用户名: 密码: 验证码:
淮南煤田早二叠纪岩浆接触变质煤纳米级结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淮南煤田山西组和下石盒子组煤层为主采煤层,矿区北部受燕山中期岩浆活动的影响,煤物理、化学结构变化大,煤质复杂,特别微气孔的发育,为煤层气(瓦斯)的储存、吸附和运移提供了场所。因此研究岩浆接触变质作用煤物理化学结构具有重要的理论意义和现实意义。
     本文在对国内外充分调研相关资料的基础上,以淮南煤田早二叠纪岩浆接触热变质煤为研究对象,结合煤田地质学、煤岩学、煤化学等多学科交叉理论,采用原位X射线衍射和傅里叶转换红外光谱测定等现代化学测试方法,研究了不同地区不同煤级煤热解固态产物的化学结构,系统地揭示了岩浆接触热变质煤的内部晶核结构和表面孔隙结构特征。并取得如下主要成果:
     (1)通过对潘三矿接触变质带下部煤样品的激光显微拉曼光谱和原子力显微镜分析,得出了随着煤变质程度增高,Raman一级模和二级模谱带反映出煤分子排列逐渐趋向芳香环高度稠合的“类石墨”化结构;受接触变质作用形成的高变质无烟煤、无烟煤和贫煤表面孔隙总数量较正常煤的少,但煤中微孔和小孔数量却非常发育,紧邻侵入体煤的孔隙度反而降低,这证实岩浆侵入所附加的应力起到了制约作用。
     (2)通过对朱集矿接触变质带两侧煤样品的X射线衍射和傅里叶转换红外光谱的研究,得出了不同煤级煤晶参数((d002)、(La)和(Lc))随距侵入体距离的减少而相应变化,结合不同煤级煤热解固体产物的原位XRD测试,论证了岩浆侵入煤系地层时的应力作用对芳香层片直径La的演化具有控制作用;随着煤变质程度的增高,煤芳香环缩合程度增大,桥键、侧链和含氧官能团减少,结合不同煤级煤热解固体产物的原位FTIR测试以及利用easy R0方法恢复围岩地层经历的最高古地温,进而推测出淮南煤田早二叠纪含煤岩系中岩浆侵入体的温度至少为300℃。
In Huainan coal field, Shanxi Formation and Lower-Shihezi Formation are the main coal seams. During the Middle Yanshan period, north of the coal field underwent the impact of magmation. Thus the physical and chemical structure and the quality of the coal were complicated; especially the development of micro pores provided a convenience for the Coalbed Methane (Gas) storage, adsorption and migration. Hence, there are both theoretical and practical significances to study the physical and chemical structure of the coal impacted by magma-contact metamorphism.
     On the basis of sufficiently investigating and surveying literatures at home and abroad, as a research object the Lower-Permian coal in Huainan coal field, which was impacted by magma-contact metamorphism, was studied using a series of scientific methods, such as in situ X-Ray Diffraction (XRD), Fourier Transform Infrared Spectrometry and so on. Comprehensively applied interdisciplinary theory of coal geology, coal petrology, coal chemistry and so on, this article systematically revealed the internal structure of crystal nucleus and the characteristic of the surface pore structure based on the chemical structure study of solid product after different coal pyrolysis. The main achievements as the following:
     (1)After the analysis of the coal sample from metamorphic belt in Pansan coal mine using Micro-Raman Spectroscopy Sytem and Atomic Force Microscopy, we can find that accompanied with the increasement of the metamorphic grade, The Raman First and Second Modular reveal the arrangement tendence of the coal molecule to the graphite-like structure highly condensed of aromatic nucleus; Total quantity of surface pores are less on the highly metamorphic anthracite, anthracite and meager coals than on the normal coals, but micro pore and minor pore develop well whereas the porosity is lower of the coal closer to the intrusive body. This verifies that the stress provided by the intrusive of the magma plays a limited part.
     (2)After using X-Ray Diffraction and Fourier Transform Infrared Spectrometry to the coal samples near the contact-metamorphic coal belt in Zhuji coal mine, it can be found that parameters ((d002),(La) and (Lc)) of different ranks of coals vary relatively as the distance decreasing to the intrusive body, and that the stress provided by igneous intrusion plays a limited part to the evolution of the aromatic-plane diameter La. With increasing of coal rank, the degree of condensation of the aromatic nucleus increases and bridged linkage, side chain and oxygen-containing functional group decrease. Combined the in situ FTIR test of solid product after different coal pyrolysis and the highest paleogeothermal renewed by the easy Ro method, it can be confirmed that, at least300℃is the temperature of the intrusive magma during the Lower-Permian period in Huainan coal field.
引文
敖卫华,黄文辉,姚艳斌等.2012.华北东部地区深部煤炭资源特征及开发潜力[J].资源与产业,14:84-90.
    曹代勇,李小明,占文锋等.2008.深部煤炭资源勘查模式及其构造控制[J].中国煤炭地质,20:18-21.
    邓存宝.2006.煤的自燃机理及自燃危险性指数研究[D].辽宁工程技术大学.
    韩德馨.1995.中国煤岩学[M].北京:中国矿业大学出版社.
    郝琦.1987.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报,4:34-42.
    韩树菜.1990.两淮地区成煤地质条件及成煤预测[M].北京地质出版社.
    黄兴龙,李翠芳,周丽丽等.2011.岩浆岩侵入下煤变质程度的控制因素分析[J].中国煤炭地质,23:70-72.
    黄文辉,杨起,唐修义等.2010.中国炼焦煤资源分布特点与深部资源潜力分析[J].中国煤炭地质,22:1-6.
    郭国鹏.2012.接触变质带煤的物理化学结构及瓦斯赋存特征研究[D].河南理工大学.
    蒋静宇,程远平.2012.淮北矿区岩浆岩侵入对煤储层微孔隙特征的影响[J].煤炭学报,37:634-640.
    李化敏,付凯.2006.煤矿深部开采面临的主要技术问题及对策[J].采矿与安全工程学报,23:468-471.
    李小彦.1994.也论汝箕沟矿区煤的岩浆热变质成因[J].中国煤田地质,6:22-27.
    李小明,彭格林,席先武.2002.淮南煤田构造热演化特征与煤层气资源的初步研究[J].矿物学报,22:85-91.
    李曙光.2001.长江中下游中生代岩浆岩及铜铁成矿带的深部构造背景[J].安徽地质,2:45-48.
    李美芬,曾凡桂,齐福辉等.2009.不同煤级煤的Raman谱特征及与XRD结构参数的关系[J].光谱学与光谱分析,29:2446-2449.
    兰昌益.1989.淮南煤田石炭二叠纪含煤岩系沉积特征及沉积环境[J].淮南矿业 学院学报,9-20.
    马野牧,陆现彩,张雪芬等.2013.花岗岩侵入体—泥质围岩热传输过程的数值模拟及其地质意义:以粤东典型接触带剖面为例[J].高校地质学报,19:307-315.
    苗林,刘桂建,吴盾等.2012.淮南煤田潘三井田西部岩浆岩侵入年代确定与意义[J].中国煤炭地质,11:4-6.
    彭苏萍.2008.深部煤炭资源赋存规律与开发地质评价研究现状及今后发展趋势[J].煤,17:1-11.
    秦志宏,巩涛,李兴顺等.2008.煤萃取过程的TEM分析与煤嵌部结构模型[J].中国矿业大学学报,4:53-56.
    戚灵灵,王兆丰,杨宏民等.2012.基于低温氮吸附法和压汞法的煤样孔隙研究[J].煤炭科学技术,8:78-81.
    尚冠雄.1997.华北地台晚古生代煤地质学研究[M].太原:山西科学技术出版社.
    吴盾,孙若愚,刘桂建.2013.淮南朱集井田二叠纪煤中稀土元素地球化学特征及其地质解释[J].地质学报,8:1158-1166.
    王丽,张蓬洲.1997.煤的XRD的结构分析[J].煤炭转化,20:50-52.
    谢克昌.2002.煤的结构与反应性[M].北京:科学出版社.
    杨起,任德贻.1981.中国煤变质问题的探讨[J].煤田地质与勘探,1:1-10.
    杨起,潘治贵,翁成敏等.1987.区域岩浆热变质作用及其对我国煤质的影响[J].现代地质,1:127-129.
    杨起.1989.中国煤变质研究[J].地球科学—中国地质大学学报,14:341-345.
    杨起.1992.煤变质作用研究[J].现代地质,6:437-443.
    杨起,吴冲龙,汤达祯等.1996.中国煤变质作用[J].地球科学—中国地质大学学报,21:311-318.
    杨文宽.1982.岩浆余热对地温和有机质影响的定量估计[J].石油实验地质,16:7-12.
    虞继舜.2006.煤化学[M].北京:冶金工业出版社.
    庄新国,罗照华.1994.抚顺煤田接触热变质带及其煤变质因素分析[J].地球科学—中国地质大学学报,19:82-86.
    周春光,龚玉红,张惠良.1996.湖南中生代岩浆活动与晚二叠世煤变质特征[J].现代地质,10:470-477.
    张慧,张培河,靳秀良等.2001.天山北缘及邻区早中侏罗世煤变质因素分析[J].新疆地质,19:256-259.
    Brown JK, Hirsch PB.1955. Recent Infra-Red and X-Ray studies of Coal [J]. Nature, 175:229-233.
    Beyssac O, Goffe B, Petitet JP, et al.2003. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy [J]. Spectrochim Acta Part A,59:2267-2280.
    Bar-ziv E, Zaida A, Salatino P, et al.2000. Diagnostics of carbon gasification by Raman microprobe spectrpscopy [J]. Proceedings of the combustion Institute,28: 2369-2379.
    Cartz L, Diamond R, Hirsch PB.1956. New X-Ray Data on Coals [J]. Nature,177: 500-502.
    Cancado LG, Takai K, Enoki T, et al.2006. General equation for the determination of the crystallite size L-a of nanographite by Raman spectroscopy [J]. Appl Phys Lett,88:163106.
    Cancado LG, Takai K, Enoki T, et al.2008. Measuring the degree of stacking order in graphite by Raman spectroscopy [J]. Carbon,46:272-275.
    Can MF, Cinar M, Benli B.2010. Determining the fiber size of nano structured sepiolite using atomic force microscopy (AFM) [J]. Appl Clay Sci,47:217-5.
    Chen J, Liu GJ, Li Hui, et al.2014. Mineralogical and geochemical response of coal to igneous intrusion in the Pansan Coal Mine of the Huainan Coalfield, Anhui, China [J]. Int J Coal Geol, doi:10.1016/j. coal.2013.12.018.
    Clarkson CR, Bustin RM.1999. The effect of pore structure and gas pressure upon the transport properties of coal:A laboratory and modeling study. Isotherms and pore volume distributions [J]. Fuel,78:1333-11.
    Diamond R.1958. A least-squares analysis of the diffuse X-ray scattering from carbons [J]. Acta Cryst,11:129-138.
    Dippel B, Jander H, Heintzenberg J.1999. NIR FT Raman spectroscopic study of flame soot [J]. Phys Chem Chem Phys,1:4707-12.
    Dippel B, Heintzenberg J.1999. Soot characterisation in atmospheric particles from different sources by NIR FT Raman spectroscopy [J]. J Aerosol Sci,30 (Suppl. 1):907-8.
    Duber S, Rouzaud JN.1999. Calculation of reflectance values for two models of texture of carbon materials [J]. Int J Coal Geol,38:333-348.
    Dai SF, Ren DY.2007. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng-Handan Coalfield, Hebei, China [J]. Energy Fuels,21:1663-1673.
    Eric Q, Rouzaud JN, Bonal L, et al.2003. Maturation grade of coals as revealed by Raman spectroscopy:progress and problems [J]. Spectrochim Acta Part A,61: 2368-2377.
    Ferrari AC, Robertson J.2000. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys Rev B,61:14095-14195.
    Fujimoto H, Shiraishi M.2001. Characterization of unordered carbon using Warren-Bodenstein's equation [J]. Carbon,39:1753-1761.
    Gan H, Wlaker PL, Nandi SP.1972. Nature of porosity in American coals [J]. Fuel, 51:272-277.
    Ganning AP, Giardin TP, Faulds CB.2003. Surfactant-mediated solubilisation of amylose and visualization by atomic force microscopy [J]. Carbohyd Polym,51: 177-5.
    Guesta A, Dhamelincourt P, Laureyns J, et al.1994. Raman microprobe studies on carbon materials [J]. Carbon,32:1523-1555.
    Guesta A, Dhamelincourt P, Laureyns J, et al.1998. Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials [J]. Mater Chem,8:2875-2877.
    Green PD, Johnson CA, Thomas KM.1983. Applications of laser Raman microprobe spectroscopy to the characterization of coals and cokes. Fuel,62:1013-23.
    Hirsch PB.1954. X-ray scattering from coals [M]. Pro Roy Soc, London, A226: 143-169.
    Hirsch PB.1979. Recent results on the structure of dislocations in tetrahedrally coordinated semiconductors [J]. J Phys Colloques,40:C6-27.
    Hower JC.1997. Observation on the role of Bemice coal field (Sullivan Country, Pennsylvania) anthracites in the development of coalification theories in the Appalachians [J]. Int J Coal Geo,33:95-102.
    Hirono T, Lin W, Nakashima S.2006. Pore space visualization of rocks using an atomic force microscope [J]. Int J Rock M Sci,43:317-3.
    Ibara JV, Munoz E, Moliner R.1996. FTIR study of the evolution of coal structure during the coalification process [J]. Org. Geochem,24:725-760.
    Jiang X, Wright AL, Wang J, et al.2011. Long-term tillage effects on the distribution patterns of microbial biomass and activites within soil aggregates [J]. Catena,87: 276-280.
    Jawhari T, Roid A, Casado J.1995. Raman spectroscopic characterization of some commercially available carbon black materials [J]. Carbon,33:1561-5.
    Jose VI, Edgar M, Rafael M.1996. FTIR study of the evolution of coal structure during the coalification process [J]. Org Geochem,24:725-735.
    Johnson CA, Patrick JW, Thomas KM.1986. Characterization of coal chars by Raman spectroscopy, X-ray diffraction and reflectance measurements [J]. Fuel, 65:1284-6.
    Junno T, Deppert K, Montelius L.1995. Controlled manipulation of nanoparticles with an atomic force microscope [J]. Appl Phys Lett,66:3627-2.
    Kastner J, Pichler T, Kuzmany H, et al.1994. Resonance Raman and Infrared spectroscopy of carbon nanotubes [J]. Chem. Phys. Lett,221:53-61.
    Kinight DS, White WB.1989. Characterization of diamond films by Raman spectroscopy [J]. Mater Res,4:385.
    Lu L, Sahajwalla V, Kong C, et al.2001. Quantitative X-ray diffraction analysis and its application to various coals [J]. Carbon,39:1821-1854.
    Liu J, Jiang X, Huang X.2010. Morphological characterization of super fine pulverized coal particle. Part2. AFM investigation of single coal particle [J]. Fuel, 89:3884-7.
    Li XJ, Hayashi JI, Li CZ.2006. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal [J]. Fuel,85: 1700-7.
    Liu JX, Jiang XM, Huang XY, et al.2010. Morphological characterization of super fine pulverized coal particle. Part 2. AFM investigation of single coal particle [J]. Fuel,89:3884-7.
    Loucks RG, Reed RM, Ruppel SC.2009. Morphology, genesis, and distribution of nanometre-scale pores in siliceous mudstones of the Mississippian Barnett Shale [J]. J Sediment Res,79:848-13.
    Meyer RA.1982. Coal structure [M]. Academic Press, New York.
    Mastalerz V, de Lange GJ, Dahlmann A.2009. Differential aerobic and anaerobic oxidation of hydrocarbon gases discharged at mud volcanoes in the Nile deep sea fan [J]. Geochimica at Cosmochimica Acta,73:3849-3863.
    Mennelia V, Monaco G, Colangeli I.1995. Bussoletti, E. Raman Spectra of carbon-based materials excited at 1064 nm [J]. Carbon,33:115-136.
    Mapelli C, Castiglioni C, Meroni E, et al.1999. Graphite and graphitic compounds: vibrational spectra from oligomers to real materials. J Mol Struct,480:615-20.
    Oberlin A, Bonnamy S, Rouxhet PG.1999. Colloidal and supramolecular aspects of carbons [J]. In chemistry and physics of carbon,26:1-148.
    Oluwadayo OS, Tobias H, Strphen FF.2010. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy [J]. Energy,35: 5347-5353.
    Peacock SM.1990. Numerical simulation of regional and contact metamorphism wuing the Macintosh microcomputer [J]. Journal of Geology,38:132-137.
    Rannou I, Bayot V, Lelaurain M.1994. Structural characterization of graphitization process in pyrocarbons [J]. Carbon,32:833-843.
    Radke LF, Coakley JA.1990. Direct and remote sensing observations of the effects of ships on clouds [J]. Science,246:1146-1149.
    Radlinski AP, Mastalerz M, Hinde AL.2004. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal [J]. Int J Coal Geol,59:254-71.
    Rouzaud JN, Oberlin A.1990. The characterization of coals and cokes by transmission electron microscopy. In:Charcosset H, Nickel-Pepin-Donat B, editors, Advanced methodologies in coal characterization, Amsterdam [M]. Elsevier, chapter 17:311-58.
    Rosen H, Novakov T.1977. Raman scattering and the characterization of atmospheric aerosol particles [J]. Nature,266:708-10.
    Safarova M, Kusy J, Andel L.2005. Pyrolysis of brown coal under different process conditions [J]. Fuel,84:2280-2285.
    Sadezky A, Muckenhuber H, Grothe H, et al.2005. Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information [J]. Carbon,43:1731-11.
    Sheng CD.2007. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity [J]. Fuel,86:2316-8.
    Sharma A, Kyotani T, Tomita A.2001. Quantitative evaluation of structural transformations in raw coals on heat treatment using HRTEM technique [J]. Fuel, 80:1467-73.
    Solomon PR., Carangelo R M.1988. FTIR analysis of coal:II. Aliphatic and aromatic hydrogen concentration [J]. Fuel,67:949-959.
    Solomon PR, Carangelo RM.1982. FTIR analysis of coal:I. Techniques and determination of hydroxyl concentrations [J]. Fuel,61:663-669.
    Stewart EJ, Madden R, Paul G, et al.2005. Aging and death in an organism that reproduces by morphologically symmetric division [J]. PloS Biol,3:e45.
    Suggate RP, Dickinson WW.2004. Carbon NMR of coals:the effects of coal type and rank [J]. Int J Coal Geol,57:1-22.
    Sun RY, Liu GJ, Zheng LG, et al.2010. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China [J]. Int J Coal Geol,81:81-96.
    Sze SK, Siddique N, Sloan JJ, et al.2001. Raman spectroscopic characterisation of carbonaceous aerosol [J]. Atmos Environ,35:561-8.
    Tuinstra F, Koeing JL.1970. Raman Spectrum of Graphite [J]. Chem Phys,53:1126.
    Van Krevelen DW.1950. Gaphical-statistical method for the study of structure and reaction processes of coal [J]. Fuel,29:269-84.
    Van Doom J, Vuurman MA, Tromp PJJ, et al.1990. Correlation between Raman spectroscopic data and the temperatureprogrammed oxidation reactivity of coals and carbons [J]. Fuel Process Technol,24:407-13.
    Teichmuller M, Teichmuller R.1966. Geological causes of coalification [M]. Coal Sciences. Advances in chemistry series,55:133-135.
    Wu D, Liu GJ, Sun RY, et al.2014. Influences of magmatic intrusion on the macromolecular and pore structures of coal:Evidences from Raman spectroscopy and atomic force microscopy [J]. Fule,119:191-201.
    Wu D, Liu GJ, Sun RY, et al.2013. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction [J]. Energy Fuel,27:5823-5830.
    Wang Y, Alsmeyer DC, McCreery RL.1990. Raman spectroscopy of carbon materials:structural basis of observed spectra [J]. Chem Mater,2:557-63.
    Yang M, Liu GJ, Sun RY, et al.2012. Characterization of intrusive rocks and REE geochemistry of coals from the Zhuji Coal Mine, Huainan coalfield, Anhui, China [J]. Int J Coal Geol,94:283-295.
    Yao SP, Jiao K, Zhang K, et al.2011. An atomic force microscopy study of coal nanopore structure [J]. Chin Sci Bull,56:2706-2718.
    Yao YB, Liu DM, Huang WH.2011. Influences of igneous intrusions on coal rank, coal quality and adsorption capacity in Hongyang, Handan and Huaibei coalfields, North China [J]. Int J Coal Geol,88:135-146.
    Yoshizawa N, Maruyama K, Yamada Y, et al.2002. XRD Evaluation of KOH activation process and influenceof coal rank [J]. Fuel,81:1717-1722.
    Yoshida A, Kaburagi Y, Hishiyama Y.2006. Full width at half maximum intensity of the G band in the first order Raman spectrum of carbon material as a parameter for graphitization [J]. Carbon,44:2333-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700