用户名: 密码: 验证码:
非弹性应变恢复原地应力测量方法的实验研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ASR法是近年发展起来的三维地应力测量方法。5.12汶川地震后,我国首次引进ASR方法用于科学钻孔的原地应力测量。ASR方法中非弹性应变恢复柔量如何确定,岩石的热膨胀系数及温度变化对ASR法测试结果的影响,ASR法测试结果的可靠性等问题是需要深入实验和研究的重要问题,它将影响ASR方法的深入发展和广泛应用。本文在梳理国内外原地应力测试方法研究现状的基础上,详细介绍了ASR地应力测试方法的理论背景、发展历程和应用实例等,重点开展了岩石非弹性应变恢复柔量和岩石热膨胀系数实验研究,并以汶川地震科学钻孔ASR地应力测量结果为例,分析了ASR地应力测试方法的可靠性及影响因素,取得的主要进展和成果如下:
     1.在回顾国内外原地应力测试方法研究现状的基础上,系统梳理了ASR地应力测量方法的原理、测试设备及流程,给出了详细的数据处理方法及相关函数表达。指出岩石为均质且各向同性粘弹性材料的前提下,测试材料和设备的精度及长期稳定性是决定测试结果好坏的关键。
     2.非弹性应变恢复柔量是ASR地应力测试方法中确定原地应力大小的关键参数。单轴应力条件下ASR柔量实验结果表明不同岩石的ASR柔量实验结果不同,且剪切模式ASR柔量大于体积模式,剪切与体积模式非弹性应变恢复柔量的比值随时间的增加逐渐趋于较小的变化范围。ASR柔量与单轴抗压强度、弹性模量等常规岩石力学参数之间符合指数函数关系,在一定条件下,岩石的ASR柔量可通过常规岩石力学参数进行估算。
     3.温度变化及岩石的热膨胀系数是影响岩石非弹性恢复应变测量结果的主要因索。建立了高精度中低温岩石热膨胀系数测试系统,开展了0~60℃条件下不同岩石的热膨胀系数实验研究,确定了8种不同岩石的热膨胀系数的变化范围为5.3~8.7×10-6/℃之间。实验结果为分析ASR地应力测试方法中温度影响研究提供了基础数据,表明温度对ASR地应力测量结果的影响不容忽视。1℃的温度变化将引起约5~9个微应变的测量误差,保证温度引起的误差小于1个微应变,ASR测量过程中的温度波动应不大于±0.1℃。同时分析了样品温度平衡稳定过程等对ASR地应力测试结果的影响。
     4.以ASR法在汶川地震断裂带科学钻孔中的成功应用为例,分析了WFSD-1钻孔原地应力大小及方向随深度的变化规律。在424~1173m深度范围内最大主应力介于10.8~45.7MPa之间,中间主应力介于10.4~29.4MPa之间,最小主应力介于6~26MPa之间,最大主应力优势方向为NW51°。ASR法测试结果与其它方法获取的地应力测试结果基本吻合。对同一岩芯开展了ASR变形测量及ASR柔量实验,讨论了ASR柔量对测试结果的影响。结果表明非弹性应变恢复柔量比值(Jas/Jav=2.9)与通常假设(Jas/Jav=2)条件下最大、中间和最小主应力的误差分别为6.3%、5.0%、4.0%。分析了非弹性应变恢复柔量比值(Jas/Jav)与上应力大小之间的对应关系。
     5.总结了时间、温度、岩芯定向等因素对ASR法地应力测量结果的影响,对ASR地应力测试方法的测试精度和可靠性进行了总体评价,结果表明现场测试使用相对均质且各向同性岩芯,测量中进行恒温控制,并采用岩芯扫描和测井进行定阳,主应力大小及方阳的误差可控制在±10%以内。
     ASR法同其他地应力测试方法相比,具有成本低、效率高、适应应性强、且无测量深度限制等优点,只要能够取地下深部的定向岩芯.即可进行地应力测量并取得可靠实测数据:ASR方法将在地壳深部资源开发、地下空间利用及地球动力学研究中具有广泛的应用前景。
ASR method is a three-dimensional stress measurement method developed in recent years. After the5.12Wenchuan earthquakes, ASR method was introduced firstly for in-situ stress measurement in Wenchuan Fault Scientific Drilling (WFSD) project in China. In the ASR method, how to determine the ASR compliances, the influence of thermal expansion coefficient and temperature, and the reliability of the test results are important issues that need further experimental studies. All these issues will influence the in-depth development and wide application of ASR method. In this paper, basing on the development existing circumstances of different in-situ stress measurement methods, the theoretical background, development process and application examples of ASR in-situ stress measurement method are expatiated in detail. The anelastic strain recovery compliances and thermal expansion coefficient experimental study of rocks are focused. According to the actual in-situ stress measurement results of WFSD holes by ASR method, the reliability and influencing factors of ASR in-situ stress measurements are analyzed. The main progress and achievements are as follows:
     1. In reviewing the research status of different in-situ stress measurement methods, the principles, equipment and processes of ASR in-situ stress measurement method are summarized. The data processing method and related functions expression are given in detailed. It is pointed that the accuracy and long-term stability of materials and equipment are key factors of the quality of the test results under the premise of homogeneous and isotropic visco-elastic rock material.
     2. Anelastic strain recovery compliance is a key parameter to determine the magnitude of in-situ stress. ASR compliance experimental results show that the results of ASR compliance for different rock are different under the Uniaxial Compression Stress (UCS) conditions. And the ASR compliance of shear mode is greater than the volume mode. The ratio of shear mode ASR compliances to volume mode increases gradually with time and the change scale gradually become smaller. The relationships between conventional rock mechanics parameters such as elastic modulus, UCS and ASR compliance obey the exponential functions. So under certain conditions, the ASR compliances of rocks could be estimated from conventional rock mechanics parameters.
     3. Temperature changes and thermal expansion coefficient of rocks are the main factors of anelastic recovery strain measurement results. In this paper, a high precision measuring device of thermal expansion coefficient of rock was established. The experimental study of thermal expansion coefficients for different rocks were carried out under0~60℃, and it is determined that the thermal expansion coefficients of8kinds of different rocks are between5.3~8.7*10-6/℃. The results provide a basis for the analysis of effect of temperature on the ASR in-situ stress measurement method. The results show that the effect of temperature on the ASR in-situ stress measurement results can not be ignored. The measurement error of about5~9micro-strain could be caused with1℃temperature change. In order to ensure the measurement errors due to temperature fluctuations less than1micro-strain, the range of temperature changes should not exceed±0.1℃. At the same time, the influence of sample temperature equilibration process on the ASR in-situ stress test results was analyzed.
     4. The ASR method was successfully applied to the WFSD project. And the magnitude and direction of in-situ stress variation with depth are given. The maximum, medium and minimum principal stress are in the scale of10.8-45.7MPa,10.4-29.4MPa and6-26MPa in depth between424-1173m, respectively. The dominance direction of maximum principle stress is NW51°. The in-situ stress measurement results by ASR method are almost consistent with other in-situ stress measurement methods. At the same time, the actual ASR compliances test was carried out using the same sample for the ASR measurement from the WFSD-1hole. The effect of ASR compliances was discussed. The results show that the ratio of ASR compliances is2.9(Jas/Jav=2.9) other than the conventional2.0, and the corresponding measurement error by this difference of maximum, medium and minimum principle stress were6.3%,5.0%and4.0%. The relationship between the ratio (Jas/Jav) of anelastic strain recovery compliances and principle stress magnitude was discussed.
     5. The effects of time, temperature, core orientation and other factors for ASR in-situ measurement results are summarized. And the accuracy and reliability of ASR in-situ stress measurement method are evaluated. The results indicate the measurement error of principal stress magnitude and direction can be controlled within±10%in the premise that homogeneous and isotropic rock core, constant temperature control and core scanning image and image logging are adopted.
     In conclusion, the ASR method has low cost, high efficiency, adaptability and without measurement depth limit compared with other in-situ stress measurement methods. As long as the oriented rock from deep underground were obtained, the ASR method in-situ stress measurement can be conducted and obtain the reliable data could be achieved. ASR method will have broad application prospects in the deep resource development, underground space utilization and geodynamic studies.
引文
Ackermann, R. J., and C. A. Sorrell. Thermal expansion and the high-low transformation in quartz. I. ightemperature X-ray studies[J]. J. Appl. Crystallogr.,1974,7(5),461-467
    Amadei, B. and Stephansson, O. Rock stress and its measurement[M]. London:Chapman & Hall.1997.
    American Society for Testing and Materials. Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock[M].1999, Designation D2845-95
    Anderson EM. The dynamics of faulting and dyke formation with applications to Britain[C]. Oliver and Boyd, Edinburgh,1951
    Ask D, Stephansson O, Cornet F H, et al. Rock stress, rock stress measurements, and the integrated stress determination method (ISDM)[J]. Rock Mech Rock Eng,2009,42: 559-584.
    Baldridge W. S. and Simmons G. Thermal expansion of lunar rocks[C]. ProcSecond Lunar Sci. Conf. M.I.T.1971,3,2317
    Blanton T L. The relation between recovery deformation and in-situ stress magnitudes[C]. SPE/DOE symposium on low permeability Denver. 1983,213-218
    Bohnhoff M, Baisch S and HarjesHP. Fault mechanisms of induced seismicity at the super deep German Continental Deep Drilling Program (KTB) borehole and their relation to fault structure and stress field[J]. J Geophy Res, 2004.109, B02309, doi:10.1029/2003JB002528
    Boness, N. L., Zoback, M. D. Stress-induced seismic velocity anisotropy and physical properties in the SAFOD pilot hole in Parkfield[J]. Geophys Res Lett, 2004.31(15): 1-4
    Brereton N R, Chroston P N, Evans C J. Pore pressure as an explanation of complex anelastic strain recovery results[J]. Rock Mech Rock Eng, 1995,28(1):59-66
    Brereton, N.R., Chroston, P.N., Evans, C.J., Hudson, J.A., Whitmarsh, R.B., Anelastic strain recovery and elastic properties of oceanic basaltic rocks. Proc. Ocean Drilling Program, Scientific Results[C].123, ODP, Texas A&M Univ., TX,1992. pp.469-491.
    Brown E T, Hoek E. Trends in relationships between measured rock in situ stresses and depth[J]. Int J Rock Mech Min Sci & Geomech Abstr,1978,15:211-215
    Butterworth, S.R., Chroston, P.N., Davenport, C.A., Brereton, N.R.,Evans, C.J., Anelastic strain recovery of rock core from the English Midlands[C]. In:Roegiers, J.-C. (Ed.), Rock Mechanics as a Multidisciplinary Science. Balkema, Rotterdam, 1991. pp.55-62.
    Byerlee J O. Friction of Rocks[M]. Pageoph.1978.116 (4/5):615-626
    Byrne T B, Lin W, Tsutsumi A, et al. Anelastic strain recovery reveals extension across SW Japan subduction zone[J]. Geophys Res Lett,2009. 36, L23310, doi:10.1029/2009GL040749
    Chang C, McNeill L C, Moore J C, et al. In situ stress state in the Nankai accretionary wedge estimated from borehole wall failures[C]. Geochem Geophys Geosyst,2010,11, Q0AD04, doi:10.1029/2010GC003261
    Chester F M, Mori J J, S Toczko, et al.2012. Japan Trench Fast Drilling Project (JFAST) [R]. IODP Prel Rept.343/343T. doi:10.2204/iodp.pr.343343T.2012
    Clion, C.-M.. S. A. Kim. and H.-S. Moon. Crystal structures of biotite at high temperatures and of heat-treated biotite using neutron powder diffraction[J]. Clays Clay Miner..2003.51(5).519-528
    Cornet. F.H.. Stress determination from Hydraulic Test on Pre-existing Fractures - the H.T.P.F. method. In: Proceedings of the International Symposium On Rock Stress and Rock Measurements[C]. Stockholm, Centek Lulea. Sweden.1986.301-312.
    Cornet. F.H.. Valette. B. In-situ Stress Determination from Hydraulic Injection Test Data[J]. Journal Geophy. Res.1984,89(B13):11527-11537
    Crampin, S. Evaluation of anisotropy by shear stress splitting[J]. Geophysics, 1985.50:142-152.
    Cui Junwen, Lin Weiren, Wang Lianjie, Gao Lu, Huang Yao, Wang Wei, Sun Dongsheng, Li Zongfan, Zhou Chunjing, Qian Huashan, Peng Hua, Xia Kemei, Li Ke. Determination of three-dimensional in situ stresses by anelastic strain recovery in Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1) [J]. Tectonophysics,2014, http://dx.doi.org/10.1016/j.tecto.2013.09.013 (SCI)
    Cui, J.W., Wang, L.J., Li, P.W., Tang, Z.M., Sun, D.S.,2009. Wellbore breakouts of the main borehole of Chinese Continental Scientific Drilling (CCSD) and detertmination of the present tectonic stress state[J]. Tectonophysics,2009.475,220-225.
    Dey T N, Kranz R L. State of stress and relationship of mechanical properties to hydrothermal alteration at Valles Caldera Core Hole 1, New Mexico[J]. J Geophy Res,1988.93(B6):6108-6112
    Eissa EA, Kazi A. Relation between static and dynamic Young's moduli of rocks[J]. Int J Rock Mech Min Sci.,1988,25:479-482
    Engelder T. The time-dependent strain relaxation of Algerie granite[J]. Int J Rock Mech Min Sci Geomech Abstr, 1984,21 (2):63-73
    Evans, R. H., and Wood, R. H. Transverse elasticity of natural stones[C]. Proc. Leeds phil. Lit. Soc., 3,pp:340-352
    Fairhurst C. Stress estimation in rock:a brief history and review[J]. International Journal of Rock Mechanics and Mining Sciences,2003, (40):957-973
    Fairhurst, C. Measurement of in situ rock stresses with particular references to hydraulic fracturing[J]. Rock Mech. Eng. Geol.,1964,2:29-147.
    Flugge W. Visco-elasticity[M]. Waltham, MA:Blaisdell, 1967
    Fowler, C. M. R. The solid earth [M]. Cambridge, U. K.:Cambridge University Press. 1990.
    Gies, R. M. An improved method for viewing micropore systems in rocks with the polarizing microscope[C]. SPE Formation Evaluation,1987,2:209-214.
    Griffin R. E. and Demou S. G. Thermal expansion measurements of simulated lunar rocks[C]. Proc. 1971 Thermal Expansion Conf. AlP Conf. Proc. No.3 Griggs, D. T. Experimental flow of rocks under conditions favouring recrystallization[J]. Bull. Geol.
    Soc. Am.,51,1001-22
    Haimson B C, F. H. Cornet. ISRM Suggested Methods for rock stress estimation-Part3:hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF) [J]. Rock Mech J & Min Sci,2003,40(7/8):991-998
    Haimson B. Borehole breakouts and core diskning as tools for estimating in situ stress in deep holes[C]. In: Proceedings of the International Symposium Rock Stress, Japan,1997. pp.35-43.
    Haimson B. Fairhurst C. Initiation and extension of hydraulic fractures in rock[J]. Soc Pet Eng J 1967: 310-318
    Haimson, B, Lee, M. Y.1995. Estimating deep in situ stresses from borehole breakouts and core disking-experimental results in granite. In:Proceedings of the International Workshop on Rock Stress Measurement at Great Depth[C].8th International Congress on Rock Mechanics. Tokyo, p.19-24.
    Haimson. B. C. & Fairhurst. C. Initiation and extension of hydraulic fractures in rocks [J]. Soc. Petrol. Eng. J..1967.9:310-318.
    Haimson, B. C. Hydraulic fracturing in porous and nonporous rock and its potential for determining in 10 situ stresses at great depth[D]. Ph D Thesis, University of Minnesota,1968,234 pp.
    Haimson, B. C. The effect of lithology, inhomogeneity, topography, and faults, on in situ stress measurements by hydraulic fracturing, and the importance of correct data interpretation and independent evidence in support of results [C]. Rock Stress and Earthquakes-Xie (ed.), London:Taylor & Francis Group.2010.
    Hardebeck J L. Stress triggering and earthquake probability estimates[J]. J Geophys Res, 2004, 109, B04310, doi:10.1029/2003 JB002437
    Hast N. The state of stress in the upper part of the earth's crust[J]. Tectonophysics, 1969, 8(3):169-211
    Hickman S and Zoback M.2004. Stress orientations and magnitudes in the SAFOD pilot hole[J]. Geophy Res Lett, 31, L15S12, doi:10.1029/2004GL020043
    Hubbert, K. M. & Willis, D. G. Mechanics of hydraulic fracturing [J]. Petrol. Trans. AIME T. P.4597,1957. 210,153-166
    Hung J H, Ma K F, Wang C Y, et al.2009. Subsurface structure, physical properties, fault zone characteristics and stress state in the scientific drill holes of Taiwan Chelungpu Fault Drilling Project[J]. Tectonophysics,466:307-321
    ISRM. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials[J]. Int. J. Rock Mech. Min. Sci. Geomech.Abstr.,1979,16:135-140
    Ito T, Igarashi A, Kato H, Ito H, Sano O. Crucial effect of system compliance on the maximum stress estimation in hydrofracturing method:theoretical considerations and field-test verification[J]. Earth Planets Space,2006,58:963-971
    Ito T, Igarashi A, Kato H, et al. Crucial effect of system compliance on the maximum stress estimation in the hydrofracturing method: Theoretical considerations and field-test verification[J]. Earth Planets Space,2006,58:963-971
    J.C.耶格,N.G.W.库克(著).中国科学院工程力学研究所(译).岩石力学基础[M].北京:地震出版.1981,1-690
    Jiang Y, Wang R. Rheological behavior of sandstone under unloading[C]. In:Proceedings of the 12th International Congress on Rock Mechanics. Beijing,2011,655-662
    Kanagawa T, Yamamoto K, Tanaka T, Yokoyama T. Simultaneous measurement of AE and deformation rate in laboratory for estimation of geo-stress[C]. In:Proceedings of the 7th Japan symposium on rock mechanics. Tokyo,1987,193-198
    Leeman, E. R.1964. The measurement of stress in rock-Parts Ⅰ, Ⅱ and Ⅲ [J]. J S Afr Inst Min Metall 1964. 65:45-114,254-284.
    Li H, Wang H, Xu Z, et al.2012. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1) [J]. Tectonophysics, http://dx.doi.org/10.1016/j.tecto.2012.08.021
    Li, G., Mizuta, Y., Ishida, T., Sano, O. Numerical Simulation of Performance Tests on a New System for Stress Measurement by Jack Fracturing[J]. Journal of the Mining and Materials Processing Institute of Japan (MMIJ). 2005.121(9):409-415.
    Lin W, Doan M L. Moore J C et al. Present-day principal horizontal stress orientations in the Kumano forearc basin of the southwest Japan subduction zone determined from IODP NanTroSEIZE drilling Site C0009[J]. Geophys. Res. Lett.2010.37. L13303. doi:10.1029/2010GL043158
    Lin W. Kwasniewski M. Imamura T, et al.2006. Determination of three-dimensional in situ stresses from anelastic strain recovery measurement of cores at great depth[J]. Tectonophysics. 2006. 426(1/2): 221-238
    Lin W, Saito S, Yamamoto Y, et al. Principal horizontal stress orientations prior to the 2011 Mw9.0 Tohoku-Oki, Japan, earthquake in its source area[J]. Geophy Res Lett, 2011.38, L00G10,doi: 10.1029/2011GL049097
    Lin W, Yeh E, Ito H, et al. Preliminary results of stress measurement by using drill cores of TCDP Hole-A: an application of anelastic strain recovery method to three-dimensional in-situ stress determination [J]. Terrestrial. Atmospheric and Oceanic Sciences,2007,18(2): 379-393
    Lin W. A core-based method to determined three-dimensional in-situ stress in deep drilling wells: anelastic strain recovery technique[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27: 2387-2394
    Lin, W., M. Conin, J.C. Moore, F.M. Chester, Y. Nakamura, J.J. Morim L. Anderson, E.E. Brodsky, H. Eguchi, Expedition 343 Scientists, Stress state in the largest displacement area ofthe 2011 Tohoku-Oki earthquake[J]. Science,2013,339 (6120),687-690, doi: 10.1126/science.1229379
    Ljunggren C, Chang Y, JansonT,ChristianssonR. An overview of rock stress measurement methods[J]. Int J Rock Mech Min Sci.,2003,40:975-989
    Logan, J. M and Teufel, L. W., The prediction of massive hydraulic fracturing from analysis of oriented cores[C].19th 18 U. S. Symposium on Rock Mechanics, Lake Tahoe, CA,1978. pp.340-347, May
    Martin, C. D., Kaiser, P. Chistiansson, K. R. Stress, instability and design of underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences,2003.40(7-8):1243-1256.
    Mathar, J. Determination of initial stresses by measuring the deformations around drilled holes[C].29 Trans. ASME,1934.56:249-54.
    Matsuki K, Takeuchi K. Takeuchi K. Three-dimensional in situ stress determination by anelastic strain recovery of a rock core[J]. Int J Rock Mech Min Sci Geomech Abstr,1993,30(7):1019-1022
    Matsuki K. Anelastic strain recovery compliance of rocks and its application to in situ stress measurement[J]. Int J Rock Mech & Mining Sci, 2007, doi:10.1016/j.ijrmms.2007.10.005
    Matsuki K. Anelastic strain recovery compliance of rocks and its application to in situ stress measurement[J]. Int J Rock Mech Min Sci,2008,45:952-965
    Matsuki K. Theoretical examination of the method for measuring three-dimensional in-situ stresses with anelastic strain recovery of rocks[J]. J Mining Materials Process Inst Japan.1992,108:41-45
    Matsuki K. Three-dimensional in-situ stress measurement with anelastic strain recovery of a rock core[C]. Wittke W ed. Proceedings of the 7th International Congress on Rock Mechanics. Aachen:[s.n.],1991: 557-560
    Matthew M, Prior DJ, David M. Microstructure and crystallographic preferred orientation of polycrystalline microgarnet aggregates developed during progressive creep, recovery, and grain boundary sliding[J]. Journal of Structural Geology,2011,33:713-730
    Nie, X., Zou, C, Pab, L., Huang, Z., Liu, D., Fracture analysis and determination of in-situ stress direction from resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50-1370 m) [J]. Tectonophysics, 2013.593.161-171.
    Owen. L.B., Toronto. T.W..1988. Reliability of anelastic strain recoverv estimates for stress orientation in the Travis Peak Formation[C]. Harrison County. Texas. SPE paper 18165. SPE 63rd Annual Technical Conference and Exhibition Houston. TX. pp.1-9
    Perreau P J, Heugas O. Santarelli F J. 1989. Tests of ASR. DSCA. and core discing analyses to evaluate in situ stresses[C]. SPE paper 17960. SPE Middle East Oil Technical Conference and Exhibition Manama, Bahrain,325-336
    Richter D and Simmons G. Thermal expansion behavior of igneous rocks[J]. Int. J. Rock Mech.Min. Sci. & Geomech. Abstr, 1974.11,403-411
    RivasT, PrietoB, SilvaB. Influence of rift and bedding plane on the physico-mechanical properties of granitic rocks. Implications for the deterioration of granitic monuments[J]. Building and Environment 2000,35:387-396
    Rutter EH, Casey M, Burlini L. Preferred crystallographic orientation development during the plastic and superplastic flow of calcite rocks[J]. Journal of Structural Geology, 1994,16:1431-1447.
    Scheidegger, A. E. Stresses in the Earth's crust as determined from hydraulic fracturing data[J]. Geologie und Bauwesen,1962.27:45-53.
    Schmitt D R., Claire A. Currie, Lei Zhang. Crustal stress determination from boreholes and rock cores: Fundamental principles[J]. Tectonophysics,2012,580:1-26
    Schrank, C. E., F. Fusseis, A. Karrech, and K. Regenauer-Lieb, Thermal-elastic stresses and the criticality of the continental crust[J]. Geochem. Geophys. Geosyst.2012,13, Q09005
    Serata, S. and Kikuchi, S. A diametral deformation method for in situ stress and rock property measurement[J]. Int. J. Min. Geol. Eng.,1986.4:15-38.
    Serata, S., Sakuma, S., Kikuchi, S. et al. Double fracture method of in-situ stress measurement in brittle rock[J]. Rock Mech. Rock Eng.,1992.25:89-108.
    Simmons, G., Siegfried, R. W. and Feves, M. L.,1974. Differential strain analysis:a new method for examining cracks in rocks[J]. J. Geophys. Res.,1974.79:4383-5.
    Sjoberg, J., Christiansson, R. Hudson, J. A. IRSM Suggested Methods for rock stress estimation-Part 2 overcoring methods [J]. Int. J. Rock. Mech. Min. Sci.,2003.40(7-8):999-1010.
    Skinner, B. J., Thermal expansion, in Handbook of Physical Constants[C]. edited by S. P. J. Clark, 1966, pp.75-96, Geol. Soc. of Am., Boulder, Colo.
    Stein R S. The role of stress transfer in earthquake occurrence[J]. Nature, 1999.402:605-609
    Stephasson, O. Rock stress measurement by sleeve fracturing[C]. in Proc. 5th Cong. Int. Soc. Rock Mech. (IRSM), Melbourne, Balkema, Rotterdam,1983a. pp F129-37.
    Stephasson, O. Sleeve fracturing for rock stress measurement in boreholes[C]. in Proc. Int. Symp. Essaisen Place, In Situ Testing, Paris, 1983b. Vol.2:571-8.
    Strickland FG, Ren NK. Use of differential strain curve analysis in predicting in-situ stress state for deep well[C]. In:Proceedings of the 21st US symposium on rock mechanics. Rolla Missouri,1980, 523-532
    Sugawara, K., Kameoka, T., Saito, T., Oka, Y., et al. A study on core discing of rock[J]. J Min Metall Inst Japan,1978,94: 797-803
    Sun Dongsheng, Lin Weiren, Cui Junwen, Wang Hongcai. Chen Qunce. Ma Yinsheng, Wang Lianjie, Three-dimensional in situ stress determination by anelastic strain recovery and its application at the Wenchuan Earthquake Fault Scientific Drilling Hole-1 (WFSD-I) [J]. SCIENCE CHINA:Earth Sciences.2014, doi:10.1007/s11430-013-4739-6
    Sun Dongsheng, Wang Lianjie. Wang Hongcai, Ma Yinsheng. Zhou Churjing. Cui Junwen. Analysis of the 2008 Wenchuan Ms8.0 Earthquake Co-seismic Stress and Displacement Change by Using the Finite Element Method[J]. ACTA GEOLOGICA SINICA,2013,87(4).1120-1128
    Sun Dongsheng, Hongcai Wang. Yinsheng Ma. Chunjing Zhou. Estimation of Co-seismic Stress Change of the 2008 Wenchuan Ms8.0 Earthquake[C], AIP Conf. Proc.2012.1479.1919-1922
    Teufel L W. Determination of in-situ stress from anelastic strain recovery measurements of oriented core[C]. Rock Mechanics in Productivity and Protection-the 25th Symposium on Rock Mechanics. Denver, USA:[s.n.],1983:421-430
    Teufel, L. W. and Warpinski, N. R. Determination of in-situ stress from anelastic strain recovery measurements of oriented core: comparison to hydraulic fracture stress measurements[C]. in Proc. 25th US Symp. Rock Mech., Evanston, SME/AIME,1984. pp.176-85.
    Teufel, L.W., Prediction of hydraulic fracture azimuth from anelastic strain recovery measurements of oriented core[C]. Proc.23rd U. S. Symp. on Rock Mech., Berkeley, CA, pp.1982.238-245.
    Teuful L W. In situ stress and natural fracture distribution at depth in the piceance basin, Colorado:implation to stimulation and production of low permeability gas reservoirs[C]. In:Proceedings 27th US symposium on rock mechanics, Tuscaloosa, SME/AIME, pp 702-708
    Thirumalai K. and Demou S. G. Effect of reduced pressure on thermal expansion behavior of rocks and its significance to thermal fragmentation[J]. J. Appl. Phys.1970,41,5147
    Thirumalai K. and Demou S. G. Thermal expansion behavior of intact and thermally fractured mine rocks[CJ]. Preprint from Proc.1973 Thermal Expansion Conf.
    Todd T., Richter D., Simmons G. and Wang H. Unique characterization of lunar rocks by physical properties[C]. Proc. Fourth Lunar Sci. Conf. 3, Pergamon Press, 1973,2663
    Voight B. Determination of the virgin state of stress in the vicinity of a borehole from measurements of a partial anelastic strain tensor in drill cores[J]. Felsmechanik und Ingenieurgeologie.1968,6:201-215
    Warpinski N R, Teufel L W. In situ stresses in low permeability, nonmarine rocks[J]. J Pet Tech, 1989.41: 405-414
    Wolter KE, Berckhemer H. Time-dependent strain recovery of cores from the KTB-deep drill hole[J]. Rock Mech Rock Eng.1989,22:273-287
    Wu H Y, Ma K F, Zoback M, et al. Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs[J]. Geophy Res Lett,2007,34, L01303, doi:10.1029/2006GL028050
    Wu M L, Zhang Y Q, Liao C T, et al. Preliminary Results of In-situ Stress Measurements along the Longmenshan Fault Zone after after the Wenchuan Ms 8.0 Eratherquare[J]. ACTA Geologica Sinica, 2009.83(4):746-753.
    Xin Nie, Changchun Zou, Li Pan etal.,Fracture analysis and determination of in-situ stress direction from resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50-1370 m)[J].Tectonophysics,2013,593:161-171
    Xu,Z.Q., Li, H.B., Wu Z.L., Wenchuang Earthquake and Scientific Drilling[J]. Acta Geologica Sinica. 2008,82(12),1613-1622.
    Yale, D. P. Fault and stress magnitude controls on variations in the orientation of in-situ stress. Fracture and in-situ stress characterization of hydrocarbon reservoirs[J]. M. Ameen. London, Geological Society, 2003.209:55-64.
    Yamamoto K, Kuwahara Y, Kato N, Hirasawa T. Deformation rate analysis:a new method for in-situ stress estimation from inelastic deformation of rock samples under uniaxial compressions[J]. Tohoku Geophysical Journal.1990,33:127-147
    Yamashita F. Fukuyama E and Omura K. Estimation of fault strength:reconstruction of stress before the 1995 Kobe earthquake[J]. Science.2004.306: 261-263
    Zajic, J. and Bohac. V. Gallery excavation method for the stress determination in a rock mass, in Proc[C]. Int. Symp. on Large Rock Caverns. Helsinki. Pergamon Press. Oxford.1986. Vol.2:1123-31.
    Zang A. Stephansson O. Stress field of the earth's crust[M]. London:Springer.2010.115-193
    Zang A, Wolter K, Berckhemer H. Strain recovery, microcracks and elastic anisotropy of drill cores from KTB deep well[J]. Sci Drill 1: 115-126
    Zoback M L, ZOBACK M D. Faulting patterns in North-central Nevada and strength of the crust[J]. J. Geophys. Res..1980,85(B1):275-284
    Zoback, M. D. Reservoir Geomechanics[M]. New York: Cambridge University Press,2007.
    安其美,丁立丰,王海忠,等.2004.龙门山断裂带的性质与活动性研究[J].大地测量与地球动力学,24(2):115-119
    蔡美峰,乔兰,于劲波.空心包体应变计测量精度问题[J].岩土工程学报,1994,16(6):15-20
    蔡美峰.地应力测量原理和技术[M].北京科学出版社,2000.
    蔡美峰.地应力测量中温度补偿方法的研究[J].岩石力学与工程学报,1991.10(3),227-235
    陈群策,安美建,李方全.水压致裂法三维地应力测试的理论探讨[J].地质力学学报,1998,4(1):37-43
    陈群策,丰成君,孟文,等.2012.5.12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J].地球物理学报,55(12):3923-3932
    陈群策,毛吉震,侯砚和.利用地应力实测数据讨论地形对地应力的影响[J].岩石力学与工程学报,2004,23(23):3990-3995
    陈颙.地壳岩石的力学性能.北京:地震出版社,1988,1-400
    陈颙.汶川地震是由水库蓄水引起的吗?中国科学D辑:地球科学,2009,39:257-259
    陈运泰,许力生,张勇,等.2008年5月12日汶川特大地震震源特性分析报告[R/OL].ttp://www.csi.ac.cn/sichuan/chenyuntai.pdf
    陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1):1-10
    崔军文,李宗凡,王连捷,林为人,王薇,孙东生.汶川地震断裂带科学钻探1号井(WFSD-1)非弹性应变恢复法(ASR法)三维地应力测试与“5.12”汶川地震的形成机制[J].岩石学报,29(6):2033-2047(SCI)
    崔效锋,胡幸平,余春泉,等.2011.汶川地震序列震源机制解研究[J].北京大学学报(自然科学版),47(6):1063-1072
    崔效锋,谢富仁,赵建涛.中国及邻区震源机制每年分区特征[J].地震地质,2005,27(2):298-307.
    杜义,谢富仁,张效亮,等.2009.汶川Ms8.0级地震断层滑动机制研究[J].地球物理学报,52(2):464-473
    丁原辰,邵兆刚.1996.引黄工程AE法与水压法地应力测量对比[J].地质力学学报,2(1):70-76
    丰成君,陈群策,谭成轩,等.2013.汶川Ms8.0地震对龙门山断裂带附近地应力环境影响初探—以北川、江油地区为例[J].地震学报,35(2):137-150
    葛修润,侯明勋.三维地应力BWSRM测量新方法及其测井机器人在重大工程中的应用[J].岩石力学与工程学报,2011,30(11):2161-2180.
    葛修润,侯明勋.钻孔局部壁面应力解除法(BWSRM)的原理及其在锦屏二级水电站工程中的初步应用[J].中国科学:技术科学,2012,42(4):359-368.
    郭启良,丁立丰.岩体力学参数的原地综合测试技术应用研究[J].岩石力学与工程学报,2004,23(23):3928-3931.
    何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报,2005.24(16):2804-2813.
    侯明金,王永敏.断裂带的动力学分析在-“利用断层面上擦痕的观察、测量技术主应力轴状态”方法简介[J].安徽地质,2002.12(2):86-91.
    胡幸平.俞春泉,陶开,等.2008.利用P波初动资料求解汶川地震及其强余震震源机制解[J].地球物理学报,51(6):1711-1718
    景锋.原生裂隙水压致裂法三维地应力测量研究[J].岩土工程学报,2009,31(11):1692-1696.
    康健,赵明鹏,赵阳升.随机非均质热弹性力学模型与岩石热破裂门槛值的数值试验研究[J].岩石力学与工程学报,2004,23(14):2331-2335.
    李方全,翟青山,毕尚煦等.水压致裂法原地应力测量初步结果[J].地震学报,1986,8(4):431-438
    李方全,张伯崇,苏恺之.三峡坝区水库诱发地震研究在茅坪钻孔的现场测试与分析[M].北京:地震出版社,1993
    李方全,张伯崇,祁英男等.中国三峡地地下800 m深部应力测量—中日合作AE法与水压致裂法对比研究[M].北京:地震出版社,1992
    李宏,张伯崇.北京房山花岗岩原地应力状态AE法估计[J].岩石力学与工程学报,2004,23(8):1349-1352
    李四光.地质力学方法[M].北京:科学出版社,1976.
    林睦曾.岩石热物理学及其工程应用[M].重庆:重庆大学出版社,1991
    林为人.基于岩芯非弹性应变恢复量测定的深孔三维地应力测试方法[J].岩石力学与工程学报,2008,27(12):2387-2394
    刘健,熊探宇,赵越,等.龙门山活动断裂带运动学特征及其构造意义[J].吉林大学学报(地球科学版),2012.42(增刊):320-330
    刘允芳,刘鸣.水压致裂法地应力测量破裂准则的探讨[J].长江科学院院报,1995,12(2):36-43
    刘允芳,尹健民.在一个铅垂钻孔中水压致裂法三维地应力测量的原理和应用[J].岩石力学与工程学报,2003,22(4):615-620
    刘允芳.水压致裂法三维地应力测量[J].岩石力学与工程学报,1991,10(3):246-256
    刘允芳.在单钻孔中水压致裂法的三维地应力测量[J].岩石力学与工程学报,1999,18(2):192-196.
    马宗晋,蒋铭.中国的强震期和强震幕[J].中国地震,1987,3(1):47-51
    孟文,陈群策,吴满路,等.龙门山断裂带现今构造应力场特征及分段性研究[J].地球物理学进展,2013,28(3):1150-1160
    缪元圣,刘桂英.岩石动、静弹性模量关系探讨[J].水文地质工程地质,1984,5:51-54
    彭华,马秀敏,姜景捷.差应变法地应力测量—以汶川地震断裂带科学钻探WFSD-1钻孔为例[J].地质力学学报,2011,17(3):249-261
    祁玉萍,李闽峰,李圣,等.地震震源机制波形自动反演系统的研究现状与展望[J].地震,2013,33(1):74-85.
    齐俊修,王连捷,胡五星,等.山西西龙池抽水蓄能电站地下厂房围岩位移应力特性及原因分析[J].岩十力学,2008.28(suup):26-30.
    乔兰,蔡美峰.应力解除法在某金矿地应力测量中的新进展[J].岩石力学与工程学报,1995,14(1)25-32.
    石耀霖,曹建玲.库仑应力计算及应用过程中若干问题的讨论—以汶川地震为例[J].地球物理学报,2010,53:102-110
    孙东生,丰成君,许洪斌,佟志利,赵金生,李国1岐,陈群策.大台沟矿区深孔水压致裂原地应力测量与应用[J].中南大学学报(自然科学版),2014,待刊
    孙东生,李阿伟,王红才,赵卫华,龙长兴,低渗砂岩储层渗透率各向异性规律的实验研究[J].地球物理学进展.2012,27(3).1101-1106
    孙东生,林为人,崔军文,王红才,陈群策,马寅生,王连捷.非弹性应变恢复法三维地应力测量汶川地震科学钻孔中的应用[J].中国科学:地球科学,2014,44(3),510-518(中文核心)
    孙东生.林为人,王连捷,崔军文,王薇,黄尧,汶川地震断裂带科学钴一号孔ASR法地应力测量[J].中国地质.2013.40(3).840-845
    孙叶.地应力与经济建设[M].北京:地质出版社.1989.
    王成虎,郭启良,陈群策,等.新一代超声波钻孔电视及其在工程勘察中的应用[J].地质与勘察,2007,43(1):98-101
    王成虎,宋成科,邢博瑞.水压致裂应力测量系统柔性分析及其对深孔测量的影响[J].现代地质,2012,26(4):808-815
    王成虎,张彦山,郭啟良,赵仕广.工程区地应力场的综合分析法研究[J].岩土工程学报,2011,33(10):1562-1568
    王成虎.地应力主要测试和技术方法回顾与展望[J].地质论评,2014,待刊
    王红才,赵卫华,孙东生,郭彬彬.岩石塑性变形条件下的Mohr-Coulomb屈服准则[J].地球物理学报,2012,55(12):4231-4238
    王连捷,崔军文,张晓卫,等.中国大陆科学钻主孔现今地应力状态[J].地球科学-中国地质大学学报,2006,31(4):505-512.
    王连捷,孙东生,林为人,崔军文,唐哲民,黄尧,地应力测量的非弹性应变恢复法及应用实例[J].地球物理学报,2012,55(5),1674-1681
    王连捷,孙东生林为人,等.地应力测量的非弹性应变恢复法及应用实例[J].地球物理学报,2012,55(5):1674-1681
    王连捷,潘立宙,等.地应力测量及其在工程中的应用[M].北京:地质出版社.1991,1-174
    王连捷,任希飞,丁原辰,等著.地应力测量在采矿工程中的应用[M].北京:地震出版社,199429-45
    王连捷,王薇.多种方法得到的地应力测量资料的综合处理[J].地质力学所所刊,1989.第12号:159-170
    谢富仁,崔效锋,赵建涛,等.中国大陆及邻区现代构造应力场分区[J].地球物理学报.2004,46(4):654-662.
    谢富仁,陈群策.地壳应力观测与研究[J].国际地震动态.1999,1-4.
    谢东亮.地应力测量方法综述[J].科技咨询.2013,No6:150-153.
    许忠淮,汪素云,黄雨蕊,等.由大量地震的资料推断我国大陆构造应力场[J].地球物理学报.1989,32(6):636-647.
    薛玺成,郭怀志,马启超.岩体高地应力及其分析[J].水利学报,1987,(3):52-58
    尹福炎.金属箔式应变片制作工艺原理[M].北京:国防工业出版社,2010,1-186
    尹祥础.固体力学[M].北京:地震出版社.1985,1-512
    于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    张贝,石耀霖.紫坪铺水库对附近断层稳定性影响的探讨[J].中国科学院研究生院报,2010,27:755-762
    张国民.我国大陆强震活动的韵律性特征[J].地震地质.1987,9(2):27-38
    郑勇,马宏省,吕坚,等.汶川地震强余震(Ms≥5.6)的震源机制解及其与发震构造的关系[J].中国科学D辑:地球科学,2009,39(4):413-426
    朱焕春,陶振宇.不同岩石中地应力分布[J].地震学报,1994,16(1):49-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700