用户名: 密码: 验证码:
大别—苏鲁地区金红石地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双河和碧溪岭地区是大别山超高压变质带中非常典型的超高压岩石出露的地区,在岩石学,地质年代学,地球动力学和矿物学等方面受到了广泛的研究。金红石是中高级变质岩中常见的副矿物,其作为稳定的重矿物相保存了大量的变质作用信息,如变质温度,变质压力,冷却年龄和源岩性质等。在双河和碧溪岭地区,金红石一般出现于榴辉岩和硬玉石英岩中,在大理岩,黑云母片麻岩,云母片岩,超镁铁质岩和区域围岩花岗片麻岩中也有少量出现。本博士论文采用原位LA-ICP-MS结合EMP两种方法系统研究了上述两个地区不同类型岩石中的金红石的地球化学特征,包括榴辉岩,硬玉石英岩,大理岩和黑云母片麻岩中的金红石以及水系沉积物中的碎屑金红石。根据研究目的和内容的差异,主要取得了以下三个方面的成果。
     本博士论文的的第一个方面的成果是对双河地区变沉积岩在陆壳俯冲和折返过程中的微量元素迁移作出系统的研究。主要工作为对双河地区一个从超高压大理岩和其中包裹的榴辉岩连续的剖面的进行了全岩及金红石和榍石的主微量元素研究。研究显示,大理岩比榴辉岩富集LILE和LREE,但亏损HFSE和HREEO大理岩和榴辉岩的REE模式表现了很好的耦合关系,说明在大陆深俯冲和抬升的过程中这两种岩石之间发生了显著的元素迁移和交换,而载带这些元素的流体是内生的,没有外来流体加入。不同岩性之间的微量元素趋于均一化,如高LILE, LREE含量的大理岩向榴辉岩输出LILE, LREE,而富HFSE, HREE的榴辉岩向大理岩迁移HFSE, HREE,但均一化发生的尺度仅限于岩性接触带十几厘米范围内。榴辉岩中流体活动性元素(如,Rb, Cs, Ba)含量向岩性接触带的方向逐渐增加,说明离岩性接触带越近,流体活动程度越强。大理岩中金红石少量出现,而榴辉岩中却含有大量榍石,说明流体可能从榴辉岩金红石退变质成榍石的过程中运移了一定的Ti和HFSE进入大理岩。榴辉岩从接触带到岩石内部剖面的全岩样品具有相似的Nb/Ta (14.3-15.5),榴辉岩中高Al榍石展示了与全岩一致的Nb/Ta范围(14.2-16.7)。大理岩全岩的Nb/Ta为10.0-10.9,其中的两颗金红石的Nb/Ta比值分别为14.2和63.4,说明金红石的Nb/Ta与大理岩全岩的Nb/Ta差异较大。
     本博士论文的第二个研究成果是通过对中大别双河和碧溪岭地区水系沉积物中碎屑金红石的主微量元素测定,探讨了碎屑金红石作为沉积物源区示踪工具的应用。本文利用EMP和LA-ICP-MS方法测定了176个水系沉积物中的碎屑金红石颗粒和91个不同岩石中金红石的主微量元素成分,通过对比研究发现两种金红石的地球化学特征和记录的温度是相互对应的。根据全岩和不同岩石中金红石的Cr-Nb特征,本文建立了适合中大别超高压带的Cr-Nb源区区分方法,并利用该方法计算出双河地区29%的碎屑金红石来自变镁铁质岩石源区,而在碧溪岭地区超过76%的碎屑金红石来自变镁铁质源区。而且,这一比例结合变泥质岩和变镁铁质岩中金红石的模式丰度可以用来估计不同岩性的比例。基于这一方法,双河地区镁铁质岩石估计为~10%,在碧溪岭地区则超过60%,这一结论与野外地质观察的榴辉岩的分布相一致。因此,碎屑金红石的调查是一个潜在的评估乃至预测变镁铁质岩在超高压地体中比例的方法。同时,本文运用金红石中锆含量温度计计算了不同压力条件下的碎屑金红石的锆温度,并与岩石中的金红石温度和石榴石—单斜辉石Fe-Mg交换温度计计算的温度进行比较。结果表明,在P=3GPa下,双河和碧溪岭计算的温度分别为606—707℃和566—752℃,平均值为633℃和629℃。两个地区的碎屑金红石的Zr温度变化范围和平均值很好的与岩石中金红石获得的结果相对应。因此,碎屑金红石和露头岩石中金红石的相似性证明超高压地区金红石的源区—沉积物的联系非常紧密。我们认为在小范围的水系环境中,针对沉积物源区研究,碎屑金红石是一个精确示踪源岩特征的矿物。此外,在碧溪岭地区,变镁铁质和变泥质金红石的Nb/Ta范围分别落在11.0—27.3和7.7—20.5之间。在双河地区,这一比值高度变化,分别为10.9—71.0和7.6-87.1。但是,去掉四个极高Nb/Ta比值的金红石后,发现两个明显不同的Nb/Ta比值束(变泥质金红石:7—40vs.变镁铁质金红石:11-25)。二者不同的Nb/Ta范围可以反映金红石生长过程中水岩作用的程度差异,而这一差异是由变泥质金红石生长过程中的水岩作用强于变镁铁质金红石所致。但这一特征并没有表现在碧溪岭碎屑金红石中,可能是由于岩石丰度的差异导致。因此,任何金红石Nb-Ta数据应该放在具体的岩石环境中理解。
     本博士论文的第三个研究课题是利用已有的金红石中Nb,V分配系数资料探索大别—苏鲁造山带榴辉岩金红石中存在的V-Nb元素含量负相关性的可能形成机制。V在自然界中以多价态出现,而Nb只以五价出现。两者都在金红石中相容,但V-Nb在金红石中的分配关系和对氧逸度的依靠性至今没有系统的研究。本文利用LA-ICP-MS测量了来自大别—苏鲁地区的榴辉岩中86个金红石颗粒,并结合已经发表的数据评估了氧逸度对金红石中V和Nb直接和间接的影响。经过全岩和矿物相对金红石中V行为影响的评估后,本文认为金红石中Nb(7-1200ppm)和V(50-3200ppm)的负相关关系记录了这两个元素晶格中相互竞争的关系。基于Dv(V在金红石中的分配系数)和V价态与QFM的关系(QFM是石英—铁橄榄石—磁铁矿氧逸度缓冲剂),V进入金红石晶格的优先顺序为:V4+>V3+>V5+。来自大别—苏鲁造山带榴辉岩金红石中Nb-V负相关关系很好地说明了俯冲带不同阶段的氧逸度变化。陆壳俯冲过程中由于脱水作用导致的氧逸度降低:V3+比例的增加伴随着Dv的减少导致Nb5+能取代的Ti4+的有效晶格位置增加。相似的效应在更加氧化的条件下被观察到。当氧逸度升高引起V5+增加时,进入金红石中的V减少而Nb含量增加。Kaapvaal克拉通的高度交代的氧化的地幔捕虏体中的金红石(MARID,Mica-Amphibole-Rutile-Ilmenite-Diopside)也证实了这一V-Nb的负相关性。而且,这些金红石的Nb/Ta与V含量相关:当V含量<1250ppm, Nb/Ta范围在35—45之间;而当V>1250ppm,Nb/Ta相当低(5—15)。这一关系主要受Nb含量控制,说明V含量对金红石中Ta的分配具有较小的效应,这可能是由于Ta具有更低的丰度以及相对Nb更小的离子半径。这也说明了对氧逸度敏感的Dv可以对Nb-Ta的分异施加强烈的影响。这一发现同样适用于具有与金红石类似的Ti—O结构的矿物,如钙钛矿和榍石等。钙钛矿是包括碳酸岩在内的很多硅不饱和岩石中的普遍的副矿物,且一般容纳了碳酸岩全岩中超过85%的Nb和Ta。而榍石在Nb-Ta分异过程中所扮演的作用也越来越受到重视。因此,在研究上述矿物中Nb和Ta分异,赋存特征时,有必要考虑Nb-V竞争所带来的影响。
Shuanghe and Bixiling are two typical areas with abundant ultrahigh pressure metamorphic (UHPM) rock occurrence in the Dabie UHPM belt, where suffered intensively research in petrology, geochronology, geodynamics and mineralogy etc. Rutile is a common accessory mineral in media-high grade metamorphic rocks, it frequently presented in elcogite and jadeite quartzite, but rarely occurred in marble, biotite gneiss, mica schist, ultramafic rocks and areas country rock—granitic gneiss. As a stable heavy mineral phase, rutiles carry a lot of information with respect to metamorphism, e.g. metamorphic temperature, pressure, cool age and provenance properties. In this doctoral dissertation, both in-site LA-ICP-MS and EMP were performed for investigated geochemical characteristics of rutiles from different rocks in two regions above mentioned, including rock-in rutiles from eclogite, jadeite quartzite, marble and biotite gneiss and detrital rutiles from sediment. In term of purpose and content of research, it can be separated into three aspects to introduction.
     The first research subject is to systematic investigated to trace element mobile of metasedimentary rock during continental subduction and exhumation. The major work included study on a continuous profile from marble to eclogite in Shuanghe. The marble displayed LILE and LREE enriched relative to eclogite, in contrast to depletion in HFSE and HREE. REE patterns in marble and eclogite have shown well coupled relation, indicating fluid is internal source without external fluid ingress. Fluid-mobile elements (e.g. Rb, Cs, Ba) contents in eclogite increase toward to contact to marble, indicating degree of fluid action gradually increase to contact zone between marble and eclogite. Rutile is rarely presented in marble, and titanite is common occurred in eclogites, indicating fluid transported considerable Ti and HFSE into marble from eclogite. Ruitles in marble with high Nb/Ta (63.4) suggested the retrogression fluid have higher Nb/Ta relative to63.4. Supercritical fluids frequently can transport Ti and HFSE during subduction zone, thus Ti and HFSE transportion in eclogites suggested supercritital fluid presented in Shuanghe metasedimetary rock. Bulk rocks of eclogite have the constant Nb/Ta (14.3-15.5), and high-Al titanite in eclogites also displayed consistent Nb/Ta (14.2-16.7), indicating during rutile replaced by titantie, produced Nb-Ta fractionation is very limited. The Nb/Ta in bulk rock of marble range10.0to10.9, rutiles in marble range from14.2to63.4, indicating rutile Nb/Ta ratios can not represent the marble bulk rock. Low Nb/Ta in rutile retained the protolith characteristics, whereas high Nb/Ta in rutile maybe response for high Nb/Ta fluid resulted from rertrogression.
     The second research subject in this doctoral dissertation is to explore detrital rutile as tracer in provenance study throung investigation from detrital rutiles from Shuanghe and Bixiling areas in the Central Dabie region. This study explores the potential use of detrital rutile geochemistry and thermometry as a provenance tracer in rocks from the Central Dabieshan ultrahigh-pressure metamorphic (UHPM) zone that formed during the Triassic continental collision in east-central China. Trace element data of176detrital rutile grains selected from local river sediments and91rutile grains from distinct bedrocks in the Shuanghe and Bixiling areas, obtained by both electron microprobe (EMP) and in-situ LA-ICP-MS analyses, suggest that geochemical compositions and thermometry of the two types of rutiles are comparable. After establishing the Cr-Nb discrimination method suitable for the Central Dabie UHPM zone, we reveal that in the Shuanghe area29%of the detrital rutiles were derived from metamafic sources whereas in Bixiling area that is up to76%based on the new diagram. Furthermore, this proportion of detrital rutiles combined with modal abundances of rutile in metapelites and metamafic bedrocks can be used to estimate the proportion of different lithology. Based on this method the proportion of mafic source rocks was estimated to-10%at Shuanghe and>60%at Bixiling in available range, respectively, which is in consistent with the proportions of eclogite (the major rutile-bearing metamafic rock) distribution in field occurrence. Therefore, investigation of detrital rutiles is a potential way to evaluate the proportion of metamafic rocks and even prospect the metamafic body in UHPM terranes. Zr-in-rutile temperatures were calculated at diffenent pressures and the compare with temperatures derived from rock-in rutiles and garnet-clinopyroxene Fe-Mg exhance thermometers. Temperatures calculated from detrital rutiles were estimated to range from606℃to707℃and566℃to752℃in Shuanghe and Bixiling at P=3GPa. The average temperatures are633℃and629℃, respectively. Both of the variation range and the average of temperature are well resemble with rutiles from surrounding exposed rocks. Therefore, the analogy between detrital rutiles and rock-in rutiles demonstrated that source-sediment links of rutile is extremely intimate in UHPM terranes, thus allows us to conclude that rutile is an accurate tracer of source rock characterization on sedimentary provenance studies in a small scale of the immediate catchment area. In Bixiling, Nb/Ta ratios of metamafic and metapelitic detrital rutiles fall between11.0-27.3and7.7-20.5, respectively. In Shuanghe, these ratios are highly variable, ranging from10.9to71.0and7.6to87.1, respectively. However, When ignoring four rutiles with extremely high Nb/Ta, a distinct clustering of Nb/Ta ratios has shown (metapelitic rutile:7-40vs. metamafic rutile:11-25). The obviously distinct Nb/Ta ratio range between metapelitic and metamafic detrital rutiles from Shuanghe can well reflect degree of fluid-rock interaction during rutile growth due to water contents difference between corresponding source rock. The fluid-rock interaction during metapelitic rutiles growth is stronger than metamafic rutiles. But this feature do not present in Bixiling detrital rutiles. This may be account for rock abundance difference. Thus, any Nb-Ta data from rutiles should be interpreted within the framework of special petrological environment. Overall, the Nb/Ta ratio variable in detrital rutiles can accurate reflects intensity of fluid-rock interaction in source rock.
     The third research subject in this doctoral dissertation is to combine with rutile data from this study and published literatures, and found that there existed considerable negative correlation between V and Nb in rutiles from Dabie-Sulu elcogites. Vanadium occurs in multiple valence states in nature, whereas Nb is exclusively pentavalent. Both are compatible in rutile, but the relationship of V-Nb partitioning and dependence on oxygen fugacity has not yet been systematically investigated. We acquired trace element concentrations on rutile grains (n=86) in nine eclogitic samples from the Dabie-Sulu orogenic belt by laser ablation-inductively coupled plasma mass spectrometry and combined the results with published data in order to assess the direct and indirect effects of oxygen fugacity on the partitioning of V and Nb into rutile. After evaluating bulk rock and mineral phase influence on V behavior in rutile, we suggest there is a well-defined negative correlation between Nb (7ppm to1200ppm) and V concentrations (50ppm to3200ppm), documenting a competitive relationship in the rutile crystal. Based on the relationship of Dy and V valence with QFM (QFM is the quartz-fayalite-magnetite oxygen buffer), the priority order of V incorporation into rutile is V4+>V3+>V5+. The Nb-V competitive relationship in rutile from the Dabie-Sulu orogenic belt is well explained by decreasing oxygen fugacity (fO2) due to dehydration reactions during continental subduction:the increased proportion of V3+and accompanying reduced V incorporation into rutile leads to an increase in lattice sites available for Nb5+. A similar effect is observed under more oxidizing conditions. When V5+species increase, V partitioning into rutile decreases and Nb concentrations increase. This is documented by rutile in highly metasomatic and oxidized mantle xenoliths (Mica-Amphibole-Rutile-Ilmenite-Diopside) from the Kaapvaal craton, which also show a negative V-Nb covariation. In addition, their Nb/Ta is dependent on V concentrations:for V concentrations<1250ppm, Nb/Ta ranges between35and45, whereas for V>1250ppm, Nb/Ta is considerably lower (5to15). This relationship is mainly controlled by a change in Nb concentrations, suggesting that V concentrations have little effect on Ta partition into rutile due to lower Ta abundance as well as its smaller ionic radius relative to Nb. This indicates that the fO2-dependent DV for rutile can exert strong influence on Nb-Ta fractionation.
引文
Allen, C.M. and Campbell, L.,2007. Pot dating of detrital rutile by LA-Q-ICP-MS:A powerful provenance tool. GSA Denver Annual Meeting.
    Ames, L., Tilton, GR., Zhou, GZ.,1993. Timing of Collision of the Sino-Korean and Yangtze Cratons-U-Pb Zircon Dating of Coesite-Bearing Eclogites. Geology,21(4):339-342.
    Ames, L., Zhou, G.Z., Xiong, B.C.,1996. Geochronology and isotopic character of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics,15(2):472-489.
    Arculus, R.J., Lapierre, H., Jaillard, E.,1999. Geochemical window into subduction and accretion processes:Raspas metamorphic complex, Ecuador. Geology,27(6):547-550.
    Aulbach, S., O'Reilly, S.Y., Griffin, W.L., Pearson, N.J.,2008. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites. Nature Geoscience,1(7):468-472.
    Aulbach, S., O'Reilly, S.Y., Pearson, N.J.,2011. Constraints from eclogite and MARID xenoliths on origins of mantle Zr/Hf-Nb/Ta variability. Contributions to Mineralogy and Petrology,162(5): 1047-1062.
    Ayers, J.C., Dunkle, S., Gao, S., Miller, C.F.,2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology,186(3-4):315-331.
    Becker, H., Jochum, K.P., Carlson, R.W.,2000. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chemical Geology,163(1-4):65-99.
    Banno, S., Enami, M., Hirajima, T., Ishiwatari, A., Wang, Q.C.,2000. Decompression P-T path of coesite eclogite to granulite from Weihai, eastern China. Lithos,52(1-4):97-108.
    Barth, M.G., Foley, S.F., Horn, Ⅰ.,2002a. Partial melting in Archean subduction zones:constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Research,113(3-4):323-340.
    Barth, M.G, McDonough, W.F., Rudnick, R.L.,2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology,165(3-4):197-213.
    Barth, M.G et al.,2001. Geochemistry of xenolithic eclogites from West Africa, Part Ⅰ:A link between low MgO eclogites and Archean crust formation. Geochimica Et Cosmochimica Acta,65(9): 1499-1527.
    Barth, M.G. et al.,2002b. Geochemistry of xenolithic eclogites from West Africa, part 2:Origins of the high MgO eclogites. Geochimica Et Cosmochimica Acta,66(24):4325-4345.
    Bennett, S.L., Blundy, J., Elliott, T.,2004. The effect of sodium and titanium on crystal-melt partitioning of trace elements. Geochimica Et Cosmochimica Acta,68(10):2335-2347.
    Bibikova, E., Skiold, T., Bogdanova, S., Gorbatschev, R., Slabunov, A.,2001. Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambrian Research,105(2-4):315-330.
    Blundy, J., Wood, B.,2003. Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters,210(3-4):383-397.
    Brenan, J.M., Shaw, H.F., Phinney, D.L., Ryerson, F.J.,1994. Rutile-Aqueous Fluid Partitioning of Nb, Ta, Hf, Zr, U and Th-Implications for High-Field Strength Element Depletions in Island-Arc Basalts. Earth and Planetary Science Letters,128(3-4):327-339.
    Brenan, J.M., Shaw, H.F., Ryerson, F.J., Phinney, D.L.,1995. Mineral-Aqueous Fluid Partitioning of Trace-Elements at 900-Degrees-C and 2.0 Gpa-Constraints on the Trace-Element Chemistry of Mantle and Deep-Crustal Fluids. Geochimica Et Cosmochimica Acta,59(16):3331-3350.
    Bromiley, G.D., Hilairet, N.,2005. Hydrogen and minor element incorporation in synthetic rutile. Mineralogical Magazine,69(3):345-358.
    Bromiley, GD., Redfern, S.A.T.,2008. The role of TiO2 phases during melting of subduction-modified crust:Implications for deep mantle melting. Earth and Planetary Science Letters,267(1-2): 301-308.
    Canil, D.,1997. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature, 389(6653):842-845.
    Canil, D.,1999. Vanadium partitioning between orthopyroxene, spinel and silicate melt and the redox states of mantle source regions for primary magmas. Geochimica Et Cosmochimica Acta, 63(3-4):557-572.
    Canil, D.,2002. Vanadium in peridotites, mantle redox and tectonic environments:Archean to present. Earth and Planetary Science Letters,195(1-2):75-90.
    Canil, D., Fedortchouk, Y.,2000. Clinopyroxene-liquid partitioning for vanadium and the oxygen fugacity during formation of cratonic and oceanic mantle lithosphere. Journal of Geophysical Research-Solid Earth,105(B11):26003-26016.
    Carswell, D.A., O'Brien, P.J., Wilson, R.N., Zhai, M.,1997. Thermobarometry of phengite-bearing eclogites in the Dabie Mountains of central China. Journal of Metamorphic Geology,15(2): 239-252.
    Carswell, D.A., Wilson, R.N., Zhai, M.,1996. Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China. Mineralogical Magazine, 60(400):461-471.
    Carswell, D.A., Wilson, R.N., Zhai, M.,2000. Metamorphic evolution, mineral chemistry and thermobarometry of schists and orthogneisses hosting ultra-high pressure eclogites in the Dabieshan of central China. Lithos,52(1-4):121-155.
    Castelli, D., Rolfo, F., Compagnoni, R., Xu, S.,1998. Metamorphic veins with kyanite, zoisite and quartz in the Zhu-Jia-Chong eclogite, Dabie Shan, China. Island Arc,7(1-2):159-173.
    Chavagnac, V., Jahn, B.-m.,1996. Coesite-bearing eclogites from the Bixiling Complex, Dabie Mountains, China:Sm---Nd ages, geochemical characteristics and tectonic implications. Chemical Geology,133(1-4):29-51.
    Chavagnac, V, Jahn, B.M., Villa, I.M., Whitehouse, M.J., Liu, D.Y.,2001. Multichronometric evidence for an in situ origin of the ultrahigh-pressure metamorphic terrane of Dabieshan, China. Journal of Geology,109(5):633-646.
    Chen, R.-X. et al.,2007a. Oxygen isotope geochemistry of ultrahigh-pressure metamorphic rocks from 200-4000 m core samples of the Chinese Continental Scientific Drilling. Chemical Geology, 242(1-2):51-75.
    Chen, R.X. et al.,2007b. Zircon U-Pb age and Hf isotope evidence for contrasting origin of bimodal protoliths for ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling project. Journal of Metamorphic Geology,25(8):873-894.
    Chen, Z.Y., Yuchuan, C., Denghong, W., Jue, X., Jianxiong, Z.,2005. Rutiles in eclogitefrom the Sulu UHPM Terrane:a preliminary study. In:Mao, J., Bierlein, F.P. (Eds.),Mineral Deposit Research:Meeting the Global Challenge, pp.731-733.
    Cheng, Y.Q. et al.,2000. SHRIMP U-Pb Dating of Zircons of a Dark Eclogite and a Garnet-bearing Gneissic Granitic Rock from Bixiling, Eastern Dabie Area, Anhui Province:Isotope Chronological Evidence of Neoproterozoic UHP Metamorphism. Acta Geologica Sinica-English Edition,74(4):748-765.
    Cherniak, D.J.,1993. Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chemical Geology,110(1-3):177-194.
    Cherniak, D.J.,2000.Pb diffusion in rutile. Contrib. Mineral. Petrol,139:198-207.
    Cherniak, D.J., Manchester, J., Watson, E.B.,2007. Zr and Hf diffusion in rutile. Earth and Planetary Science Letters,261(1-2):267-279.
    Chopin, C.,2003. Ultrahigh-pressure metamorphism:tracing continental crust into the mantle. Earth and Planetary Science Letters,212(1-2):1-14.
    Choukroun, M., O'Reilly, S.Y., Griffin, W.L., Pearson, N.J., Dawson, J.B.,2005. Hf isotopes of MARID, (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle. Geology,33(1):45-48.
    Cong, B. et al.,1995. Petrogenesis of Ultrahigh-Pressure Rocks and Their Country Rocks at Shuanghe in Dabieshan, Central China. European Journal of Mineralogy,7(1):119-138.
    Creighton, S. et al.,2009. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contributions to Mineralogy and Petrology,157(4):491-504.
    Crowhurst, P., Farley, K., Ryan, C., Duddy, Ⅰ., Blacklock, K.,2002. Potential of rutile as a U-Th-He thermochronometer. Geochimica et Cosmochimica Acta 66 (Supplement 1), A158.
    Davis, W.J.,1997. U-Pb zircon and rutile ages from granulite xenoliths in the Slave province:Evidence for mafic magmatism in the lower crust coincident with Proterozoic dike swarms. Geology,25: 343-346.
    Defant, M.J., Drummond, M.S.,1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature,347(6294):662-665.
    Degeling, H.S.,2003. Zr equlibria in emtamorphic rocks. PhD. Thesis Canberra Australian National University.1-231.
    Dodson, M.H.,1973. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol.40,259-274.
    Dodson, M.H.,1986. Closure profiles in cooling systems. Mat. Sci. Forum 7,145-154.
    Doroshkevich, A.G., Wall, F., Ripp, G.S.,2007. Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr-rich mantle xenoliths. Mineralogy and Petrology,90(1-2):19-49.
    Drummond, M.S., Defant, M.J.,1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth Via Slab Melting-Archean to Modern Comparisons. Journal of Geophysical Research-Solid Earth and Planets,95(B13):21503-21521.
    Ernst, W.G., Liou, J.G,1995. Contrasting Plate-Tectonic Styles of the Qinling-Dabie-Sulu and Franciscan Metamorphic Belts. Geology,23(4):353-356.
    Faupl, P., Petrakakis, K., Migiros, G, Pavlopoulos, A.,2002. Detrital blue amphiboles from the western Othrys Mountain and their relationship to the blueschist terrains of the Hellenides (Greece). International Journal of Earth Sciences,91(3):433-444.
    Ferry, J.M., Watson, E.B.,2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology,154(4): 429-437.
    Fett, A.,1995. Elementverteilung zwischen Granat, Klinopyroxen und Rutil in Eklogiten-Experiment und Natur. PhD dissertation. University of Mainz,227 pp.
    Foley, S., Tiepolo, M., Vannucci, R.,2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature,417(6891):837-840.
    Foley, S.F., Barth, M.G., Jenner, GA.,2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica Et Cosmochimica Acta,64(5):933-938.
    Force, E.R.,1980. The Provenance of Rutile. Journal of Sedimentary Petrology,50(2):485-488.
    Force, E.R.,1991. Geology of titanium-mineral deposits. Geological Society of America, Special Paper 259:1-112.
    Franz, L. et al.,2001. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contributions to Mineralogy and Petrology,141(3): 322-346.
    Freer, R.,1980. Self-diffusion and impurity diffusion in oxides, J.Mater. Sci.15,803-824.
    Fu, B., Touret, J.L.R., Zheng, Y.-F., Jahn, B.-m.,2003. Fluid inclusions in granulites, granulitized eclogites and garnet clinopyroxenites from the Dabie-Sulu terranes, eastern China. Lithos, 70(3-4):293-319.
    Fu, B., Touret, J.L.R., Zheng, Y.F.,2001. Fluid inclusions in coesite-bearing eclogites and jadeite quartzite at Shuanghe, Dabie Shan (China). Journal of Metamorphic Geology,19(5):531-547.
    Fu, B. et al.,1999. Oxygen and hydrogen isotope geochemistry of gneisses associated with ultrahigh pressure eclogites at Shuanghe in the Dabie Mountains. Contributions to Mineralogy and Petrology,134(1):52-66.
    Gao, C.G, Liu, Y.S., Zong, K.Q., Hu, Z.C., Gao, S.,2010. Microgeochemistry of rutile and zircon in eclogites from the CCSD main hole:Implications for the fluid activity and thermo-history of the UHP metamorphism. Lithos,115(1-4):51-64.
    Gao, J., John, T., Klemd, R., Xiong, X.M.,2007. Mobilization of Ti-Nb-Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochimica Et Cosmochimica Acta,71(20):4974-4996.
    Gerdes, A., Worner, G., Henk, A.,2000. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating:the Variscan South Bohemian Batholith. Journal of the Geological Society,157:577-587.
    Green, T.H., Pearson, N.J.,1987. An Experimental-Study of Nb and Ta Partitioning between Ti-Rich Minerals and Silicate Liquids at High-Pressure and Temperature. Geochimica Et Cosmochimica Acta,51(1):55-62.
    Green, T.H., Blundy, J.D., Adam, J., Yaxley, G.M.,2000. SMS determination of trace element partition coefficients between garnet, clinopyroxene and hydrous basaltic liquids at 2-7.5 GPa and 1080-1200 degrees C. Lithos,53(3-4):165-187.
    Gregoire, M.G., Bell, D.B., Le Roex, A.L.R.,2002. Trace element geochemistry of phlogopite-rich mafic mantle xenoliths:their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contributions to Mineralogy and Petrology,142(5): 603-625.
    Hacker, B.R. et al.,1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters,161(1-4):215-230.
    Hacker, B.R., Wang, Q.C.,1995. Ar/Ar Geochronology of Ultrahigh-Pressure Metamorphism in Central China. Tectonics,14(4):994-1006.
    Hart, S.R., Dunn, T.,1993. Experimental Cpx Melt Partitioning of 24 Trace-Elements. Contributions to Mineralogy and Petrology,113(1):1-8.
    Hauri, E.H., Wagner, T.P., Grove, T.L.,1994. Experimental and Natural Partitioning of Th, U, Pb and Other Trace-Elements between Garnet, Clinopyroxene and Basaltic Melts. Chemical Geology, 117(1-4):149-166.
    Hermann, J.,2002. Allanite:thorium and light rare earth element carrier in subducted crust. Chemical Geology,192(3-4):289-306.
    Hermann, J., Spandler, C., Hack, A., Korsakov, A.V.,2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks:Implications for element transfer in subduction zones. Lithos,92(3-4):399-417.
    Hermann, J., Spandler, C.J.,2008. Sediment melts at sub-arc depths:An experimental study. Journal of Petrology,49(4):717-740.
    Horng, W.-S., Hess, P.C.,2000. Partition coefficients of Nb and Ta between rutile and anhydrous haplogranite melts. Contributions to Mineralogy and Petrology,138(2):176-185.
    Horng, W.-S., Hess, P.C., Gan, H.,1999. The interactions between M+5 cations (Nb+5, Ta+5, or P+5) and anhydrous haplogranite melts. Geochimica Et Cosmochimica Acta,63(16):2419-2428.
    Huang, J., Xiao, Y., Gao, Y., Hou, Z., Wu, W.,2012. Nb-Ta fractionation induced by fluid-rock interaction in subduction-zones:constraints from UHP eclogite-and vein-hosted rutile from the Dabie orogen, Central-Eastern China. Journal of Metamorphic Geology,30(8):821-842.
    Hwang, S.L. et al.,2007. On the origin of oriented rutile needles in garnet from UHP eclogites. Journal of Metamorphic Geology,25(3):349-362.
    Ireland, T.R.,Williams, I.S.,2003. Considerations in zircon geochronology by SIMS, Zircon.Reviews in Mineralogy and Geochemistry 215-241.
    Jahn, B.-m., Cornichet, J., Cong, B., Yui, T.-F.,1996. Ultrahigh-[epsilon]Nd eclogites from an ultrahigh-pressure metamorphic terrane of China. Chemical Geology,127(1-3):61-79.
    Jahn, B-M. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen:Implications for continental subduction and collisional tectonics. In:Hacker B R, Liou J G, eds. When Continents Collide:Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Dordrecht:Kluwer Academic Publishers,1998.203-239
    Jahn, B.-m., Fan, Q., Yang, J.-J., Henin, O.,2003. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan:chemical and isotopic constraints. Lithos, 70(3-4):243-267.
    Jenner, G.A. et al.,1993. Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). Geochimica Et Cosmochimica Acta, 57(23-24):5099-5103.
    Jiao, S., Guo, J., Mao, Q., Zhao, R.,2010. Application of Zr-in-rutile thermometry:a case study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton. Contributions to Mineralogy and Petrology:1-15.
    Jochum, K.P. & Nehring, E,2006. NIST 610:GeoRem preferred values (11/2006). GeoRem http:// georem.mpchmainz.gwdg.de.
    John, T., Scherer, E.E., Haase, K., Schenk, V.,2004. Trace element fractionation during fluid-induced eclogitization in a subducting slab:trace element and Lu-Hf-Sm-Nd isotope systematics. Earth and Planetary Science Letters,227(3-4):441-456.
    John, T., Klemd, R., Gao, J., Garbe-Schonberg, C.D.,2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction:Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos,103(1-2):1-24.
    John, T. et al.,2011. Nb-Ta fractionation by partial melting at the titanite-rutile transition. Contributions to Mineralogy and Petrology,161(1):35-45.
    Karner, J.M. et al.,2007. Valence state partitioning of Cr and V between pyroxene-melt:Estimates of oxygen fugacity for martian basalt QUE 94201. American Mineralogist,92(7):1238-1241.
    Kamber, B.S., Collerson, K.D.,2000. Role of 'hidden' deeply subducted slabs in mantle depletion. Chemical Geology,166(3-4):241-254.
    Kelemen, P.B., Shimizu, N., Dunn, T.,1993. Relative Depletion of Niobium in Some Are Magmas and the Continental-Crust-Partitioning of K, Nb, La and Ce during Melt/Rock Reaction in the Upper-Mantle. Earth and Planetary Science Letters,120(3-4):111-134.
    Kessel, R., Schmidt, M.W., Ulmer, P., Pettke, T.,2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180[thinsp]km depth. Nature,437(7059): 724-727.
    Klemme, S., Blundy, J.D., Wood, B.J.,2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica Et Cosmochimica Acta,66(17): 3109-3123.
    Klemme, S., Guenther, D., Hametner, K., Prowatke, S., Zack, T.,2006. The partitioning of trace elements between ilmenite, ulvospinel, annalcolite and silicate melts with implications for the early differentiation of the moon. Chemical Geology,234(3-4):251-263.
    Klemme, S., Prowatke, S., Hametner, K., Gunther, D.,2005. Partitioning of trace elements between rutile and silicate melts:Implications for subduction zones. Geochimica Et Cosmochimica Acta,69(9):2361-2371.
    Kogiso, T., Tatsumi, Y., Nakano, S.,1997. Trace element transport during dehydration processes in the subducted oceanic crust:1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters,148(1-2):193-205.
    Kooijman, E., Mezger, K., Berndt, J.,2010. Constraints on the U-Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth and Planetary Science Letters,293(3-4):321-330.
    Kooijman, E., Smit, M.A., Mezger, K., Berndt, J.,2012. Trace element systematics in granulite facies rutile:implications for Zr geothermometry and provenance studies. Journal of Metamorphic Geology:no-no.
    Korneliussen A. and Foslie G 1985. Rutile-bearing eclogites in the Sunnfjord region of western Norway. Norges Geologiske Unders0kelse Bulletin,402:65-71
    Krogh, E.J.,1980. Geochemistry and Petrology of Glaucophane-Bearing Eclogites and Associated Rocks from Sunnfjord, Western Norway. Lithos,13(4):355-380.
    Kylander-Clark, ARC., Hacker, B.R. and Mattinson, J.M.,2008. Slow exhumation of UHP terranes: Titanite and rutile ages of the Western Gneiss Region, Norway. Earth. Planet. Sci. Lett.272: 531-540.
    Lee, C.T.A., Brandon, A.D., Norman, M.,2003. Vanadium in peridotites as a proxy for paleo-fO(2) during partial melting:Prospects, limitations, and implications. Geochimica Et Cosmochimica Acta,67(16):3045-3064.
    Lee, C.T.A., Leeman, W.P., Canil, D., Li, Z.X.A.,2005. Similar V/Sc systematics in MORB and arc basalts:Implications for the oxygen fugacities of their mantle source regions. Journal of Petrology,46(11):2313-2336.
    Li, Q.L. et al.,2003. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China:a new constraint on the cooling history. Chemical Geology,200(3-4):255-265.
    Li, Q.L. et al.,2011. SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China. Lithos,122(1-2):76-86.
    Li, S., Jagoutz, E., Chen, Y, Li, Q.,2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica Et Cosmochimica Acta,64(6):1077-1093.
    Li, S.G. et al.,1999. Sm/Nd, Rb/Sr, and Ar-40/Ar-39 isotopic systematics of the ultrahigh-pressure metamorphic rocks in the Dabie-Sulu belt, central China:A retrospective view. International Geology Review,41(12):1114-1124.
    Li, S.G. et al.,1994. Excess Argon in Phengite from Eclogite-Evidence from Dating of Eclogite Minerals by Sm-Nd, Rb-Sr and Ar-40/Ar-39 Methods. Chemical Geology,112(3-4):343-350.
    Li, S.G. et al.,1993. Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites-Timing and Processes. Chemical Geology,109(1-4):89-111.
    Li, X.P. et al.,2004. Low-T eclogite in the Dabie terrane of China:petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology,148(4): 443-470.
    Liang, J.L. et al.,2009. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology,268(1-2):27-40.
    Liou, J.G., Ernst, W.G., Zhang, R.Y., Tsujimori, T., Jahn, B.M.,2009. Ultrahigh-pressure minerals and metamorphic terranes-The view from China. Journal of Asian Earth Sciences,35(3-4): 199-231.
    Liou, J.G., Zhang, R.Y.,1998. Petrogenesis of an ultrahigh-pressure garnet-bearing ultramafic body from Maowu, Dabie Mountains, east-central China. Island Arc,7(1-2):115-134.
    Liou, J.G, Zhang, R.Y., Ernst, W.G.,2007. Very high-pressure orogenic garnet peridotites. Proceedings of the National Academy of Sciences of the United States of America,104(22):9116-9121.
    Liou, J.G., Zhang, R.Y., Jahn, B.,1997. Petrology, geochemistry and isotope data on a ultrahigh-pressure jadeite quartzite from Shuanghe, Dabie mountains, east-central China. Lithos,41(1-3):59-78.
    Liou, J.G, Zhang, R.Y., Ernst, W.G., Rumble, D., Maruyama, S.,1998. High-pressure minerals from deeply subducted metamorphic rocks. Ultrahigh-Pressure Mineralogy,37:33-96.
    Liou, J.G., Zhang, R.Y., Jahn, B.M.,2000. Petrological and geochemical characteristics of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu terrane east-central China. International Geology Review,42(4):328-352.
    Liu, F. et al.,2001a. Mineral inclusions in zircons of para-and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos,59(4):199-215.
    Liu, F.L., Gerdes, A., Liou, J.G, Xue, H.M., Liang, F.H.,2006a. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China:constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology,24(7):569-589.
    Liu, F.L., Liou, J.G.,2011. Zircon as the best mineral for P-T-time history of UHP metamorphism:A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences,40(1):1-39.
    Liu, F.L. et al.,2002. Ultrahigh-pressure mineral inclusions in zircons from gneissic core samples of the Chinese Continental Scientific Drilling Site in eastern China. European Journal of Mineralogy,14(3):499-512.
    Liu, F.L., Xu, Z.Q., Xue, H.M.,2004a. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China):SHRIMP U-Pb dating of mineral inclusion-bearing zircons. Lithos,78(4):411-429.
    Liu, J., Ye, K., Sun, M.,2006b. Exhumation P-T path of UHP eclogites in the Hong'an area, western Dabie Mountains, China. Lithos,89(1-2):154-173.
    Liu, J.B., Ye, K., Maruyama, S.N., Cong, B.L., Fan, H.R.,2001b. Mineral inclusions in zircon from gneisses in the ultrahigh-pressure zone of the Dabie Mountains, China. Journal of Geology, 109(4):523-535.
    Liu, S. et al.,2008a. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China. Lithos,106(3-4):365-379.
    Liu, X., Jahn, B.-m., Liu, D., Dong, S., Li, S.,2004b. SHRIMP U-Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong'an Block), China, and its tectonic implications. Tectonophysics,394(3-4):171-192.
    Liu, X.W., Jin, Z.M., Green, H.W.,2007a. Clinoenstatite exsolution in diopsidic augite of Dabieshan: Garnet peridotite from depth of 300 km. American Mineralogist,92(4):546-552.
    Liu, Y.-H. et al.,2007b. Compositions of high Fe-Ti eclogites from the Sulu UHP metamorphic terrane, China:HFSE decoupling and protolith characteristics. Chemical Geology,239(1-2):64-82.
    Liu, Y. et al.,2005. Geochemistry and geochronology of eclogites from the northern Dabie Mountains, central China. Journal of Asian Earth Sciences,25(3):431-443.
    Liu, Y.C., Gu, X.F., Li, S.G., Hou, Z.H., Song, B.A.,2011a. Multistage metamorphic events in granulitized eclogites from the North Dabie complex zone, central China:Evidence from zircon U-Pb age, trace element and mineral inclusion. Lithos,122(1-2):107-121.
    Liu, Y.C., Gu, X.F., Rolfo, F., Chen, Z.Y.,2011b. Ultrahigh-pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone (central China): Evidence from mineral inclusions and decompression textures. Journal of Asian Earth Sciences,42(4):607-617.
    Liu, Y.C., Li, S.G., Xu, S.T.,2007c. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high TIP metamorphic zone, central China:Implications for decoupling within subducted continental crust. Lithos,96(1-2):170-185.
    Liu, Y.S., Zong, K.Q., Kelemen, P.B., Gao, S.,2008b. Geochemistry and magmatic history of eclogues and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology,247(1-2): 133-153.
    Luvizotto, GL., Zack, T.,2009. Nb and Zr behavior in rutile during high-grade metamorphism and retrogression:An example from the Ivrea-Verbano Zone. Chemical Geology,261(3-4): 303-317.
    Ma, C.Q., Ehlers, C., Xu, C.H., Li, Z.C., Yang, K.G.,2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane:constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Research,102(3-4):279-301.
    Malaspina, N., Poli, S. & Fumagalli, P.,2009. The Oxidation State of Metasomatized Mantle Wedge: Insights from C-O-H-bearing Garnet Peridotite. Journal of Petrology 50,1533-1552.
    Mallmann, G., O'Neill, H.S.C.,2009. The Crystal/Melt Partitioning of V during Mantle Melting as a Function of Oxygen Fugacity Compared with some other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology,50(9):1765-1794.
    McCammon, C.,2005. The paradox of mantle redox. Science,308(5723):807-808.
    Mcdonough, W.F., Sun, S.S.,1995. The Composition of the Earth. Chemical Geology,120(3-4): 223-253.
    McInnes, B.I.A., McBride, J.S., Evans, N.J., Lambert, D.D., Andrew, A.S.,1999. Osmium isotope constraints on ore metal recycling in subduction zones. Science,286(5439):512-516.
    Meinhold, G.,2010. Rutile and its applications in earth sciences. Earth-Science Reviews,102(1-2): 1-28.
    Meinhold, G., Anders, B., Kostopoulos, D., Reischmann, T.,2008. Rutile chemistry and thermometry as provenance indicator:An example from Chios Island, Greece. Sedimentary Geology, 203(1-2):98-111.
    Meinhold, G., Morton, A.C., Fanning, C.M., Whitham, A.G.,2011. U-Pb SHRIMP ages of detrital granulite-facies rutiles:further constraints on provenance of Jurassic sandstones on the Norwegian margin. Geological Magazine,148(3):473-480.
    Mezger, K, Hanson GN. and Bohlen, S.R.,1989. High-precision U-Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth. Planet. Sci. Lett.,96:106-118
    Mezger, K, Rawnsley C.M., Bohlen S.R. and Hanson G.N.,1991. U-Pb garnet, Sphene, Monazite, and Rutile ages:implications for the duration of high-grade metamorphism and cooling histories, Adirondack Mts, New York. J Geol.,99:415-428.
    Meyer, M., John, T., Brandt, S., Klemd, R.,2011. Trace element composition of rutile and the application of Zr-in-rutile thermometry to UHT metamorphism (Epupa Complex, NW Namibia). Lithos,126(3-4):388-401.
    Miller, B.V., Dunning, GR., Barr, S.M., Raeside, R.P., Jamieson, R.A. and Reynolds, P.H.,1996. Magmatism and metamorphism in a Grenvillian fragment:U-Pb and 40Ar-39Ar ages from the Blair River Complex, Northern Cape Breton Island, Nova Scotina. Geol. Soc. Am. Bull.,108: 127-140.
    Miller, C., Zanetti, A., Thoni, M., Konzett, J.,2007. Eclogitisation of gabbroic rocks:Redistribution of trace elements and Zr in rutile thermometry in an Eo-Alpine subduction zone (Eastern Alps). Chemical Geology,239(1-2):96-123.
    Moller, A, Mezger K. and Schenk V.,2000. U-Pb dating of metamorphic minerals:Pan-African metamorphism and prolonged slow cooling of high pressure granulites in Tanzania, East Africa. Precambrian Res.,104:123-146.
    Morton, A.C.,1991. Geochemical studies of detrital heavy minerals and their application to provenance research. In:Morton, A.C., Todd, S.P., Haughton, P.D.W. (Eds.), Developments in Sedimentary Provenance Studies. Geol. Soc. London, Spec. Publ., vol.57:pp.31-45.
    Morton, A.C., Hallsworth, C.,1994. Identifying Provenance-Specific Features of Detrital Heavy Mineral Assemblages in Sandstones. Sedimentary Geology,90(3-4):241-256.
    Morton, A.C., Hallsworth, C.R.,1999. Processes controlling the composition of heavy mineral assemblages in sandstones. Sedimentary Geology,124(1-4):3-29.
    Morton, A.C., Whitham, A.G, Fanning, C.M.,2005. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea:Integration of heavy mineral mineral chemical and zircon age data. Sedimentary Geology,182(1-4):3-28.
    Morton, A., Chenery, S.,2009. Detrital Rutile Geochemistry and Thermometry as Guides to Provenance of Jurassic-Paleocene Sandstones of the Norwegian Sea. Journal of Sedimentary Research,79(7-8):540-553.
    Mukasa, S.B., Wilson, A.H.and Carlson, R.W.,1998. A multielement geochronologic study of the Great Dyke, Zimbabwe:significance of the robust and reset ages. Earth. Planet. Sci. Lett.,164: 353-369.
    Muller, D., Franz, L., Herzig, P.M., Hunt, S.,2001. Potassic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Papua New Guinea. Lithos,57(2-3):163-186.
    Mungall, J.E.,2002. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology,30(10):915-918.
    Munker, C.,1998. Nb/Ta fractionation in a Cambrian arc back arc system, New Zealand:source constraints and application of refined ICPMS techniques. Chemical Geology,144(1-2):23-45.
    Munker, C. et al,2003. Evolution of planetary cores and the earth-moon system from Nb/Ta systematics. Science,301(5629):84-87.
    Munker, C., Worner, G., Yogodzinski, G, Churikova, T.,2004. Behaviour of high field strength elements in subduction zones:constraints from Kamchatka-Aleutian arc lavas. Earth and Planetary Science Letters,224(3-4):275-293.
    Nakamura, D., Hirajima, T.,2000. Granulite-facies overprinting of ultrahigh-pressure metamorphic rocks, northeastern Su-Lu region, eastern China. Journal of Petrology,41(4):563-582.
    Nichols, G.T., Wyllie, P.J., Stern, C.R.,1994. Subduction Zone-Melting of Pelagic Sediments Constrained by Melting Experiments. Nature,371(6500):785-788.
    Okay, A.I.,1993. Petrology of a Diamond and Coesite-Bearing Metamorphic Terrain-Dabie Shan, China. European Journal of Mineralogy,5(4):659-675.
    Okay, A.I., Xu, S.T., Sengor, A.M.C.,1989. Coesite from the Dabie Shan Eclogites, Central China. European Journal of Mineralogy,1(4):595-598.
    Okay, N., Zack, T., Okay, A.I., Barth, M.,2011. Sinistral transport along the Trans-European Suture Zone:detrital zircon-rutile geochronology and sandstone petrography from the Carboniferous flysch of the Pontides. Geological Magazine,148(3):380-403.
    Oneill, H.S.,1987. Quartz-Fayalite-Iron and Quartz-Fayalite-Magnetite Equilibria and the Free-Energy of Formation of Fayalite (Fe2sio4) and Magnetite (Fe3o4). American Mineralogist,72(1-2): 67-75.
    Parkinson, I.J., Arculus, R.J.,1999. The redox state of subduction zones:insights from arc-peridotites. Chemical Geology,160(4):409-423.
    Pfander, J.A., Munker, C., Stracke, A., Mezger, K.,2007. Nb/Ta and Zr/Hf in ocean island basalts-Implications for crust-mantle differentiation and the fate of Niobium. Earth and Planetary Science Letters,254(1-2):158-172.
    Plank, T., Langmuir, C.H.,1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology,145(3-4):325-394.
    Pober, E., Faupl, P.,1988. The Chemistry of Detrital Chromian Spinels and Its Implications for the Geodynamic Evolution of the Eastern Alps. Geologische Rundschau,77(3):641-670.
    Rapp, R.P., Shimizu, N., Norman, M.D.,2003. Growth of early continental crust by partial melting of eclogite. Nature,425(6958):605-609.
    Rice, C.M., Darke, K.E., Still, J.W., Lachowski, E.E.,1998. Tungsten-bearing rutile from the Kori Kollo gold mine, Bolivia. Mineralogical Magazine,62(3):421-429.
    Rowley, D.B. et al.,1997. Ages of ultrahigh pressure metamorphism and protolith orthogneisses from the eastern Dabie Shan:U/Pb zircon geochronology. Earth and Planetary Science Letters, 151(3-4):191-203.
    Rudnick, R.L., Barth, M., Horn, I., McDonough, W.F.,2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science,287(5451):278-281.
    Rudnick, R.L., Fountain, D.M.,1995. Nature and Composition of the Continental-Crust-a Lower Crustal Perspective. Reviews of Geophysics,33(3):267-309.
    Rumble, D., Yui, T.F.,1998. The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochimica Et Cosmochimica Acta,62(19-20):3307-3321.
    Rumble, D., Wang, Q., Zhang, R.,2000. Stable isotope geochemistry of marbles from the coesite UHP terrains of Dabieshan and Sulu, China. Lithos,52(1-4):79-95.
    Rumble, D., Giorgis, David, Ireland, Trevor, Zhang, Zeming, Xu, Huifen, et al.,2002. Low [delta] 18O zircons, U-Pb dating, and the age of the Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China. Geochimica Et Cosmochimica Acta,66(12): 2299-2306.
    Ryerson, F.J., Watson, E.B.,1987. Rutile Saturation in Magmas-Implications for Ti-Nb-Ta Depletion in Island-Arc Basalts. Earth and Planetary Science Letters,86(2-4):225-239.
    Sassi, R., Harte, B., Carswell, D.A., Yujing, H.,2000. Trace element distribution in Central Dabie eclogites. Contributions to Mineralogy and Petrology,139(3):298-315.
    Scambelluri, M., Philippot, P.,2001. Deep fluids in subduction zones. Lithos,55(1-4):213-227.
    Scharer, U. and Labrousse, L.,2003. Dating the exhumation of UHP rocks and associated crustal melting in the Norwegian Caledonides. Contrib. Mineral. Petrol.,144:758-770.
    Schertl, H.P., Okay, A.I.,1994. A Coesite Inclusion in Dolomite in Dabie-Shan, China-Petrological and Theological Significance. European Journal of Mineralogy,6(6):995-1000.
    Schmidt, A., Weyer, S., John, T., Brey, GP.,2009. HFSE systematics of rutile-bearing eclogites:New insights into subduction zone processes and implications for the earth's HFSE budget. Geochimica Et Cosmochimica Acta,73(2):455-468.
    Schmidt, M.W., Dardon, A., Chazot, G, Vannucci, R.,2004a. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth and Planetary Science Letters,226(3-4):415-432.
    Schmidt, M.W., Vielzeuf, D., Auzanneau, E.,2004b. Melting and dissolution of subducting crust at high pressures:the key role of white mica. Earth and Planetary Science Letters,228(1-2): 65-84.
    Sheng, Y.M., Zheng, Y.F., Chen, R.X., Li, Q.L., Dai, M.N.,2012. Fluid action on zircon growth and recrystallization during quartz veining within UHP eclogite:Insights from U-Pb ages, O-Hf isotopes and trace elements. Lithos,136:126-144.
    Shannon RD.1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst.,32:751-767
    Sircombe, K.N.,1999. Tracing provenance through the isotope ages of littoral and sedimentary detrital zircon, eastern Australia. Sedimentary Geology,124(1-4):47-67.
    Smith, D.C., Perseil, E.A.,1997. Sb-rich rutile in the manganese concentrations at St. Marcel-Praborna, Aosta valley, Italy:Petrology and crystal-chemistry. Mineralogical Magazine,61(5):655-669.
    Smith, H.A., Giletti, B J.,1997. Lead diffusion in monazite. Geochimica Et Cosmochimica Acta,61(5): 1047-1055.
    Spandler, C., Hermann, J., Arculus, R., Mavrogenes, J.,2003. Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contributions to Mineralogy and Petrology,146(2):205-222.
    Spear, F.S., Wark, D.A., Cheney, J.T., Schumacher, J.C., Watson, E.B.,2006. Zr-in-rutile thermometry in blueschists from Sifnos, Greece. Contributions to Mineralogy and Petrology,152(3): 375-385.
    Spiegel, C., Siebel, W., Frisch, W., Berner, Z.,2002. Nd and Sr isotopic ratios and trace element geochemistry of epidote from the Swiss Molasse Basin as provenance indicators:implications for the reconstruction of the exhumation history of the Central Alps. Chemical Geology, 189(34):231-250.
    Stacey, J.S. and Kramers, J.D.,1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth. Planet. Sci. Lett.,26:207-221.
    Stalder, R., Foley, S.F., Brey, G.P., Horn, I.,1998. Mineral aqueous fluid partitioning of trace elements at 900-1200 degrees C and 3.0-5.7 GPa:New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochimica Et Cosmochimica Acta,62(10): 1781-1801.
    Stendal, H. et al.,2006. Derivation of detrital rutile in the Yaounde region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa). Journal of African Earth Sciences, 44(4.5):443-458.
    Stockli, D.F., Farley, K.A., Walker, J.D., Blackburn, T.J.,2005. Helium diffusion and (U-Th)/He thermochronometry of monazite and rutile. Geochimica et Cosmochimica Acta 69 (10, Supplement 1) A8.
    Stockli, D.F., Wolfe, M.R., Blackburn, T.J., Zack, T., Walker, J.D., Luvizotto, G.L.,2007. He diffusion and (U-Th)/He thermochronometry of rutile. Eos, Transactions of the American Geophysical Union, Fall Meeting Supplement, Abstract V23C-1548.
    Sutton, S.R. et al.,2005. Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochimica Et Cosmochimica Acta,69(9): 2333-2348.
    Tabata, H., Maruyama, S., Shi, Z.,1998. Metamorphic zoning and thermal structure of the Dabie ultrahigh-pressure-high-pressure terrane, central China. Island Arc,7(1-2):142-158.
    Tang, H.-F., Liu, C.-Q., Nakai, S.i., Orihashi, Y,2007. Geochemistry of eclogites from the Dabie-Sulu terrane, eastern China:New insights into protoliths and trace element behaviour during UHP metamorphism. Lithos,95(3-4):441-457.
    Tang, J. et al.,2008a. Extreme oxygen isotope signature of meteoric water in magmatic zircon from metagranite in the Sulu orogen, China:Implications for Neoproterozoic rift magmatism. Geochimica Et Cosmochimica Acta,72(13):3139-3169.
    Tang, J. et al.,2008b. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Research,161(3-4):389-418.
    Tenthorey, E., Hermann, J.,2004. Composition of fluids during serpentinite breakdown in subduction zones:Evidence for limited boron mobility. Geology,32(10):865-868.
    Tiepolo, M. et al.,2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and implications for natural systems. Earth and Planetary Science Letters,176(2):185-201.
    Tomkins, H.S., Powell, R., Ellis, D.J.,2007. The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology,25(6):703-713.
    Treloar, P.J., O'Brien, P.J., Parrish, R.R. and Khan, M.A.,2003. Exhumation of early Tertiary, coesite-bearing eclogites from the Pakistan Himalaya. J Geol. Soc. London,160:367-376.
    Triebold, S., Luvizotto, G.L., Tolosana-Delgado, R., Zack, T., von Eynatten, H.,2011. Discrimination of TiO2 polymorphs in sedimentary and metamorphic rocks. Contributions to Mineralogy and Petrology,161(4):581-596.
    Triebold, S., von Eynatten, H., Luvizotto, G.L., Zack, T.,2007. Deducing source rock lithology from detrital rutile geochemistry:An example from the Erzgebirge, Germany. Chemical Geology, 244(3-4):421-436.
    Tropper, P., Manning, C.E.,2008. The current status of titanite-rutile thermobarometry in ultrahigh-pressure metamorphic rocks:The influence of titanite activity models on phase equilibrium calculations. Chemical Geology,254(3-4):123-132.
    Tsai, C.H., Liou, J.G.,2000. Eclogite-facies relies and inferred ultrahigh-pressure metamorphism in the North Dabie Complex, central-eastern China. American Mineralogist,85(1):1-8.
    Tsuno, K., Dasgupta, R.,2012. The effect of carbonates on near-solidus melting of pelite at 3GPa: Relative efficiency of H2O and CO2 subduction. Earth and Planetary Science Letters, 319-320(0):185-196.
    Uher, P., Zitnan, P., Ozdin, D.,2007. Pegmatitic Nb-Ta oxide minerals in alluvial placers from Limbach, Bratislava Massif, Western Carpathians, Slovakia:compositional variations and evolutionary trend. Journal of Geosciences 52,133-141.
    von Eynatten, H., Gaupp, R.,1999. Provenance of Cretaceous synorogenic sandstones from the Eastern Alps:constraints from framework petrography, heavy mineral analysis, and mineral chemistry. Sediment. Geol.124:81-111.
    von Quadt, A., Moritz, R., Peytcheva, I., Heinrich, C.A.,2005. Geochronology and geodynamics of Late Cretaceous magmatism and Cu-Au mineralization in the Panagyurishte region of the Apuseni-Banat-Timok-Srednogorie belt, Bulgaria. Ore Geology Reviews,27(1-4):95-126.
    Vry, J.K., Baker, J.A.,2006. LA-MC-ICPMS Pb-Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile. Geochimica Et Cosmochimica Acta,70(7):1807-1820.
    Wade, J., Wood, B.J.,2001. The Earth's'missing' niobium may be in the core. Nature,409(6816): 75-78.
    Wang, L., Jin, Z.M., Kusky, T., Xu, H.J., Liu, X.W.,2010. Microfabric characteristics and rheological significance of ultra-high-pressure metamorphosed jadeite-quartzite and eclogite from Shuanghe, Dabie Mountains, China. Journal of Metamorphic Geology,28(2):163-182.
    Wang, X.M., Liou, J.G., Mao, H.K.,1989. Coesite-Bearing Eclogite from the Dabie Mountains in Central China. Geology,17(12):1085-1088.
    Wang, X., Liou, J.G.,1993. Ultra-high-pressure metamorphism of carbonate rocks in the Dabie Mountains, central China. Journal of Metamorphic Geology,11(4):575-588.
    Watson, E.B., Wark, D.A., Thomas, J.B.,2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology,151(4):413-433.
    Wedepohl, K.H.,1995. The Composition of the Continental-Crust. Geochimica Et Cosmochimica Acta, 59(7):1217-1232.
    Weyer, S., Munker, C, Mezger, K.,2003. Nb/Ta, Zr/Hf and REE in the depleted mantle:implications for the differentiation history of the crust-mantle system. Earth and Planetary Science Letters, 205(3-4):309-324.
    Wolfe,M.R., Stockli,D.F., Shuster,D.L.,Walker, J.D.,MacPherson,G.L.,2007. Assessment of the rutile (U-Th)/He thermochronometry on the KTB drill hole, Germany. Eos, Transactions of the American Geophysical Union, Fall Meeting Supplement, Abstract V23C-1549.
    Wu, X.L., Meng, D.W., Han, Y.J.,2005. (alpha-PbO2-type nanophase of TiO2 from coesite-bearing eclogite in the Dabie Mountains, China. American Mineralogist,90(8-9):1458-1461.
    Wu, Y.B. et al.,2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica Et Cosmochimica Acta,70(14): 3743-3761.
    Xia, Q.-X., Zheng Y.-F., Zhou, L.G.,2008. Dehydration and melting during continental collision: constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen.Chem. Geol.,247,36-65.
    Xiao, Y., Hoefs, J., Hou, Z., Simon, K., Zhang, Z.,2011. Fluid/rock interaction and mass transfer in continental subduction zones:constraints from trace elements and isotopes (Li, B, O, Sr, Nd, Pb) in UHP rocks from the Chinese Continental Scientific Drilling Program, Sulu, East China. Contributions to Mineralogy and Petrology:1-23.
    Xiao, Y.L., Hoefs, J., Kronz, A.,2005. Compositionally zoned Cl-rich amphiboles from North Dabie Shan, China:Monitor of high-pressure metamorphic fluid/rock interaction processes. Lithos, 81(1-4):279-295.
    Xiao, Y.L., Hoefs, J., van den Kerkhof, A.M., Fiebig, J., Zheng, Y.F.,2000. Fluid history of UHP metamorphism in Dabie Shan, China:a fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contributions to Mineralogy and Petrology,139(1): 1-16.
    Xiao, Y.L., Hoefs, J., Van Den Kerkhof, A.M., Li, S.G,2001. Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China. Journal of Metamorphic Geology,19(1):3-19.
    Xiao, Y.L. et al.,2002. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: Constraints from mineral chemistry, fluid inclusions and stable isotopes. Journal of Petrology, 43(8):1505-1527.
    Xiao, Y.L. et al.,2006a. Making continental crust through slab melting:Constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochimica Et Cosmochimica Acta,70(18):4770-4782.
    Xiao, Y.L., Zhang, Z.M., Hoefs, J., van den Kerkhof, A.,2006b. Ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project:Ⅱ Oxygen isotope and fluid inclusion distributions through vertical sections. Contributions to Mineralogy and Petrology,152(4): 443-458.
    Xiong, X.L.,2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology,34(11):945-948.
    Xiong, X.L., Adam, J., Green, T.H.,2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis. Chemical Geology,218(3-4): 339-359.
    Xiong, X.L. et al.,2009. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. American Mineralogist,94(8-9):1175-1186.
    Xiong, X.L. et al.,2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochimica Et Cosmochimica Acta, 75(7):1673-1692.
    Xu, S.T. et al.,2005. Microdiamonds, their classification and tectonic implications for the host eclogites from the Dabie and Su-Lu regions in central eastern China. Mineralogical Magazine, 69(4):509-520.
    Xu, S.T. et al.,1992. Diamond from the Dabie-Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science,256(5053):80-82.
    Xu, Z., Yang, W., Zhang, Z., Yang, T.,1998. Scientific significance and site-selection researches of the first Chinese continental scientific deep drillhole. Continental Dynamics,1-13(3).
    Xu, Z., Zhang, Z., Liu, F., Yang, J., Li, H., Yang, T., Qiu, H., Li, T., Meng, F., Chen, Z., Tang, Z., Chen, F.,2003. Exhumation structure and mechanism of the Sulu ultrahighpressure metamorphic belt, central China. Acta Geologica Sinica 77,433-450 (in Chinese with English abstract).
    Xu, Z.,2007. Continental deep subduction and exhumation dynamics:evidence from the main hole of the Chinese Continental Scientific Drilling and the Sulu HP-UHP metamorphic terrane. Acta Petrologica Sinica 23,3043-3053 (in Chinese with English abstract).
    Xue, F., Lerch, M.R, Kroner, A., Reischmann, T.,1996. Tectonic evolution of the East Qinling Mountains, China, in the Palaeozoic:a review and new tectonic model. Tectonophysics, 253(3-4):271-284.
    Yang, J.S. et al.,2003. SHRIMP U-Pb dating of coesite-bearing zircon from the ultrahigh-pressure metamorphic rocks, Sulu terrane, east China. Journal of Metamorphic Geology,21(6): 551-560.
    Yao, Y, Ye, K., Liu, J., Cong, B., Wang, Q.,2000. A transitional eclogite- to high pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressure terrane, Eastern China. Lithos,52(1-4):109-120.
    Ye, K., Cong, B.L., Ye, D.Ⅰ.,2000a. The possible subduction of continental material to depths greater than 200 km. Nature,407(6805):734-736.
    Ye, K. et al.,2000b. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China:new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos,52(1-4):157-164.
    Ye, K. et al.,2002. Ultrahigh-pressure (UHP) low-Al titanites from carbonate-bearing rocks in Dabieshan-Sulu UHP terrane, eastern China. American Mineralogist,87(7):875-881.
    Yui, T.-F., Rumble, D., Lo, C.-H.,1995. Unusually low [delta]18O ultra-high-pressure metamorphic rocks from the Sulu Terrain, eastern China. Geochimica Et Cosmochimica Acta,59(13): 2859-2864.
    Zack, T., Rivers, T., Foley, S.F.,2001. Cs-Rb-Ba systematics in phengite and amphibole:an assessment of fluid mobility at 2.0 GPa in eclogites from Trescolmen, Central Alps. Contributions to Mineralogy and Petrology,140(6):651-669.
    Zack, T., Kronz, A., Foley, S.F., Rivers, T.,2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chemical Geology,184(1-2):97-122.
    Zack, T., Luvizotto, GL.,2006. Application of rutile thermometry to eclogites. Mineralogy and Petrology,88(1-2):69-85.
    Zack, T., Moraes, R., Kronz, A.,2004a. Temperature dependence of Zr in rutile:empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology,148(4):471-488.
    Zack, T., von Eynatten, H., Kronz, A.,2004b. Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology,171(1-4):37-58.
    Zack, T. and John, T.,2007. An evaluation of reactive fluid flow and trace element mobility in subducting slabs. Chemical Geology 239,199-216.
    Zack, T. et al.,2011. In situ U-Pb rutile dating by LA-ICP-MS:(208)Pb correction and prospects for geological applications. Contributions to Mineralogy and Petrology,162(3):515-530.
    Zhang, R.Y., Liou, J.G.,1996. Coesite inclusions in dolomite from eclogite in the southern Dabie Mountains, China:The significance of carbonate minerals in UHPM rocks. American Mineralogist,81(1-2):181-186.
    Zhang, Liou, Yang, Yui,2000. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. Journal of Metamorphic Geology,18(2): 149-166.
    Zhang, GB., Ellis, D.J., Christy, A.G, Zhang, L.F., Song, S.G.,2010. Zr-in-rutile thermometry in HP/UHP eclogites from Western China. Contributions to Mineralogy and Petrology,160(3): 427-439.
    Zhang, J.F., Jin, Z.M., Green, H.W., Jin, S.Y.,2001. Hydroxyl in continental deep subduction zone: Evidence from UHP eclogites of the Dabie Mountains. Chinese Science Bulletin,46(7): 592-596.
    Zhang, R.Y., Liou, J.G, Cong, B.L.,1995. Talc-Bearing, Magnesite-Bearing and Ti-Clinohumite-Bearing Ultrahigh-Pressure Meta-Mafic and Ultramafic Complex in the Dabie Mountains, China. Journal of Petrology,36(4):1011-1037.
    Zhang, R.Y. et al.,2009a. Metamorphic P-T conditions and thermal structure of Chinese Continental Scientific Drilling main hole eclogites:Fe-Mg partitioning thermometer vs. Zr-in-rutile thermometer. Journal of Metamorphic Geology,27(9):757-772.
    Zhang, R.Y., Liou, J.G, Ernst, W.G.,2009b. The Dabie-Sulu continental collision zone:A comprehensive review. Gondwana Research,16(1):1-26.
    Zhang, R.Y., Liou, J.G., Tsai, C.H.,1996. Petrogenesis of a high-temperature metamorphic terrane:a new tectonic interpretation for the north Dabieshan, central China. Journal of Metamorphic Geology,14(3):319-333.
    Zhang, R.Y., Liou, J.G, Zheng, Y.F., Fu, B.,2003a. Transition of UHP eclogites to gneissic rocks of low-amphibolite facies during exhumation:evidence from the Dabie terrane, central China. Lithos,70(3-4):269-291.
    Zhang, R.Y., Zhai, S.M., Fei, Y.W., Liou, J.G,2003b. Titanium solubility in coexisting garnet and clinopyroxene at very high pressure:the significance of exsolved rutile in garnet. Earth and Planetary Science Letters,216(4):591-601.
    Zhang, Z.-M. et al.,2008. Fluids in deeply subducted continental crust:Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochimica Et Cosmochimica Acta,72(13):3200-3228.
    Zhang, Z., Shen, K., Xiao, Y, Hoefs, J., Liou, J.G,2006a. Mineral and fluid inclusions in zircon of UHP metamorphic rocks from the CCSD-main drill hole:A record of metamorphism and fluid activity. Lithos,92(3-4):378-398.
    Zhang, Z.M., Liou, J.G, Zhao, X.D., Shi, C.,2006b. Petrogenesis of Maobei rutile eclogites from the southern Sulu ultrahigh-pressure metamorphic belt, eastern China. Journal of Metamorphic Geology,24(8):727-741.
    Zhang, Z.-M., Yang, J.-S., Rong, H., Hu, J.-Z., Su, J.-F., Mao, H.K.,2007. Discovery of diamond in eclogite from the Chinese Continental Scientific Drilling Project Main Hole (CCSD-MH) in the Sulu UHPM belt. Acta Petrologica Sinica 23,3201-3206 (in Chinese with English abstract).
    Zhang, Z.M. et al.,2011. Fluid-rock interactions during UHP metamorphism:A review of the Dabie-Sulu orogen, east-central China. Journal of Asian Earth Sciences,42(3):316-329.
    Zhao, D.G, Essene, E.J., Zhang, Y.X.,1999. An oxygen barometer for rutile-ilmenite assemblages: oxidation state of metasomatic agents in the mantle. Earth and Planetary Science Letters, 166(3-4):127-137.
    Zhao, Z.-F., Zheng, Y.-F., Chen, R.-X., Xia, Q.-X., Wu, Y.-B.,2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochimica Et Cosmochimica Acta,71(21):5244-5266.
    Zhao, Z.F. et al.,2006. Isotopic constraints on age and duration of fluid-assisted high-pressure eclogite-facies recrystallization during exhumation of deeply subducted continental crust in the Sulu orogen. Journal of Metamorphic Geology,24(8):687-702.
    Zheng, Y.-., Bin, F., Bing, G.,1999a. Stable Isotope Geochemistry of High to Ultrahigh Pressure Metamorphic Rocks in the Dabie Mountains. Gondwana Research,2(4):636-638.
    Zheng, Y.F., Fu, B., Xiao, Y. L., Li, Y. L. & Gong, B.1999b. Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre-and post-UHP metamorphism in the Dabie Mountains. Lithos 46,677-693.
    Zheng, Y.-F.,2012. Metamorphic chemical geodynamics in continental subduction zones. Chemical Geology(0).
    Zheng, Y.-F., Fu, B., Gong, B., Li, L.,2003a. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime. Earth-Science Reviews,62(1-2):105-161.
    Zheng, Y.-F., Gong, B., Zhao, Z.-F., Fu, B., Li, Y.-L.,2003b. Two types of gneisses associated with eclogite at Shuanghe in the Dabie terrane:carbon isotope, zircon U-Pb dating and oxygen isotope. Lithos,70(3-4):321-343.
    Zheng, Y.-F. et al.,2007. Tectonic driving of Neoproterozoic glaciations:Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth and Planetary Science Letters, 256(1-2):196-210.
    Zheng, Y.-F. et al.,2006a. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology,231(1-2): 135-158.
    Zheng, Y.-F., Zhou, J.-B., Wu, Y.-B., Xie, Z.,2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt:A Passive-Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review,47(8):851-871.
    Zheng, Y.F.,2009. Fluid regime in continental subduction zones:petrological insights from ultrahigh-pressure metamorphic rocks. Journal of the Geological Society,166:763-782.
    Zheng, Y.F., Fu, B., Gong, B., Li, S.G.,1996. Extreme 0-18 depletion in eclogite from the Su-Lu terrane in East China. European Journal of Mineralogy,8(2):317-323.
    Zheng, Y.F., Fu, B., Li, Y.L., Xiao, Y.L., Li, S.G.,1998. Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and the Sulu terrane. Earth and Planetary Science Letters,155(1-2):113-129.
    Zheng, Y.F., Gao, X.Y., Chen, R.X., Gao, T.S.,2011. Zr-in-rutile thermometry of eclogite in the Dabie orogen:Constraints on rutile growth during continental subduction-zone metamorphism. Journal of Asian Earth Sciences,40(2):427-451.
    Zheng, Y.F. et al.,2004. Zircon U-Pb and oxygen isotope evidence for a large-scale O-18 depletion event in igneous rocks during the neoproterozoic. Geochimica Et Cosmochimica Acta,68(20): 4145-4165.
    Zheng, Y.F., Zhao, Z.F., Wu, Y.B., Gong, B.,2006b. Protolith nature of deeply subducted continent: Zircon U-Pb age, Hf and O isotope constraints from UHP eclogite and gneiss in the Dabie orogen. Geochimica Et Cosmochimica Acta,70(18):A745-A745.
    Vry, J.K. and Baker, J.A.,2006. LA-MC-ICPMS Pb-Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile. Geochim. Cosmochim.
    程裕淇,庄育勋,高天山,简平,2002.大别山菖蒲—碧溪岭地区高压—超高压榴辉岩相变质岩和有关岩石的岩石类型及其原岩性质.地质学报(01):1-13+145.
    从柏林,王清晨,1999.大别山-苏鲁超高压变质带研究的最新进展.科学通报,44(11):15.
    陈振宇,李秋立,2007.大别山金河桥榴辉岩中金红石Zr温度计及其意义.科学通报,52(22).
    陈振宇,余金杰,李晓峰,王平安,2007.金红石Zr温度计在苏鲁-大别榴辉岩研究中的应用:问题讨论.地质学报,81(10).
    陈振宇,曾令森,李晓峰,余金杰,徐压,2009CCSD主孔榴辉岩中金红石微量元素特征:LA-ICPMS分析及其意义.岩石学报(7).
    陈振宇,2008.博士学位论文,CCSD及苏鲁超高压中副矿物研究及其地质意义.中国地质科学院.
    高晓英,郑永飞,2011.金红石Zr和锆石Ti含量地质温度计.岩石学报,27(2).
    侯振辉,王晨香,2007.电感耦合等离子体质谱法测定地质样品中35种微量元素.中国科学技术大学学报,37,940-944.
    胡世玲,郝杰,李曰俊,戴橦谟,蒲志平,1999.大别山碧溪岭榴辉岩激光探针~(40)Ar~(39)Ar年龄.地质科学(04):427-431.
    黄建平,马东升,刘聪,王辉,2002.苏北超高压变质带榴辉岩型金红石矿床及其成因.南京大学学报(自然科学版)(04):514-524.
    李林庆,潘立成 & 张桂凤,2010.地球化学样品无污染加工流程.地质调查与研究,33,238-240.
    李秋立,李曙光,周红英,李惠民,洪吉安,王清晨,Massonne H.J.,2001.超高压榴辉岩中金红石U-Pb年龄:快速冷却的证据.科学通报,46,1655-1658.
    李曙光,2001.大别山双河超高压变质岩及北部片麻岩的U—Pb同位素组成——对超高压岩石折返机制的制约.中国科学:D辑,31(12).
    刘敦一,2004.大别山双河硬玉石英岩的超高压变质和退变质事件——SHRIMP测年的证据.地质学报,78(2).
    刘福来,2006.大别超高压变质带的进变质、超高压和退变质时代的准确限定:以双河大理岩中榴辉岩锆石SHRIMP U-Pb定年为例.岩石学报,22(7).
    刘福来,许志琴,2004.南苏鲁超高压岩石含柯石英锆石中的流体包裹体.科学通报,49(2):9.
    王汝成,王硕,邱检生,倪培,2005CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义.岩石学报,21(2).
    夏新宇,王先彬,陈江峰,葛宁洁,1999.大别山双河地区超高压变质岩流体包裹体成分及二氧化碳碳同位素研究.中国科学D辑,29(4):7.
    肖益林,傅斌,李曙光,郑永飞,1997.大别山碧溪岭榴辉岩变质温压条件计算及氧同位素研究. 地球学报(03):95-100.
    徐树桐et a1.,2003.大别山、苏鲁地区榴辉岩中新发现的微粒金刚石.科学通报,48(10):7.
    许志琴,2004.中国大陆科学钻探主孔1200米构造柱及变形构造初步解析.岩石学报,20(1).
    余金杰et a1.,2006a.中国大陆科学钻探工程主孔榴辉岩中金红石微量元素地球化学特征.地质学报,80(12):7.
    余金杰et a1.,2006b.苏北榴辉岩中金红石的微量元素地球化学特征.岩石学报,22(7).
    张泽明,许志琴,刘福来,游振东,沈昆,杨经绥,李天福,陈世忠.2004.中国大陆科学钻探工程主孔(100~2050m)榴辉岩岩石化学研究.岩石学报,20(1).
    张仲明等,2007.苏鲁超高压变质带中国大陆科学钻探主孔(CCSD-MH)榴辉岩中发现金刚石.岩石学报,23(12):6.
    郑永飞,2008.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例.科学通报,53(18).
    庄育勋,高天山,汤加富,2000.安徽碧溪岭地区超高压变质地质演化——1:10000填图初步总结.安徽地质(03):166-172.
    宗克清,刘勇胜,柳小明,张斌辉,2006CCSD主孔100-11OOm榴辉岩中单矿物的原位微区微量元素地球化学研究.岩石学报,22(7):14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700