山东省地面沉降防治规划(2012-2020年)》的通知(鲁政发(2014)68号),2014年3月27日.
    [8]《坚定不移沿着中国特色社会主义道路前进为全面建成小康社会而奋斗-在中国共产党十八次全国代表大会上的报告》,2012年11月8日,人民出版社.
    [9]《中共中央关于全面深化改革若于重大问题的决定》,人民出版社.
    [10]中华人民共和国国务院《地质灾害防治条例》(国务院令394号).
    [11]张阿根,杨天亮.国际地面沉降研究最新进展综述[J].上海地质.2010,31(04):57-63.
    [12]徐曙光.美国地面沉降调查研究[J].国土资源情报2001(12):15-21.
    [13]崔振东,唐益群.国内外地面沉降现状与研究[J].西北地震学报.2007,9(03):275-278.
    [14]O Guerrero, D L Rudolph, J A Cherry. Analysis of long-term land subsidence near Mexico City:field investigations and predicative modeling [J]. Water Resources Research,1999,35(11):3327-3341.
    [15]Miura N, Taesiri Y, Sakai A. Land subsidence and its influence to geotechnical aspect in Saga plain [A]// Proceedings of the international symposium on shallow sea and lowland [C], Saga, Japan:ILT, Saga University,1988.
    [16]P. Teatini, M. Ferronato, G. Gambolati, et al.. Acentury of land subsidence in Ravenna, Italy [J]. Environ Geol,2005, (47):831-846. DOI 10.1007/s00254-004-1215-9.
    [17]Gambolati G, Teatini P, Tomasi L, et al.. Coastline regression of the Romagna region, Italy, due to sea level rise and natural and anthropogenic land subsidence [J]. Water Resour. Res.,1999,35(1):163-184.
    [18]龚士良上海地面沉降影响因素综合分析与地面沉降系统调控对策研究.华东师范大学[D][博士学位论文],2008年6月。
    [19]Bertoldi G L. Where do we go from here:a new initiative for subsidence research in the United States [A]// Annual Meeting of the symposium on land subsidence [C]. California:California institute of technology press,1995.
    [20]亓军强,施斌,蔡奕等.美国的地面沉降及其对策[J].西安工程学院学报.2002,24(04):58-62.
    [21]GEOFIGE H. DAVIS. Land Subsidence and Sea Level Coastal Plain of the United States Rise on the Atlantic [J].Environ Geol Water Sci,1987,10(2):67-80.
    [22]Yu-Qun Xue, Yun Zhang, Shu-Jun Ye, et al.. Land subsidence in China [J]. Environ Geol,2005, (48):713-720. DOI 10.1007/s00254-005-0010-6.
    [23]G. Y. Wang, Greg Guanlin You, B. Shi, et al.. Large differential land subsidence and earth fissures in Jiangyin, China [J]. Environ Earth Sci,2010, (61):1085-1093. DOI 10.1007/s12665-009-0430-9.
    [24]Adrian H. Gallardo, Atsunao Marui, Shinj i Takeda, et al.. Groundwater supply under land subsidence constrains in the Nobi Plain [J]. Geosciences Journal,2009,13(2):151-159. DOI 10.1007/sl2303-009-0014-4.
    [25]AMMARAMIN, KHALID BANKHER. Causes of Land Subsidence in the Kingdom of Saudi Arabia [J] Natural Hazards,1997, (16):57-63.
    [26]KHALID A. BANKHER, ABBAS A. AL-HARTHL Earth Fissuring and Land Subsidence in Western Saudi Arabia [J].Natural Hazards,1999, (20):21-42.
    [27]G. Gambolati, M. Putti, P. Teatini, et al.. Subsidence due to peat oxidation and impact on drainage infrastructures in a farmland catchment south of the Venice Lagoon [J]. Environ Geol,2006, (49):814-820. DOI 10.1007/s00254-006-0176-6.
    [28]M.A. Soriano, J.L. Simo n. Subsidence rates and urban damages in alluvial dolines of the Central Ebro basin (NE Spain) [J]. Environmental Geology,2002, (42):476-484. DOI 10.1007/s00254-001-0508-5.
    [29]Abdul S. Khan,Shuhab D. Khan,Din M. Kakar. Land subsidence and declining water resources in Quetta Valley,Pakistan [J].EnvironEarth Sci,2013, (70):2719-2727.DOI 10.1007/s12665-013-2328-9.
    [30]V Kontogianni, S. Pytharouli, S. Stiros. Land subsidence, Quaternary faults and vulnerability of utilities and transportation networks in Thessaly, Greece [J]. Environ Geol,2007, (52):1085-1095. DOI 10.1007/s00254-006-0548-y.
    [31]K.ROGERS1, N. SAINTILAN1, H. HEIJNIS. Mangrove Encroachment of Salt Marsh in Western Port Bay, Victoria:The Role of Sedimentation, Subsidence,and Sea Level Rise [J].Estuaries,2005,28 (4):551-559.
    [32]Raksmey May. Numerical simulation of the effect of heavy groundwater abstraction on groundwater-surface water interaction in Langat Basin, Selangor, Malaysia [J]. Environ Earth Sci,2014, (71):1239-1248. DOI 10.1007/s12665-013-2527-4.
    [33]Hasanuddin Z. Abidin, I. Gumilar, H. Andreas, et al.. On causes and impacts of land subsidence in Bandung Basin, Indonesia [J]. Environ Earth Sci,2013, (68):1545-1553. DOI 10.1007/s12665-012-1848-z.
    [34]张阿根,魏子新.中国地面沉降[M].上海:上海科学技术出版社,2005.
    [35]David G. Zeitoun, Eliyahu Wakshal, Land Subsidence Analysis in Urban Areas, Springer Environmental Science and Engineering-The Bangkok Metropolitan Area Case Study [M]. DOI 10.1007/978-94-007-5506-2, Springer Dordrecht Heidelberg New York London. Library of Congress Control Number:2012955030.
    [36]郭晨,我国地面沉降灾害现状及其防治[J].科技创新导报,2009,19:131.
    [37]RLHu, ZQYue. L C Wang, et al.. Review on current status and challenging issues of land subsidence in China[J]. Engineering Geology,2004,76:65-77.
    [38]严礼川,我国城市地面沉降概况[J]. 上海地质,1992, (1):40-48.
    [39]郑铣鑫,武强,侯艳声,等.关于城市地面沉降研究的几个前沿问题[J].地球学报,2002,23(3):279-282.
    [40]Rui Ma, Yanxin Wang, The effect of stratigraphic heterogeneity on areal distribution of land subsidence at Taiyuan, northern China [J]. Environ Geol,2006, (50):551-568. DOI 10.1007/s00254-006-0232-2.
    [41]杜廷芹.现代黄河三角洲地区地面沉降特征研究[D].博士学位论文,2009.
    [42]《工程地质手册》编写委员会.工程地质手册(第四版)[M].北京:中国建筑工业出版社,2007.
    [43]薛禹群张云,叶淑君,等中国地面沉降需要解决的几个问[J].第四纪研究2003,23(6):585-593.
    [44]阎世骏、刘长礼.城市地面沉降研究现状与展望[J].地学前缘1996.3(1):93-97.
    [45]左藤邦明(郑毅译).地面沉降的基础理论[J].世界地质,1990,(01):237-243.
    [46]刘飞.上海市地面沉降变形特征研究[D].中国地质大学(北京),2002.5.
    [47]刘泓伶,李波,樊艳云.简述地面沉降的研究进展[J].地质灾害与环境保护,2012,23(1):16-20.
    [48]Dora Carreon-Freyre, Mariano Cerca, Devin Galloway. Land Subsidence, Associated Hazards and the Role of Natural Resources Development-Proceedings of Eighth International Symposium on Land Subsidence[C]. IAHS Publication 339, Oxfordshire UK:IAHS Press,2010.
    [49]杨勇,李国敏,窦艳兵等.抽取地下水引起地面沉降的研究现状与进展[J].工程勘察(Geotechnical Investigation & Surveying),2010.11(6):32-37、91-92.
    [50]上海市地面沉降勘察研究报告(1962-1976年)[R].上海市地质处,1979.2.
    [51]上海市区及近郊区地面沉降勘察研究总结报告(1977-1985年)[R].上海市环境地质站,1987.12.
    [52]上海市地面沉降勘察研究总结报告(1986-1990年)[R].上海市环境地质站,1991.10.
    [53]A. DASSARGUES, J. ZHANG. LAND SUBSIDENCE IN SHANGHAI:HYDROGEOLOGICAL CONDITIONS AND SUBSIDENCE MEASUREMENTS [J]. Engineering Geology,1992:25-36.
    [54]龚士良.上海地面沉降层次分析法研究[J].系统工程1996(3).
    [55]龚士良.上海城市建设对地面沉降的影响.中国地质灾害与防治学报[J],1998,9(2):108-111.
    [56]刘毅,张先林,万贵富,等.上海市近期地面沉降形势与对策建议[J].中国地质灾害与防治学报,1998,9(2):13-17.
    [57]刘毅.上海市淤泥质软土侧向流动产生地面沉降[A].人类生存的地质环境问题[M].北京:地质出版社,1998,10:87-89.
    [58]刘毅.上海市地面沉降防治措施及其效果[J].火山地质与矿产.2000,21(02):107-111.
    [59]李勤奋,方正,王寒梅.上海市地下水可开采量模型计算及预测[J].上海地质.2000(2):3643.
    [60]朱桂娥,薛禹群,李勤奋.上海市多层结构地下水系统准三维模型的改进[J].中国岩溶.2000,19(04):321-326.
    [61]叶淑君,薛禹群,张云等.上海区域地面沉降模型中土层变形特征研究[J].岩土工程学报.2005,27(02):140-147.
    [62]Jichun Wu,Xiaoqing Shi,Yuqun Xue, et al.. The development and control of the land subsidence in the Yangtze Delta, China [J]. Environ Geol,2008,(55):1725-1735.DOI 10.1007/s00254-007-1123-x.
    [63]Xiaoqing Shi, Jichun Wu, Shujun Ye, et al.. Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China [J].Engineering Geology,2008, (100):27-42.
    [64]杨敏,卢俊义.上海地区深基坑周围地面沉降特点及其预测[J].同济大学学报(自然科学版).2010,38(02):194-199.
    [65]许烨霜,马磊,沈水龙.上海市城市化进程引起的地面沉降因素分析[J].岩土力学2011,32(增刊1):578-582.
    [66]Shaochun Dong,Sergey Samsonov,Hongwei Yin et al.. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method [J].Environ Earth Sci,2013. DOI 10.1007/s12665-013-2990-y.
    [67]赵其华、王兰生,西安地面沉降与地裂缝关系的量化分析[J],地质灾害与环境保护,1994,1.
    [68]任荣,沧州地下水开采与地面沉降关系的初探[J],地质灾害与防治,1992,1.
    [69]朱兴贤等,苏锡常地区地面沉降灾害与经济损失分析[J],水文地质工程地质,1997,3.
    [70]郑铣鑫,宁波地面沉降系统分析[J],水文地质工程地质,1991,2.
    [71]中国地质调查局地面沉降研究中心,地面沉降研究,2007.3,第六期,中国上海.
    [72]段永侯,我国地面沉降研究现状与21世纪可持续发展[J].中国地质灾害与防治学报,1998,9(2):1-52.
    [73]刘毅.地面沉降研究的新进展与面临的新问题[J].地学前缘2001,8(2):273-278.
    [74]伺庆成,叶晓滨,李志明等我国地面沉降现状及防治战略设想[J].高校地质学报2006,12(02):161-168.
    [75]谢海澜,郑锦娜.区域性地面沉降研究现状[J].地质调查与研究,2009,33(03):236-240.
    [76]林良俊,孙晓明,柳富田.新时期沿海地区国土开发面临的形势和主要环境地质问题及对策研究[J].水文地质工程地质,2010,37(03):1-3.
    [77]牛正军.地面沉降的研究[J].山西建筑.2012,38(23):76-78.
    [78]Poland JF. Guidebook to studies of land subsidence due to ground-water withdrawal [M]:United Nations Educational, Scientific and Cultural Organization; 1984.
    [79]薛禹群.论地下水超采与地面沉降[J].地下水.2012,6:1-5.
    [80]赵常洲,龚固培,王晖.地面沉降成因与危害[J].西部探矿工程,2003,117(01):261-263.
    [81]朱建军.环渤海地区地面沉降成因分析与对策研究[J].灾害学,2000,15(2):52-55.
    [82]宋印胜.地面沉降影响因素定量分析法比较[J].山东地质,1999,15(01):46-51.
    [83]姚书灵,高金川,容姣.几种典型成因类型的地面沉降机理分析及其防治对策[J].学术前沿,2006,(01):243-244.
    [84]王非.地面沉降机理及灾害防治技术研究.东南大学[D][博士论文],2010年1月.
    [85]彭建兵.中国活动构造与环境灾害研究中的若干重大问题[J].工程地质学报,2006,14(01):5-8.
    [86]杨国华,杨博,陈欣等.华北现今三维形变场空间变化的基本特征[J].武汉大学学报·信息科学版,2013,38(01):31-35.
    [87]师长兴,尤联元,李炳元等.黄河三角洲沉积物的自然固结压实过程及其影响[J].地理科学,2003,23(02):175-181.
    [88]Deverel S, Rojstaczer S. Subsidence of Agricultural Lands in the Sacramento-San Joaquin Delta, California: Role of Aqueous and Gaseous Carbon Fluxes [J].Water Resources Research.1996,32(8):2359-2367.
    [89]杨献忠,陈敬中,叶念军.论蒙脱石的脱水作用及其对地面沉降的影响[J].资源调查与环境,2003,24(02):89-95.
    [90]Chen-Wuing Liu,Wen-Sheng Lin, Li-Hsin Cheng. Estimation of land subsidence caused by loss of smectite-interlayer water in shallow aquifer systems [J]. Hydrogeology Journal,2006, (14):508-525. DOI 10.1007/s10040-005-0459-0.
    [91]Devin L. Galloway. Subsidence Induced by Underground Extraction [J]. Encyclopedia of Natural Hazards, Springer Science+Business Media Dordrecht,2013:980-985. DOI 10.1007/978-1-4020-4399-4.
    [92]Robert A. Morton,Julie C. Bernier,John A. Barras. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA [J]. Environ Geol,2006, (50):261-274. DOI 10.1007/s00254-006-0207-3.
    [93]鄂建,孙爱荣.华北平原地面沉降机理与特点及防治措施[J].资源环境与工程,2007,21(2):156-159.
    [94]刘大平,刘成玉.大庆油田石油开采对水文地质环境的影响及应因对策[J].东北师大学报(自然科学版),2012,44(03):136-141.
    [95]高燕.城市建设对地面沉降影响的研究.清华大学[D][硕士论文],2008年5月。
    [96]申太祥.论城市建设对地面沉降的影响[J].科技资讯,2010,(01):76、78.
    [97]唐益群,崔振东,王兴汉等.密集高层建筑群的工程环境效应引起地面沉降初步研究[J].西北地震学报,2007,29(2):105-108.
    [98]阎文中.西安地面沉降成因分析及其防治对策[J].中国地质灾害与防治学报,1998,9(2):27-32.
    [99]Chen C, Pei S, Jiao J. Land subsidence caused by groundwater exploitation in Suzhou City. China [J] Hydrogeology Journal.2003,11 (2):275-287.
    [100]谢海澜.天津大港区地面沉降形成机理与数值模拟研究.北京:中国矿业大学[D][博士学位论文],2006年.
    [101]余宣兴,赵淑屏,朱明新等.海河流域重点区域地面沉降分析[J].能源环境,2014,(01):147-148.
    [102]潘云,潘建刚,宫辉力等.天津市区地下水开采与地面沉降关系研究[J].地球与环境,2004,32(02):36-39.
    [103]秦伟颖,庄新国,黄海军等.现代黄河三角洲地区地面沉降的机理分析[J].海洋科学,2008,32(8):38-43.
    [104]我国主要地质灾害分布[J].瞭望新闻周刊,2004,(17):87.
    [105]Holzer T, Johnson A. Land subsidence caused by ground water withdrawal in urban areas [J]. GeoJournal. 1985, 11(3):245-255.
    [106]张廉钧.超采深层地下水引起地面沉降规律的探讨[J].华北水利水电学院学报,1999,20(2):39-43.
    [107]石建省,郭娇,孙彦敏.京津冀德平原区深层水开采与地面沉降关系空间分析[J].地质论评,2006,52(06):804-809.
    [108]张百鸣,金爱善.天津市滨海地区地热资源开发对地面沉降的影响[J].中国地质灾害与防治学报,1998,9(02):112-117.
    [109]林黎,赵苏民,李丹等.深层地热水开采与地面沉降的关系研究[J].水文地质工程地质.2006,(3):34-37.
    [110]M.Keiding, T. Amadottir, S. Jonsson, et al.. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland [J].Journal of Volcanology and Geothermal Research, 2010, (194):139-149.
    [111]王齐仁,徐卓荣. 钻孔抽水与地面变形关系的研究[J].焦作工学院学报(自然科学版),2000,19(2):109-112.
    [112]Chieh-HungChen, Chung-Ho Wang, Ya-Ju Hsu, et al.. Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan [J].Engineering Geology,2010, (115):122-131.
    [113]石建省,王昭,张兆吉等.华北平原深层地下水超采程度计算与分析[J].地学前缘(中国地质 大学(北京);北京大学).2010,17(6):215-220.
    [114]周洋许猛,许青松等.浅谈地下水开采对地面沉降影响及防治措施[J].河南水利与南水北调.2012,(08):6-7.
    [115]Jesus Pacheco-Martinez, Martin Hernandez-Marin, Thomas J. Burbey, et al.. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, Mexico [J]. Engineering Geology, 2013, (164):172-186.
    [116]Pietro Teatini, Domenico Bau, Giuseppe Gambolati. Water-gas dynamics and coastal land subsidence over Chioggia Mare field, northern Adriatic Sea [J]. Hydrogeology Journal,2000, (8):462-479. DOI 10.1007/s100400000092.
    [117]宁文务,朱智勇,金雯.地下水开采利用对滨海平原规划区地面沉降的影响分析[J].科技通报,2012,28(09):93-96.
    [118]周载阳.地下水开采引起地面沉降的机理研究[J].工程勘察,2012,(03):22-26.
    [119]顾宝和.浅谈岩土工程的专业特点[J].岩土工程界,2010,10(01):19-23.
    [120]王静,唐仲华,邓青军等.地下水开采导致总应力变化对地面沉降的影响[J].工程勘察,2012,(05):34-37.
    [121]陈仲颐,周景星,王洪瑾.土力学[M].北京:清华大学出版社,2008,98、100.
    [122]陈崇希,林敏.地下水动力学[M].北京:中国地质大学出版社,1999.
    [123]龚晓南,张杰.承压水降压引起的上覆土层沉降分析[J].岩土工程学报,2011,33(01):145-149.
    [124]姚迎,吴林高.考虑含水层组粘弹性特征的地面沉降计算[J].工程勘察.1995(04):1-5.
    [125]G. Modoni, G. Darini, R.L. Spacagna, et al.. Spatial analysis of land subsidence induced by groundwater withdrawal [J]. Engineering Geology,2013. doi:10.1016/j.enggeo.2013.10.014.
    [126]张云一维地面沉降模型及其求解[J].工程地质学报,2002.10(4):434-437.
    [127]王非,缪林昌.抽水地面沉降中含水层长期变形特性研究[J].岩石力学与工程报,2011,30(增1):3135-3140.
    [128]张先伟,王常明,王钢城等.黄石淤泥质土的剪切蠕变特性及模型研究[J].吉林大学学报(地球科学版),2009.39(1):119-125.
    [129]张云,薛禹群,吴吉春等.饱和黏性土蠕变变形试验研究[J].岩土力学,2011,32(03):672-683.
    [130]Galloway DL. Detection of aquifer systemic compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California [J].WATER RESOURCES RESEARCH.1998,34:2573-2585.
    [131]Bing Yu, Guoxiang Liu, Rui Zhang, et al.. Monitoring subsidence rates along road network by persistent scatterer SAR interferometry with high-resolution TerraSAR-X imagery [J]. J. Mod. Transport,2013,21(4):236-246. DOI 10.1007/s40534-013-0030-y.
    [132]V.B.H. (Gini) Ketelaar, Satellite Radar Interferometry-Subsidence Monitoring Techniques [M]. (?) 2009 Springer Science + Business Media B. V Library of Congress Control Number. 2008944289.
    [133]Abidin HZ, Djaja R, Darmawan D et al. Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System [J] Natural Hazards.2001,23(2)365-387.
    [134]Trevor Hunta, Mituhiko Sugiharab, Tatsuya Satoc, et al.. Measurement and use of the vertical gravity gradient in correcting repeat microgravity measurements for the effects of land subsidence in geothermal systems [J]. Geothermics,2002, (31):525-543.
    [135]Jun-su Kim, Duk-Jin Kim, Sang-Wan Kim, et al.. Monitoring of urban land surface subsidence using PSInSAR [J].Geosciences Journal,2007,11(1):59-73.
    [136]Sylvana Melo dos Santos, Jaime Joaquim da Silva Pereira Cabral, Ivaldo Dario da Silva Pontes Filho. Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS [J]. Nat Hazards,2012, (64):421-439. DOI 10.1007/s11069-012-0247-9.
    [137]Jonathan Li, Sisi Zlatanova, Andrea Fabbri (Eds.). Geomatics Solutions for Disaster Management [M]. ISSN 1863-2246; ISBN 10 3-540-72106-1 Springer Berlin Heidelberg New York; ISBN 13 978-3-540-72106-2 Springer Berlin Heidelberg New York. (?) Springer-Verlag Berlin Heidelberg, May 23-25,2007.
    [138]Cassiani. G, Zoccatelli. C. Towards a reconciliation between laboratory and in-situ measurements of soil and rock compressibility [J]. Proceedings of 6th International Symposiumon Land Subsidence.2000,2:3-15.
    [139]Ng AH-M, Chang H-C, Zhang K et al. Land Subsidence Monitoring in Australia and China using Satellite Interferometry. In:Observing our Changing Earth.2008:743-750.
    [140]Murakami, Yasuhara, Murata. GIS for Land Subsidence Evaluation in Northern Kanto Plain, Japan [J]. Proceedings of the 6th International Symposium on Land Subsidence.2000,2:219-228.
    [141]Juan Manuel Pardo, Antonio Lozano, Gerardo Herrera, et al.. Instrumental monitoring of the subsidence due to groundwater withdrawal in the city of Murcia (Spain) [J].Environ Earth Sci,2013, (70):1957-1963. DOI 10.1007/s12665-013-2710-7.
    [142]Burbey TJ. Use of time-subsidence data during pumping to characterize specific storage and hydraulic conductivity of semi-confining units [J].Journal of Hydrology.2003,281:3-22.
    [143]Maryam Dehghani, Mohammad Javad Valadan Zoej, Sassan Saatchi, et al.. Radar Interferometry Time Series Analysis of Mashhad Subsidence [J]. J. Indian Soc. Remote Sens,2009, (37):147-156.
    [144]Vishnu P. Pandey, Sangam Shrestha, Saroj K. Chapagain, et al.. A framework for measuring groundwater sustainability [J]. environmental science & policy,2011, (14):396-407.
    [145]Hoffmann J, Zebker HA. Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry [J].Water Resources Research.2001,36(6):1551-1566.
    [146]L. Tosi, P. Teatini, L. Carbognin, et al.. Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence:The Venice coast, Italy [J].Tectonophysics,2009, (474):271-284.
    [147]路旭,匡绍君,贾有良用INSAR作地面沉降监测的试验研究[J].大地测量与地球动力学.2002,22(04):66-70.
    [148]于强,王威,易长荣.天津市地面沉降及地下水位监测自动化系统的设计与应用[J].地下水.2007,29(05):101-104.
    [149]白晋斌,罗立红,罗建忠.华北平原(天津)地面沉降监测与防治综合研究报告[R].天津市地质环境监测总站,2013年7月.
    [150]熊福文,朱文耀,李家权.GPS技术在上海市地面沉降研究中的应用[J].地球物理学进展,2006,21(4):1352-1358.
    [151]于军苏锡常地区地面沉降监测网络体系建设被迫[J].中国地质灾害与防治学报2001,11(3):82-85.
    [152]张勤,黄观文,王利等.GPS在西安市地面沉降与地裂缝监测中的应用研究[J].工程地质学报.2007,15(06):828-833.
    [153]张勤,黄观文,丁晓光等.顾及板块运动、稳定性和系统偏差的高精度GPS监测基准研究与实现[J].地球物理学报,2009,52(12):3158-3164.
    [154]张勤,赵超英,丁晓利等.利用GPS与InSAR研究西安现今地面沉降与地裂缝时空演化特征.地球物理学报,2009,52(05):1-8.
    [155]陈义兰,周兴华,刘忠臣臣应用INSAR进行黄河三角洲地面沉降监测研究[J].海洋测绘,2006,26(02):16--19.
    [156]张金芝,黄海军,刘艳霞等.基于PSInSAR技术的现代黄河三角洲地面沉降监测与分析[J].地理科学,2013,33(07):831-836.
    [157]荆创利,刘琪,张超D-InSAR技术在地面沉降监测中的应用[J].四川建筑,2007,27(6):102-105.
    [158]刘予.北京市地面沉降区含水层和压缩层组划分及地面沉降自动监测系统.吉林大学[D][硕士论文],2004年11月.
    [159]王艳,廖明生,李德仁等.利用长时间序列相干目标获取地面沉降场[J].地球物理学报,2007,50(02):598-604.
    [160]陈强,刘国祥,丁晓利等.永久散射体雷达差分干涉应用于区域地表沉降探测[J].地球物理学报,2007,50(03):737-743.
    [161]高照忠,罗志清,魏海霞3S技术在昆明市地面沉降监测中的应用[J].地矿测绘2007,23(01):27-29.
    [162]董玉森,Ge Linlin, Chang Hsingchun基于差分雷达干涉测量的矿区地面沉降监测研究[J].武汉大学学报·信息科学版.2007,32(10):888-891.
    [163]汤俊,邹自力,张晓平.地面沉降数据中周期性影响因素分析[J].煤炭工程,2010,(10):72-74.
    [164]杨明,吴伟,王雷等城市地面沉降水准监测网基准点稳定性分析[J].林业科技情报,2012,43(3):82-83.
    [165]王力斌,黄兵杰,李江卫 城市地面沉降水准监测网中数据处理方法研究[J].人民长江,2011,42(15):36-39.
    [166]陶秋香,刘国林,刘伟科等.L和C波段雷达干涉数据矿区地面沉降监测能力分析[J].地球物理学报,2012,55(11):3681-3689.
    [167]何平,温扬茂,许才军等.用多时相InSAR技术研究廊坊地区地下水体积变化[J].武汉大学学报·信息科学版,2012,37(10):1181-1185.
    [168]陈强,刘国祥,胡植庆.GPS与PS-InSAR联网监测的台湾屏东地区三维地表形变场[J].地球物理学报,2012,55(10):3248-3258.
    [169]陈蓓蓓,宫辉力,李小娟等PS-InSAR技术与多光谱遥感建筑指数的载荷密度对地面沉降影响的研究[J].光谱学与光谱分析,2013,33(08):2198-2202.
    [170]安春城,韩玉雷.瞬变电磁与变形监测浅析[J].铁道勘察.2013, (03):38-40.
    [171]冯小腊,沈孝宇.饱和粘性土渗透固结特性及其微观机制的研究[J].水文地质工程地质,1991,18(1):6-11.
    [172]佴磊,杨健.上海浦东地面沉降分析中土层变形面沉降参数分析[J].长春地质学院学报1997,27(4):429-434.
    [173]王秀艳,刘长礼.深层黏性土渗透释水规律的探讨[J].岩土工程学报,2003,25(3):308-312.
    [174]汪东林,非饱和土体变试验研究及其在地面沉降中的应用.大连理工大学[D][博士论文]2007年5月.
    [175]苗晋杰, 陈刚,潘建永等.华北平原典型黏性土体固结特性的试验研究[J].地质科技清报,2009,28(5):109-112.
    [176]潘建永,陈刚,胡成等.基于ERDAS研究华北平原第四系黏土微观孔隙分形特征[J].地质科技情报,2009,28(5):113-117.
    [177]徐海洋,周志芳,高宗旗,地面沉降进程中固结系数的试验研究[J].岩土工程学报2011,33(12):1-1973.
    [178]徐海洋,周志芳,高宗旗.释水条件下地面沉降的滞后效应试验研究[J].岩土力学与工程学报,2011,30(增2):3595-3601.
    [179]周卫.基于MapInfo的地面沉降信息系统[J].测绘通报,2001,(03):27-31.
    [180]王福刚,梁秀娟,于军.可视化地层模型信息系统在地面沉降研究中的应用[J].岩土工程学报,2005,27(02):219-223.
    [181]于军.基于ArcGIS平台的苏锡常地区地面沉降管理信息系统研究[D].吉林:吉林大学:2006.
    [182]梁新美,陈刚.地面沉降研究中地质钻孔剖面框架图的快速生成[J].安全与环境工程,2008,15(04):27-29.
    [183]朱琳,林学钰,宫辉力等.VR-GIS技术在地面沉降研究中的应用[J].系统仿真学报,2009,21(12):3671-3688.
    [184]朱琳,宫辉力,林学钰等.地面沉降多尺度三维可视化技术研究[J].自然科学进展2009,19(11):1255-1260.
    [185]李斌.地裂缝地面沉降灾害管理信息系统开发及应用研究-以西安地裂缝地面沉降灾害管理信息系统为例.长安大学[D][博士论文],2009年12月.
    [186]崔亚莉,邵景力,谢振华.基于MODFLOW的地面沉降模型研究-以北京市区为例[J].工程勘察.2003(05):19-22.
    [187]颜凡全.应用弹塑性流固耦合理论研究套损的影响因素地应力及流体压力.大庆石油学院[D][硕士论文],2005年3月.
    [188]张利生,朱国荣.鹏山水源地开采条件下的含水层固结模型[J].岩土力学.2005(07):1141-1147.
    [189]张云,薛禹群.抽水地面沉降数学模型的研究现状与展望[J].中国地质灾害与防治学报,2002,13(2):1-6、24.
    [190]许烨霜,沈水龙,唐翠萍等.基于地下水渗流方程的三维地面沉降模型[J].岩土力学,2005,26(增刊):109-112.
    [191]李成柱,周志芳地面沉降的数值计算模型与流固耦合理论综述[J].勘察科学技术,2006,(06):14-20.
    [192]ZHANG Dong-dong, SONG Chun-yu, CHEN Long-zhu. Numerical Evaluation of Land Subsidence Induced by Dewatering in Deep Foundation Pit [J] J. Shanghai Jiaotong Univ. (Sci.),2013,18(3):278-283. DOI: 10.1007/s12204-013-1394-1.
    [193]雷伟.太沙基的单向固结理论在城市地面沉降研究中的应用.吉林大学[D][硕士论文],2005年11月.
    [194]Verruijt A. Elastic storage of aquifers, in flow Through Porous Media [J]. Academic press, New York City. 1969:331-376.
    [195]Sandhu. R. S, Wilson. E. L. Finite element analysis of seepage in elastic media [J]. Journal of Engineering Mechanics, DivisionASCE.1969,95 (3):641-652.
    [196]Domenico PA, Mifflin MD. Water From Low-Permeability Sediments and Land Subsidence, American Geophysical Union [J].Water Resources Research.1965,1 (4):563-576.
    [197]Riley Fs. Analysis of borehole extensometer data from central California, in Tison [J].International Association of Scientific Hydrology Publication.1969,2:423-431.
    [198]陶立为.软土中水位升降引发的固结解析理论研究浙江大学[D][硕士论文],2011年3月.
    [199]Zienkiewicz. O. C, Shiomi. T. Dynamic behaviour of saturated porous media:the generalized Biot formulation and its numerical solution [J]. International Journal for Numerical andAnalytical in Geo-mechanics.1984 8:71-96.
    [200]于军,吴吉春,叶淑君.苏锡常地区非线性地面沉降耦合模型研究[J].水文地质工程地质.2007(05):11-16
    [201]方鹏飞,朱向荣,武胜忠.太原市地面沉降的计算与预测[J].煤田地质与勘探.2002,30(04):44-46.
    [202]Dassargues. A. On the necessity to consider varying parameters in land subsidence computations [J].IN: Land Subsidence, International Association of Hydrological Sciences.1995:259-268.
    [203]骆祖江,刘金宝,李朗等.深基坑降水与地面沉降变形三维全耦合模型及其数值模拟[J].水动力学研究与进展(A辑).2006,21(04):479-485.
    [204]武胜忠,方鹏飞.地面沉降的计算理论和方法[J].太原理工大学学报2000,31(02):162-166.
    [205]李洪然,张阿根.深部含水层黏弹塑固结模型及压密模拟[J].工程地质学报2012,20(3):392-396.
    [206]YAVUZ. CORAPCIOGLU M, WILFRIED. BRUTSAERT. Viscoelastic Aquifer Model Applied to Subsidence Deu e to Pumping [J]. WATERR ESOURCERSE SEARCH.1977,13(3):597-604.
    [207]Brutsaert W, Corapcioglu M. Pumping of aquifer with viscoelastic properties [J].Proc ASCE HY.1976, 102:1663-1675.
    [208]Hsieh. PC. A viscoelastic model for the dynamic response of soils to periodical surface water disturbance [J]. Int J Numer Anal Methods Geomech.2006,30:1201-1212.
    [209]Bardet.JP. A viscoelastic model for the dynamic behavior of saturated poroelastic soils [J].Journal of Applied Mechanics.1992,59:128-135.
    [210]Hsieh. PC, Hsieh. WP. Dynamic analysis of multilayered soils to water waves and flow [J]. J Eng Mech 2007133 (3):357-366.
    [211]Tung-Lin. Tsai. Viscosity effect on consolidation of poroelastic soil due to groundwater table depression [J]. Environmental Geology.2009,57 (5):1055-1064.
    [212]冉启全,顾小芸.考虑流变特性的流固耦合地面沉降计算模型[J].中国地质灾害与防治学报.1998,9(02):99-103.
    [213]Peter A. Fokker, Bogdan Orlic. Semi-Analytic Modelling of Subsidence [J]. Mathematical Geology, 2006,38 (5):565-586.DOI:10.1007/s11004-006-9034-z.
    [214]Salvador Ivorra, Francisco J. Pallares, Jose M. Adam, et al.. An evaluation of the incidence of soil subsidence on the dynamic behaviour of a Gothic bell tower [J].Engineering Structures,2010, (32):2318-2325.
    [215]Isaac Martinez, Reinhard Hinkelmann, Stavros Savidis. Fast water infiltration:a mechanism for fracture formation during land subsidence [J]. Hydrogeology Journal,2013,10(21):761-771. DOI 10.1007/s10040-013-0971-6.
    [216]Gambolati G, Freeze R. Mathematical Simulation of the Subsidence of Venice 1. Theory [J]. Water Resources Research. 1973,9 (3):721-733.
    [217]H. Sun, D. Grandstaff, R. Shagam. Land subsidence due to groundwater withdrawal:potential damage of subsidence and sea level rise in southern New Jersey, USA [J].Environmental Geology.1999,37 (4):290-296.
    [218]陈崇希,裴顺平.地下水开采-地面沉降模型研究[J].水文地质工程地质.2001,28(02):5-8.
    [219]Onta PR, Gupta AD. Regional management modeling of a complex groundwater system for land subsidence control [J].Water Resources Management.1995,9(1):1-25.
    [220]Bear J, Corapcioglu M. Mathematical Model for Regional Land Subsidence Due to Pumping 2. Integrated Aquifer Subsidence Equations for Vertical and Horizontal Displacements [J]. Water Resour Res.1981,17 (4):947-958.
    [221]Kim J-M. Fully coupled poroelastic governing equations for groundwater flow and solid skeleton deformation in variably saturated true anisotropic porous geologic media [J].Geosciences Journal.2004,8 (3):291-300.
    [222]Lewis R, Schrefler B. A Fully Coupled Consolidation Model of the Subsidence of Venice [J]. Water Resour Res.1978,14(2):223-230.
    [223]陈杰,朱国荣,顾阿明等Biot固结理论在地面沉降计算中的应用[J].水文地质工程地质.2003(02):28-31.
    [224]王非,缪林昌,黎春林.抽水地面沉降中含水层渗流变形耦合模型研究[J].铁道工程学报,2011,154(7):1-5.
    [225]方露,岳建平,魏叶青.基于地下水位变化的城市地面沉降确定性模型研究[J].测绘通报,2011,(08):20-22、53.
    [226]李培超.地面沉降变形非线性完全耦合数学模型[J].河海大学学报(自然科学版).2011,39(06):665-670.
    [227]黄雨,李景琳,陈蔚等.基于水-土完全耦合的地面沉降计算方法研究[J].土木工程学报.2011,44(增刊):198-201.
    [228]M. Sayyaf, M. Mahdavi, O. R Barani, et al.. Simulation of land subsidence using finite element method: Rafsanjan plain case study [J].Nat Hazards,2013. DOI 10.1007/s11069-013-1010-6.
    [229]Gambolati G, Sartoretto F, Rinaldo A et al. A boundary element solution to land subsidence above 3-D gas/ oil reservoirs [J].Int J Numeric Analytic Meth Geomech.1987,11:489-502.
    [230]Meyer WR, Carre, J. E... A digital model for simulation of ground-water hydrology in the Houston area, Texas. U.S. [J]. Geological Survery Open-File Report. 1979:79-677.
    [231]Yeh HD, Lu RH, Yeh GT. Finite element modelling for land displacements due to pumping[J]. International Journal for Numerical and Analytical Methods in Geo-mechanics.1996,20:79-99.
    [232]Chiu-On. Ng, Mei CC. Land subsidence of finite amplitude due to pumping and surface loading [J]. Water Resources Research.1995,31 (8):1953-1968.
    [233]Kim JM, Parizek RR A mathematical model for the hydraulic properties of deforming porous media [J]. Ground Water.1999,37:546-554.
    [234]Kim JM, Parizek RR. Three-dimensional finite element modelling for consolidation due to groundwater withdrawal in a desaturating anisotropic aquifer system [J]. Int J Numer Anal Meth Geomech.1999,23:549-571.
    [235]M. Bai, F. Meng. Numerical modeling of coupled flow and deformation in fractured rock specimens [J] International Journal for Numerical and Analytical Methods in Geomechanics.1999,23(2):141-160.
    [236]Giuseppe. Gambolatil, Massimiliano. Ferronatol, Pietro.Teatinil. Finite element analysis of land subsidence above depleted reservoirs with pore pressure gradient and total stress formulations [J]. Int J Numer Anal Meth Geomech.2001,25:307-327.
    [237]Kim J-M. Generalized poroelastic analytical solutions for pore water pressure change and land subsidence due to surface loading [J]. Geosciences Journal.2000,4 (2):95-104.
    [238]Mei GX, Yin JH, Zai JM et al. Consolidation analysis of a crossanisotropic homogeneous elastic soil using a finite layer numerical method [J].Int J Numer Anal Methods Geomech.2004,28(2):111-129.
    [239]K.J. Larson, H. Bas,ag aog lu, M.A. Marin-o. Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model [J]. Journal of Hydrology,2001, (242):79-102.
    [240]Kihm J-H, Kim J-M, Song S-H. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system [J]. Journal of Hydrology. 2007,335:1-14.
    [241]Suzuki I, Morita N. Subsidence and Horizontal Earth Surface Movement During Reservoir Depletion for 3D Reservoirs with 3D Earth Surface [J]. SPE 89960.2004.
    [242]Yin S, Rothenburg L, Dusseault M.3D Coupled Displacement Discontinuity and Finite Element Analysis of Reservoir Behavior during Production in Semi-infinite Domain [J]. Transport in Porous Media.2006,65 (3):425-441.
    [243]Lo W-C. Decoupling of the coupled poroelastic equations for quasistatic flow in deformable unsaturated porous media [J] American Geophysical Union Annual Fall Meeting, San Francisco.2005:1893-1900.
    [244]Seetharam. S. C, Thomas.H.R, Cleall.P.J. Coupled thermo/hydro/chemical/mechanical model for unsaturated soils-numerical algorithm [J]. International Jomal for Numerical Methods in Engineering.2007,70:1480-1511.
    [245]G. Aguilar FJG, F. J. Lisbona and C. Rodrigo. Numerical stabilization of Biot's consolidation model by a perturbation on the flow equation [J].Int J Num Meth Eng.2008,75:1282-1300.
    [246]Masaatsu.Aichi. Groundwater Management in Asian Cities [J].Springer Japan.2008:105-124.
    [247]LIAO Jie, ZHOU Di, ZHAO ZhongXia, et al.. Numerical modeling of the anomalous post-rift subsidence in the Baiyun Sag, Pearl River Mouth Basin[J]. SCIENCE CHINA Earth Sciences,2011,54(8):1156-1167. doi:10.1007/s11430-0114184-3.
    [248]杨林德,杨志锡.各向异性饱和土体的渗流耦合分析和数值模拟[J].岩石力学与工程学报.2002,21(10):1447-1451.
    [249]付延玲,郭正法Processing Modflow在地下水渗流与地面沉降研究中的应用[J].勘察科学技术.2006(04):19-23.
    [250]骆祖江,张月萍,刘金宝等.江苏沿江开发带地下水开采与地面沉降三维数值模拟[J].地球科学与环境学报.2007,29(03):280-284.
    [251]骆祖江,刘金宝,李朗.第四纪松散沉积层地下水疏降与地面沉降三维全耦合数值模拟[J].岩土工程学报,2008,30(02):193-198.
    [252]骆祖江,王琰,田小伟等.沧州市地下水开采与地面沉降地裂缝模拟预测[J].水利学报.2013,44(02):198-204.
    [253]薛禹群,吴吉春,张云.长江三角洲(南部)区域地面沉降模拟研究[J].中国科学(D辑:地球科学).2008,38(04):477-492.
    [254]刘白薇,唐仲华,董少刚.大同市地面沉降数值模拟研究[J].中国水运(理论版).2007,5(11):58-59.
    [255]彭青华:沧州市地面沉降模型研究[D].北京:中国地质大学;2007.
    [256]佘文芳.沧州地区地面沉降模型研究.中国地质大学(北京)[D][硕士论文]2007年12月.
    [257]商婷婷.天津市塘沽区城市建设引发地面沉降数值模拟研究.中国地质大学(北京)[D][硕士论文].2007年5月.
    [258]李勇,王文喜FLAC3D在工程降水引起地面沉降分析中的应用[J].铁道标准设计,2008,10:68-70.
    [259]万伟锋.西安市地下水开采-地面沉降数值模拟及防治方案研究,长安大学[D][博士论文],2008年10月.
    [260]李文运,崔亚莉,苏晨等.天津市地下水流-地面沉降耦合模型[J].吉林大学学报(地球科学版).2011,42(3):805-813.
    [261]McDonld MG, Harbaugh AW. A modular three-dimensional finite-difference ground-water flow model [J]. USGeological Survey Techniques of Water-Resources Investigations, book 6, chapAl.1988.
    [262]Randall TH, LIZ, Claudia F. Simulation of subsidence for the regional-aquifer system in the Santa Clara Valley, California. [J].Proceedings Seventh International Symposium on Land Subsidence Shanghai, PRChina. 2005:24-29.
    [263]Xiaoqing S, yuqun X,. ea. Modlification of SUB package to simulate aquifer-system compaction and land subsidence [J] Proceedings Seventh International Symposium on Land Subsidence Shanghai, PRChina.2005:24-29
    [264]崔小东MODFLOW和IDP在天津地面沉降数值计算中的应用与开发[J].中国地质灾害与防治学报.1998,9(02):122-128.
    [265]骆祖江,郑飞,童学平.地下水渗流沉降的三维耦合模型及程序的研制[J].资源调查与环境,2009,1(30):55-61.
    [266]骆祖江,曾峰,李颖.地下水开采与地面沉降控制三维全耦合模型研究[J].吉林大学学报(地球科学版).2009,39(06):1080-1086.
    [267]龚士良.集对分析及在城市地而沉降研究中的应用[J].水文地质工程地质,1998(5).
    [268]刘绿柳,金爱善,卞建民.带权GM(0,h)模型在地下水开采-地面沉降研究中的应用[J].世界地质,2000,(1):57-60.
    [269]蔡东健,成微,方露等.城市地面沉降监控统计模型研究[J].测绘通报,2010,(01):15-18.
    [270]吴清海区域地面沉降评估方法研究[J].测绘通报2010,(08):40-41.
    [271]荆灵玲.数学形态学在地面沉降研究中的应用-以北京市潮白河中上游地区为例.首都师范大学[D][硕士论文],2011年5月.
    [272]陶琛,闫继业.地下水开采引起地面沉降的影响距离研究[J].河北建筑工程学院学报.2011,29(04):83-87.
    [273]CHEN Beibei, GONG Huili, LI Xiaojuan, et al.. Spatial-temporal Characteristics of Land Subsidence Corresponding to Dynamic Groundwater Funnel in Beijing Municipality, China [J] Chin. Geogra. Sci.2012,21(6) 753-764, doi: 10.1007/s11769-011-0509-6.
    [274]Yi Qun Tang,Xingwei Ren, Bin Chen, et al.. Study on land subsidence under different plot ratios Ihrough centrifuge model test in soft-soil territory [J]. Environ Earth Sci,2012, (66):1809-1816. DOI 10.1007/s12665-011-1406-0.
    [275]吴蓉.考虑地层结构时地面沉降带后性的模拟分析[J].工程勘察.2013,(12):22-26.
    [276]李宁,李明,赵法锁等.基于FLAC2D的西安地面沉降数值模拟分析[J].灾害学.2013,28(03):210-214.
    [277]贾莹媛,黄张裕,张蒙等.含水组地下水位变化对地面沉降影响的多元回归分析与预测[J].工程勘察.2013,(01):77-80.
    [278]陈蓓蓓,宫辉力,李小娟等.北京典型地下水漏斗区载荷密度与地面沉降相关性[J].应用基础与工程科学学报2013,21(06):346-352.
    [279]Zhaoqing Yang, Taiping Wang, Ruby Leung, et al.. A modeling study of coastal inundation induced by storm surge, sea-level rise, and subsidence in the Gulf of Mexico [J].Nat Hazadrds,2013:261-274. DOI 10.1007/s11069-013-0974-6.
    [280]林跃忠.地面沉降量的灰色预测方法[D].山东科技大学学报(自然科学版.2000,19(03):108-110.
    [281]于广明,张春会,潘永站等采水地面沉降时空预测模型研究[J].岩土力学,2006,27(05):759-762.
    [282]马保卿,张荫.地面沉洚模拟计算的灰色模型.河南科技大学学报:自然科学版,2009,30(01):57-60.
    [283]柳金杰,刘庆华.地面沉降漠拟预测及对策[J].地下水2011,33(01):29-30.
    [284]邵传青,郭家伟,王洁等.地面沉降预测的灰色-马尔柯夫模型[J].中国地质灾害与防治学报,2008,19(3):69-72.
    [285]宫相霖,董荣鑫.灰色系统在地面沉降分析中的应用[J].上海地质,2003,(03):16-21.
    [286]张建军.地面沉降预测及经济影响评价研究.天津大学环境学与工程学院[D][硕士论文],2006年1月.
    [287]董国凤.地面沉降预测模型及应用研究天津大学环境科学工程学院[D][博士论文],2006年7月.
    [288]甄亚男.考虑区域沉降的高速铁路沉降预测方法研究.西南交通大学[D][硕士论文],2012年5月.
    [289]李永树,肖林萍.地面沉降预测参数的变化规律与计算方法[J].西南交通大学学报2006,41(04):346-352.
    [290]陈雨,张振文,张彦敏基于概率积分法的地面沉陷灾害预测[J].辽宁工程技术大学学报2007,26(增刊):109-112.
    [291]Ye-Shuang Xu, Shui-Long Shen, Zheng-Yin Cai, et al.. The state of land subsidence and prediction approaches due to groundwater withdrawal in China [J]. Nat Hazards,2008, (45):123-135. DOI 10.1007/s11069-007-9168-4.
    [292]孙永荣,胡应东,陈武等.基于GM(1,1)改进模型的建筑物沉降预测[J].南京航空航天大学学报,2009,41(01):107-110.
    [293]阚京梁,罗立红.Processing Modflow模型在预测地面沉降中的应用[J].铁道工程学报,2010,137(02):27-31.
    [294]陈雨,李晓盐岩储库区地面沉降预测与控制研究现状与展望[J].工程地质学报,2010, 18(02):252-260.
    [295]WANG TongTao, YAN XiangZhen, YANG XiuJuan, et al.. Dynamic subsidence prediction of ground surface above salt cavern gas storage considering the creep of rock salt [J]. SCIENCE CHINA Technological Sciences, 2010,53 (12):3197-3202. doi:10.1007/s11431-010-4172-4.
    [296]Ahad Ouria,Mohammad M. Toufigh. Prediction of Land Subsidence Under Cyclic Pumping Based on Laboratory and Numerical Simulaons[J]. Geotech Geol Eng,2010, (28):165-175. DOI 10.1007/s10706-009-9289-5.
    [297]WANG Wei, SU JingYu, HOU BenWei, et al.. Dynamic prediction of building subsidence deformation with data-based mechanistic self-memory model [J]. Chin Sci Bull,2012,57 (26):3430-3435. Doi: 10.1007/s11434-012-5386-6.
    [298]魏嘉,魏媛.德州城区地面沉降预测预报方法[J].科技视界,2012,(05):169-170.
    [299]Saro Lee, Inhye Park, Jong-Kuk Choi. Spatial Prediction of Land subsidence Susceptibility Using an Artificial Neural Network[J]. Environmental Management,2012, (49):347-358. DOI 10.1007/s00267-011-9766-5.
    [300]吴庆忠,高卫东.基于BP网络模型的采水地面沉降时空预测[J].工程勘察,2012,(01):39-42.
    [301]严剑锋,邓喀中.基于BP网络与WPGM(1,1)组合模型的地面沉降预测[J].合肥工业大学学报(自然科学版),2013,36(03):361-364.
    [302]李红霞,赵新华,迟海燕等.基于改进BP神经网络模型的地面沉降预测及分析[J].天津大学学报,2009,42(01):60-64.
    [303]李斌,刘峰.遗传神经网络在地面沉降趋势预测中的应用.山东国土资源,2013,29(08):4749.
    [304]Thinh Hong Phi, Ludmila Aleksandrovna Strokova. Prediction of land subsidence caused by groundwater exploitation in Hanoi, Vietnam, using multifactorial correlation analysis [J] Trans. Sciences in Cold and Arid Regions,2013,5(5):723-726.DOI:10.3724/SPJ.1226.2013.00644
    [305]季子修,施雅风.海平面上升、海岸带灾害与海岸防护问题.自然灾害学报[J].1996.5(2):56-64.
    [306]张梁,张业成,罗元华等.地质灾害灾情评估理论与实践[M].北京:地质出版社,1998.12.
    [307]刘毅.地面沉降加重了1998年中国大洪灾[J].中国地质,1999(1):30-32.
    [308]吴泽毅,杨军.地面沉降对水利设施影响的典型调查与分析[J].江苏水利,1999,(6):44-45.
    [309]张维然,王仁涛.2001-2020年上海市地面沉降灾害经济损失评估[J].水科学进展,2005,16(06):870-874.
    [310]颜世强,范继璋,石玉臣等黄河三角洲农业生态地质环境综合研究[J].人民黄河2005,27(3):9-12.
    [311]殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报,2005,16(2):1-7.
    [312]何庆成,刘文波,李志明.华北平原地面沉降调查与监测[J].高校地质学报,2006,12(02):195-209.
    [313]李善峰,叶晓滨,何庆成.华北平原地面沉降灾害经济损失评估方法探讨[J].水文地质工程地质,2006,(04):114-116.
    [314]N. Phien-wej, P.H.Giao, Nutalaya P. land subsidence in Bangkok, Thailand [J]. Engineering Geology. 2006 (82):187-201.
    [315]李国和,许再良,孙树礼等.华北平原地面沉降对高速铁路的影响及其对策[J].铁道工程学报,2007,107(08):7-12.
    [316]李国和,荆志东,许再良.京沪高速铁路沿线地面沉降与地下水位变化关系探讨[J].水文地质工程地质,2008,(06):90-94.
    [317]李国和,张建民,许再良等.华北平原地面沉降对高速铁路桥梁工程的影响研究[J].岩土工程学报,2009,31(03):346-352.
    [318]FENG Qi-yan, LIU Gang-jun, MENG Lei, et al.. Land subsidence induced by groundwater extraction and building damage level assessment-a case study of Datun, China [J]. J China Univ Mining & Technol,2008, (18): 556-560.
    [319]张维然,段正梁,曾正强等.上海市控制地面沉降灾害的成本-效益分析[J].同济大学学 报2009,31(03):346-352.
    [320]韩彦霞,王艳丽,韩占成沧州市地面沉降现状、原因、危害及防治[J].水资源研究,2009,30(2):31-33.
    [321]祁彪.地面沉降对京沪高速铁路(北京-济南段影响分析.西南交通大学[D][硕士论文],2009年5月.
    [322]刘金山,甘德清,顾乃满.地下开采引起的地面沉降对铁路安全的影响性分析[J].现代矿业,2009,(05):70-71.
    [323]邢宾,章涛,井征博等.青岛市地下工程开挖引起的地面沉降问题及防治对策[J].工程建设,2010,42(06):32-35.
    [324]朱庆川,高瑞芳,尹桂强等.地面沉降对河道堤防的影响及应对措施[J].地质灾害与环境保护,2010,21(04):7-11.
    [325]秦长利.地面沉降对轨道交通的影响和应对措施[J].都市快轨交通,2010,23(05):72-74.
    [326]姚晶娟,束龙仓,朱兴贤等.基于GIS的地面沉降易损性评价[J].工程勘察.2011,(06):36-41.
    [327]杜廷芹,黄海军,别君等现代黄河三角洲地面沉降对洲体演变的影响[J].海洋科学2011,35(09):78-84.
    [328]胡卸文,宋大各,王帅雁等.京沪高铁沿线某地地下水开采与地面沉降关系分析[J].岩石力学与工程学报2011,30(09):1738-1746.
    [329]王帅雁.京沪高铁DK119-DK123段地面沉降与地下水水位变化关系研究西南交通大学[D][硕士学位论文],2011年5月。
    [330]李有坤,徐勇,聂德久.地面沉降经济损失探讨[J].科技信息2012, (21):43-44.
    [331]Bijuan Huang, Longcang Shu, Y S. Yang. Groundwater Overexploitation Causing Land Subsidence:Hazard Risk Assessment Using Field Observation and Spatial Modelling [J]. Water Resour Manage, (2012), (26):4225-4239. DOI 10.1007/sl1269-012-0141-y.
    [332]Beibei Hu, Jun Zhou, Shiyuan Xu, et al.. Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis [J]. Nat Hazards,2013, (66):873-886. DOI 10.1007/sl 1069-012-0530-9.
    [333]程喜章,谭晓斌,地面沉降对公路交通工程的影响[J].中国科技信息,2013,(15):60.
    [334]邓帅,马涛华北平原区域沉降分析及对高速铁路的影响[J].铁道勘察,2013,(02):39--42.
    [335]杨恒伟.台湾浊水积扇地下水位变化及地面沉降对高铁之影响[J].上海国土资源2013,34(04):25-32.
    [336]侯艳声,郑铣鑫,应玉飞.中国沿海地区可持续发展战略与地面沉降系统防治[J].中国地质灾害与防治学报2000,11(02):30-33.
    [337]吴铁钧,崔小东,牛修俊.天津市地面降研究及综合治理[J].水文地质工程地质.1998,(05):17-20.
    [338]吴铁钧,金东锡.天津地面沉降防治措施及对策[J].中国地质灾害预防治学报1998,9(2):6-123.
    [339]张洪波,顾福计,郭润瑞河北平原地面沉降防治对策[J].中国地质灾害与防治学报1998,9(增刊):228-234.
    [340]于军,武健强,王晓梅.地面沉降风险评价初探[J].高校地质学报2008,14(03):450-454.
    [341]何庆成.日本地面沉降灾害监测研究及借鉴[J].国土资源情报,2004,(05):4-7.
    [342]Beibei Hu, Jun Zhou, Jun Wang, et al.. Risk assessment of land subsidence at Tianjin coastal area in China [J].Environ Earth Sci,2009, (59):269-276.DOI 10.1007/s12665-009-0024-6
    [343]邢忠信,李和学,张熟.沧州市地面沉降研究及防治对策叮].地质调查与研究,2004,27(3):157-163.
    [344]陶志刚.唐山沿海地区地面沉降灾害及对策研究[J].硕士学位论文,2007.
    [345]龚士良、李采地面沉降研究与防治认识论与方法论自议[J].分析研究2007,2(01):16-19.
    [346]陈若曦.垃圾填埋场衬垫系统沉陷机制及抗沉陷设计[D].杭州:浙江大学,2008.
    [347]赵辉,陈文芳,崔亚莉.中国典型地区地下水位对环境的控制作用及阈值研究[J].地学前缘(中 国地质大学(北京);北京大学.2010,17(06):159-165.
    [348]哲伦(编译).美国如何应对地面沉降[J].(穿行天下资源)美国地质调查局.2010,01:44-46.
    [349]瞿成松,陈蔚,黄雨.人工回灌控制基坑工程地面沉降的数值模拟[J].中国海洋大学学报2011,41(6):87-92.
    [350]王喆,耿直,黄冠群等.国内外地下水资源立法研究[J].水资源管理,2011,(11):23-25.
    [351]胡建平.苏锡常地区地下水禁采后的地面沉降效应研究南京大学[D][博士论文],2011年1月.
    [352]吴建中.中国地面沉降地质灾害区划方法与实践[J].上海国土资源,2011,32(2):84-87.
    [353]刘传正,刘艳辉.论地质灾害防治与地质环境利用[J].吉林大学学报(地球科学版).2012,42(05):1470--1476.
    [354]乔令海,徐军祥,张中祥等.南水北调入鲁后地下调蓄研究[J].水文地质工程地质.2012,39(05):31-36.
    [355]王威,王淼,韦劲松等.南水北调中线工程与天津地面降防治关系研究[J].南水北调与水利科技2012,10(03):22-26.
    [356]林学钰,张文静,何海洋等人工回灌对地下水水质影响的室内模拟实验[J].吉林大学学报(地球科学版).2012,42(05):1404-1409.
    [357]付延玲.基于地面沉降控制的区域性松散沉积层地下水可采资源规划评价[J].吉林大学学报(地球科学版),2012,42(02):476-484.
    [358]Xiaoqing Shi, Rui Fang, Jichun Wu, et al.. Sustainable development and utilization of groundwater resources considering land subsidence in Suzhou, China [J]. Engineering Geology,2012, (124):77-89.
    [359]金磊.城市地面沉降灾害的防御对策[J].中国减灾.2012,178(4-上)13-15.
    [360]王小军,毕守海,高娟等.严格地下水管理与保护的思考[J].中国水利.2013,(11):7-9.
    [361]李晓辉.水生态文明的几点思考[J].河南水利与南水北调.2013,178(15):42.
    [362]杨丽芝,曲万龙,刘春华.华北平原地下水资源功能衰退与恢复途径研究[J].干旱区资源与环境.2013,27(07):8-16.
    [363]杨勇,郑凡东,刘立才等.地下水开采引发的地面沉降易发性区划及控制措施[J].中国地质,2013,40(02):653-658.
    [364]山东省地面沉降防治规划研究(2012-2020年度)[R].山东省地质环境监测总站,山东省水文局,2012年12月.
    [365]韩景敏.山东省地面沉降及其防治对策[J].中国地质灾害与防治学报1998,9(02):33-35.
    [366]刘桂仪.鲁北平原深层地下水开发与环境问题[J].水文地质工程地质,2001,28(3):43-45.
    [367]马震,段永侯.山东鲁北平原地下水资源与可持续利用[J].水文地质工程地质.2005,(02):1-10.
    [368]王小刚,陈松,王秀芹等德州市地面沉降成因及防治对策浅析[J].,地质灾害与环境保护,2006.17(3):62-66.
    [369]孟庆峰,戴鲁旗.德州市地面沉降现状及防治对策[J].山东国土资源2008.24(11):8-9.
    [370]宋波.德州地面沉降监测[J].地矿测绘,2001,17(3):23-27.
    [371]蔡文晓.德州市深层地下水开采与地面沉降关系研究[D].吉林大学地球科学学院,2009年6月.
    [372]杨丽芝.德州深层地下水位降落漏斗演变机制与可调控性研究[D].中国地质科学院水文地质环境地质研究所,2009年5月.
    [373]杨丽芝,张光辉,刘中业等.开采条件下山东德州深层水资组成及其与地面沉降的关系[J].地质通报2010,29(04):589-597.
    [374]杨丽芝,刘春华,刘中业德州深层地下水开采引发地面沉降变化阈值识别[J].水资源与水工程学报2010,21(05):55-60.
    [375]李广.德州市地面沉降对建筑物的影响及对策[J].青岛理工大学学报2010,31(03):26-29.
    [376]葛大庆,殷跃平,王艳等.地面沉降回弹及地下水位波动的InSAR长时序监测-以德州市为例[J].国土资源遥感,2010,26(01):103-109.
    [377]刘桂卫黄河三角洲地区地面沉降和风暴潮灾害特征及其环境效应研究[D].中国科学院海洋研究 所,2010年4月.
    [378]刘桂卫,黄海军,杜廷芹等.黄河三角洲地区地面沉降驱动因素研究[J].海洋科学,2011,35(08).
    [379]刘桂仪,张兴乐.黄河三角州油气资源开发的环境地质问题与经济可持续发展[J].上海地质,2001年增刊.
    [380]王现国,王和平,吴东民等.黄河下游环境地质问题及其对堤防的影响[J].人民黄河,2004,26(08):5-8.
    [381]别君,黄海军,樊辉等.现代黄河三角洲地面沉降及其原因分析[J].海洋地质与第四纪地质,2006,26(4):29-35.
    [382]别君.基于GIS的黄河三角洲地面沉降研究及相关分析.中国科学院海洋研究所[D][硕士论文],2006年5月.
    [383]杜廷芹.现代黄河三角洲地区地面沉降研究[D].中国科学院海洋研究所,2009年4月.
    [384]任美锷.海平面上升与地面沉降对黄河三角洲影响初步研究[J]。地理科学,1990,10(1):48-57.
    [385]山东省东营市城区地区沉降监测与评价报告[R],山东省鲁北地质工程勘察院,2004年。
    [386]王小刚,邹祖光,王秀芹等.东营市城区地面沉降影响因素[J].山东国土资源,2006,(5):50-53.
    [387]宋波,王德生,王锦丽.东营地面沉降监测[J].地矿测绘,2004,20(01):34-36.
    [388]邢立亭,刘莉,徐征和等.滨州市深层地下水环境演化与保护研究[J].中国农村水利水电.2008,(06):42-48.
    [389]山东省滨州市深层地下水降落漏斗与地面沉降调查报告[R].山东省鲁北地质工程勘察院,2006年7月.
    [390]杨玉堂,刘清德.聊城市主要地质灾害现状及防治工作进展[J].山东国土资源.2008,24(1-2):20-21.
    [391]段树义,汪春桥.临清市地下水漏斗区与地面沉降初探[J].地下水,2006,28(3):54-58、110.
    [392]周玉红,王颖,李洋.临清市地下水漏斗区与地面沉降研究[J].地下水,2009,31(3):38-40、71.
    [393]山东省济宁市城区地面沉降防治勘查报告[R].山东省鲁南地质工程勘察院,1998年6月.
    [394]贾德旺,岳跃华,叶进霞等.济宁城区地面沉降演变规律及经济损失估算方法[J].山东国土资源.2006,22(11):38-41.
    [395]陈占成,魏加华,王金凯等.济宁市地面沉降初步分析[J].中国地质灾害与防治学报.1998,9(2):167-172.
    [396]魏加华,崔亚莉,邵景力等.济宁市地下水与地面沉降三维有限元模拟[J].长春科技大学学报.2000,30(4):376-380.
    [397]魏加华,邵景力,崔亚莉等济宁市地面沉降模型[J].勘察科学技术,2007,28(6):27-31.
    [398]徐中华,李云峰,王疆霞.济宁市区地面降问题的初步研究与防治对策[J].水利科技与经济.2005,11(8):485、486、492.
    [399]高玉山.济宁市地面沉降的趋势面分析[J].济宁学院学报,1999,(5):28-30.
    [400]周建伟,李菊凤,周爱国等.济宁市城区地面沉降的成因和规律性探讨[J].湖南科技大学学报(自然科学版),2005.20(1):6-9.
    [401]宋印胜济宁市地下水的环境地质问题及对策[J].中国人口·资源与环境.2000.10(专刊):41-42.
    [402]中华人民共和国国家标准-土工试验方法标准(GB/T 50123-1999)[S].主编部门:中华人民共和国水利部;批准部门:中华人民共和国建设部,1999年10月1日.
    [403]唐金颖.地下水开采引起地面沉降的数值模拟分析[D].东北大学,2008年1月.
    [404]蔡文.物元模型及应用[M].北京:科学技术文献出版社.
    [405]康志强,冯夏庭,周辉.基于层次分析法的可拓学理论在地下洞室岩体质量评价中的应用,[J].岩石力学与工程学报,2006.10(增2):3687-3693.
    [406]Fan Yunxiao,Luo Yun,Chen Qingshou. Extenics Model for Evaluating Vulnerable Degree of Regional Sustaining Hazard Body[J]. Journal of China University of Geosciences,2004.15 (1),115-117
    [407]许绍双.Excel在层次分析法中的应用[J] 中国管理信息化,2006.11(9):17-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700