用户名: 密码: 验证码:
孔隙介质储层参数反演与流体识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震油气预测与勘探开发进程同步,不同的勘探开发阶段有不同的油气预测目的,用地震资料进行油气预测依靠的是能反映油气储层特殊物理性质的地震参数。因此,储层参数反演及储层流体识别是地震油气预测的核心。随着油气勘探不断深入,人们对勘探精度的要求也越来越高,勘探的对象也逐步从构造性油气藏转向岩性和裂缝性等复杂油气藏。含油气储层是孔隙介质,也被称为双相介质,由于双相各向异性介质理论能够更准确地描述实际地层结构和地层性质,所以综合考虑、研究介质的双相性和各向异性,就可以精细刻画储层,并有可能利用相关的孔隙弹性参数(属性)进行储层预测。由此可见,从地震资料中可靠地提取或转化出这些参数,就成为油气预测成败的关键。为此,本文研究了孔隙介质储层参数反演和储层流体识别的相关方法,为地震勘探的直接找油气提供一定的技术支持,从而在一定程度上减少油气勘探和开发的风险,提高油气勘探和开发的成功率。
     开展地震波数值模拟方法的研究对于提高我们对地震波传播规律的认识,解决油气勘探和开发中遇到的各种问题具有重要的意义。地震波数值模拟是地震反演和偏移成像的基础,同时它对研究复杂地区的地震资料采集、处理和解释也具有重要作用。因此,本文首先以裂缝各向异性理论和基于BISQ(Biot-Squirt)机制的孔隙介质模型为基础,建立了基于BISQ机制的裂缝孔隙介质中的弹性波传播方程,并应用高精度交错网格有限差分法对单层和双层的裂缝孔隙介质模型进行了地震波场数值模拟与特征分析,这也是为后续基于BISQ机制的裂缝孔隙介质储层参数反演做准备,即为其提供正演算子。
     孔隙度、流相密度和固相密度是油气储层识别中的关键参数,储层参数反演对于地震油气预测具有重要意义。目前,孔隙介质储层参数反演方法一般来说主要分为两类:第一类是基于波动方程或非波动方程的各向同性或各向异性Biot模型孔隙介质储层参数反演,第二类是基于非波动方程的各向同性或各向异性(改进)BISQ模型孔隙介质储层参数反演。由于基于波动方程的孔隙介质储层参数反演(本文也称为孔隙介质储层参数全波形反演)可以利用叠前地震波场的运动学和动力学信息重建地下介质的相关孔隙弹性参数结构,具有揭示复杂地质背景下油气储层的物性和含油气性细节信息的潜力;而且Biot流动和喷射流动是含流体储层介质中最主要的两种流体流动形式,充分考虑这两种流动力学机制而建立的BISQ模型能更真实、准确地描述储层介质中地震波的传播规律。因此,实现基于波动方程的BISQ模型孔隙介质储层参数反演对于BISQ理论的推广应用以解决油气勘探和开发的实际问题具有重要的现实意义。为此,基于全波形反演思想,本文首次提出了基于BISQ机制的裂缝孔隙介质储层参数全波形反演方法。论文根据介质表面理论合成的地震响应应与实际测量数据相一致的原则,引入最小二乘原理和小生境遗传算法,建立起了基于BISQ机制的裂缝孔隙介质的小生境多参数(孔隙度、固相密度和流相密度)联合反演方法;以单层和双层的基于BISQ机制的裂缝孔隙介质模型为例,进行储层参数反演的数值分析,并进一步对比基本遗传算法与小生境遗传算法的收敛性和反演效果。数值模拟反演结果表明,相对于基本遗传算法反演,基于小生境遗传算法的裂缝孔隙介质储层参数反演是稳定收敛的,且收敛速度更快、反演精度更高。但是,小生境遗传算法应用于裂缝孔隙介质储层参数反演中存在一个不足之处,即其计算量比较大,反演非常耗时。
     针对上述存在的问题,经过进一步研究分析找到了影响计算效率的原因。在裂缝孔隙介质储层参数反演问题中,由于小生境遗传算法的适应度计算量非常大,因此其优化效率非常低,反演非常耗时。为了解决这一问题,本文提出了两种方法提高储层参数反演的计算效率,并系统地论述了这两种方法的原理和实现过程。第一种方法是根据遗传算法自身固有的并行性,借助MPI编程将并行计算机的高速并行性与遗传算法的固有并行性相结合,形成小生境主从式并行遗传算法。第二种方法是引入多震源混合激发采集技术,即不同空间位置处的多个震源按照随机线性编码的方式组成超级炮激发,这样可以提高裂缝孔隙介质储层参数反演中多炮正演模拟的计算效率,从而加快反演的计算速度。本文通过模拟数据测试了所提出的两种加速反演方法的有效性,数值模拟算例证明了将小生境主从式并行计算和多震源混合激发采集技术应用到裂缝孔隙介质储层参数反演中,可以成功地解决其反演耗时的问题,并且计算结果和时间效率均达到了非常好的效果。
     反射地震数据中的低频信息对地震油气预测非常重要,其包含了与储层及流体有关的丰富信息,如何最大限度地利用地震数据中的低频信息进行地震油气识别具有重要意义。针对该问题,本文论述了含流体孔隙介质依赖频率的反射系数渐近分析理论,并在该理论基础上推导出了基于高分辨率稀疏反演谱分解的储层流体流度计算方法,并进一步研究了利用储层流体流度属性进行储层和流体识别。实际资料处理结果表明,基于高分辨率稀疏反演谱分解方法计算得到的储层流体流度信息对于油气储层显示了良好的成像能力,分辨率很高,可用于刻画油气储层的位置和展布,降低了储层流体识别的多解性和不确定性。
Seismic oil and gas prediction and exploration and development process aresynchronous. Different oil and gas prediction purposes are required in differentexploration and development phase. The oil and gas prediction based on seismic datarelies on seismic parameters that could reflect special physical properties of oil andgas reservoir. Therefore, reservoir parameters inversion and reservoir fluididentification is the core of seismic oil and gas prediction. Along with deeperexploration of oil and gas, the exploration precision is required even more higher, andthe exploration objects are also moved from structural reservoir to lithologic reservoir,fractured reservoir and other kind of complex oil and gas reservoir. The reservoircontaining oil and gas is porous medium, which is also named two-phase medium.Two-phase anisotropic medium theory can describe the actual stratum structure andproperties more accurately, thereby comprehensive study on the medium property oftwo-phase and anisotropy is helpful to deeply research the oil and gas reservoir, and itis also useful for reservoir prediction with relevant poroelastic parameters (orattribute). So reliably extracting and transforming these parameters from seismic datahas become the key to the success of the oil and gas prediction. Related reservoirparameters inversion and reservoir fluid identification of porous medium areresearched in this paper, which could provide some technical support to oil and gasdirectly finding with seismic exploration. It is also helpful to reduce the risk of oil andgas exploration and development and improve the success rate to a certain extent.
     The research on seismic wave numerical modeling is of great significance toimproving our understanding of seismic wave propagation law and solving variousproblems encountered in the oil and gas exploration and development. Seismic wavenumerical modeling is the basis of seismic inversion and migration imaging, and italso plays an important role in seismic data acquisition, processing and interpretationof complicated area. Therefore, on the basis of fractured anisotropic theory and porousmedium model based on BISQ (Biot-Squirt) mechanism, elastic wave propagationequation in fracture porous medium based on BISQ mechanism is established in this paper. What is more, seismic wave field numerical simulation and feature analysis insingle-layered and two-layered fracture porous medium models are carried out withhigh precision staggered grid finite difference method. It also makes preparations forreservoir parameters inversion in fracture porous medium based on BISQ mechanism,providing forward operator.
     Porosity, fluid phase density and solid phase density are the key parameters in oiland gas reservoir identification, and the reservoir parameters inversion has greatsignificance to seismic oil and gas prediction. At present, porous medium reservoirparameters inversion methods could be generally divided into two types, one iscarried out based on wave equation (or non-wave equation) and isotropic (oranisotropic) Biot model, and the other one is carried out based on non-wave equationand isotropic (or anisotropic) BISQ (or modified BISQ) model. Porous mediumreservoir parameters inversion based on wave equation which is also named porousmedium reservoir parameters full waveform inversion in this paper, can rebuildunderground related poroelastic parameters structure while utilizing the kinematic anddynamic information of pre-stack seismic data, which could reveal detail informationof the physical properties of oil and gas reservoir under complex geologicalbackground. What is more, Biot flow and squirt flow are the two main fluid flowmechanisms in a reservoir medium containing fluid, and the BISQ model, whichincludes both of these dynamic flow mechanisms, can describe the wave propagationin reservoir medium more realistically and more accurately than the Biot model.Therefore, similarly to the extension of the BISQ theory application and the solutionof practical problems in oil and gas exploration and development, the implementationof the porous medium reservoir parameters inversion using the BISQ model based onwave equation has important practical significance. For this reason, on the basis offull waveform inversion idea, this paper presents fracture porous medium reservoirparameters full waveform inversion method based on BISQ mechanism for the firsttime. In this paper we calculate a synthetic medium surface seismic response that isconsistent with real measurement data by applying the least-square principle and aniche genetic algorithm. We propose a niche genetic multi-parameter (includingporosity, solid phase density and fluid phase density) joint inversion algorithm in afracture porous medium based on BISQ mechanism. We take the single-layered andtwo-layered fracture porous medium models based on BISQ mechanism as examples, and carry out the numerical analysis of reservoir parameters inversion, based onwhich we compare convergence and inversion effect between the simple geneticalgorithm and niche genetic algorithm. The numerical simulation inversion resultsindicate that the parameters inversion based on niche genetic algorithm in fractureporous medium reservoir is stably convergent, whose convergence speed is muchfaster and inversion precision is much higher than the inversion based on simplegenetic algorithm. However, there is also a shortcoming existed in the reservoirparameters inversion based on niche genetic algorithm in fracture porous medium.The calculating amount is quite large, and the inversion costs much time.
     To address the above problems, the major cause that influences computationalefficiency has been found after further research and analysis. During the reservoirparameters inversion in fracture porous medium, as the fitness calculation of nichegenetic algorithm is extremely large, its optimization efficiency is quite low, and it isvery time-consuming. In order to solve this problem, this paper proposes two methodsto improve the computational efficiency of parameters inversion in fracture porousmedium reservoir, and systematically discusses the basic theory and realizationprocess. The first method is based on the inherent parallel-ability of genetic algorithm,and it combines the high-speed parallel-ability of computer and inherentparallel-ability of genetic algorithm together with MPI program to build a nichemaster-slave parallel genetic algorithm. The second method introduces multi-sourceblended acquisition technology, which means that multiple sources in different spatiallocation are constituted to super-shot with random linear coding. It could improvecomputational efficiency of multiple shots forward modeling in fracture porousmedium reservoir parameters inversion, which could quicken the inversion calculationspeed. The proposed two methods are tested with simulated data in this paper, and thenumerical simulation examples prove that applying the niche master-slave parallelgenetic algorithm and multi-source blended acquisition technology to the fractureporous medium reservoir parameters inversion could successfully solve the largetime-consuming problem of niche genetic algorithm, and both the computation resultsand time efficiency reach much better effect.
     The low frequency information of reflection seismic data is extremely importantto the seismic oil and gas prediction, which contains plenty of information related toreservoir and fluid. Then how to fully make use of the low frequency information ofthe seismic data has great significance to seismic oil and gas identification. Aiming at this problem, the asymptotic analysis theory of frequency-dependent reflectioncoefficient in saturate porous medium is discussed in this paper. And on the basis ofthis theory, the calculation method of reservoir fluid mobility based on high resolutionsparse inversion spectral decomposition is deduced, and the reservoir and fluididentifications with reservoir fluid mobility attribute are also researched. The actualdata processing results show that the reservoir fluid mobility information based onhigh resolution sparse inversion spectral decomposition has well imaging capability tooil and gas reservoir and high resolution, which could be used to describe the oil andgas reservoir location and distribution, and also reduce the multi solutions anduncertainty of reservoir fluid identification.
引文
[1]牟永光.储层地球物理学[M].北京:石油工业出版社,1996.
    [2] Chen X H, He Z H, Zhu S X, et al. Seismic low-frequency-based calculation of reservoirfluid mobility and its applications[J]. Applied Geophysics,2012,9(3):326-332.
    [3]牛滨华,孙春岩.半空间介质与地震波传播[M].北京:石油工业出版社,2002.
    [4]朱建伟.含流体孔隙介质基于BISQ机制的弹性波波动方程及传播特性[D].长春:长春科技大学,2000.
    [5] Gassmann F. Elastic waves through a packing of spheres[J]. Geophysics,1951,16(4):673-685.
    [6] Biot M A. General theory of three-dimensional consolidation[J]. Journal of applied physics,1941,12(2):155-164.
    [7] Biot M A. Theory of Elasticity and Consolidation for a Porous Anisotropic Solid[J]. Journalof Applied Physics,1955,26(2):182-185.
    [8] Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I.Low-frequency range[J]. The Journal of the Acoustical Society of America,1956a,28(2):168-178.
    [9] Biot M. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higherfrequency range[J]. The Journal of the Acoustical Society of America,1956b,28(2):179-191.
    [10] Biot M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal ofapplied physics,1962a,33(4):1482-1498.
    [11] Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J]. TheJournal of the Acoustical Society of America,1962b,34(9A):1254-1264.
    [12] Biot M A. Nonlinear and semilinear rheology of porous solids[J]. Journal of GeophysicalResearch,1973,78(23):4924-4937.
    [13] Plona T J. Observation of a second bulk compressional wave in a porous medium atultrasonic frequencies[J]. Applied Physics Letters,1980,36(4):259-261.
    [14] Hamdi F, Smith D T. The influence of permeability on compressional wave velocity inmarine sediments[J]. Geophysical Prospecting,1982,30(5):622-640.
    [15] Auriault J L, Borne L, Chambon R. Dynamics of porous saturated media, checking of thegeneralized law of Darcy[J]. The Journal of the Acoustical Society of America,1985,77(5):1641-1650.
    [16] Nur A. Four-dimesional seismology and (true) direct detection of hydrocarbons: Thepetrophysical basis[J]. The Leading Edge,1989,8(9):30-36.
    [17] Wang Z, Nur A. Effect of temperature on wave velocities in sands and sandstones with heavyhydrocarbons[J]. SPE Reservoir Engineering,1988,3(01):158-164.
    [18] Wang Z, Nur A. Wave velocities in hydrocarbon-saturated rocks: Experimental results[J].Geophysics,1990,55(6):723-733.
    [19] Akbar N, Dvorkin J, Nur A. Relating P-wave attenuation to permeability[J]. Geophysics,1993,58(1):20-29.
    [20] Parra J O, Xu P. Dispersion and attenuation of acoustic guided waves in layered fluid‐filledporous media[J]. The Journal of the Acoustical Society of America,1994,95(1):91-98.
    [21]王尚旭.双相介质中弹性波问题有限元数值解和AVO问题[D].北京:中国石油大学,1990.
    [22]张应波. Biot理论应用于地震勘探的探索[J].石油物探,1994,33(4):29-38.
    [23]刘洋,李承楚.双相各向异性介质中弹性波传播伪谱法数值模拟研究[J].地震学报,2000,22(2):132-138.
    [24] Sheen D H, Tuncay K, Baag C E, et al. Parallel implementation of a velocity-stressstaggered-grid finite-difference method for2-D poroelastic wave propagation[J]. Computers&Geosciences,2006,32(8):1182-1191.
    [25]裴正林.双相各向异性介质弹性波传播交错网格高阶有限差分法模拟[J].石油地球物理勘探,2006a,41(2):137-143.
    [26]裴正林.三维双相各向异性介质弹性波方程交错网格高阶有限差分法模拟[J].中国石油大学学报:自然科学版,2006b,30(2):16-20.
    [27] Mavko G, Nur A. Melt squirt in the asthenosphere[J]. Journal of Geophysical Research,1975,80(11):1444-1448.
    [28] Mavko G, Nur A. Wave attenuation in partially saturated rocks[J]. Geophysics,1979,44(2):161-178.
    [29] Murphy III W F, Winkler K W, Kleinberg R L. Acoustic relaxation in sedimentary rocks:Dependence on grain contacts and fluid saturation[J]. Geophysics,1986,51(3):757-766.
    [30] Dvorkin J, Nur A. Dynamic poroelasticity: A unified model with the squirt and the Biotmechanisms[J]. Geophysics,1993,58(4):524-533.
    [31] Dvorkin J, Nolen-Hoeksema R, Nur A. The squirt-flow mechanism: Macroscopicdescription[J]. Geophysics,1994,59(3):428-438.
    [32] Parra J O. The transversely isotropic poroelastic wave equation including the Biot and thesquirt mechanisms: Theory and application[J]. Geophysics,1997,62(1):309-318.
    [33] Parra J O. Poroelastic model to relate seismic wave attenuation and dispersion topermeability anisotropy[J]. Geophysics,2000,65(1):202-210.
    [34]杨顶辉.孔隙各向异性介质中基于BISQ模型的弹性波传播理论及有限元方法[博士后研究报告].北京:石油大学,1998.
    [35] Yang D H, Zhang Z J. Effects of the Biot and the squirt-flow coupling interaction onanisotropic elastic waves[J]. Chinese Science Bulletin,2000,45(23):2130-2138.
    [36] Yang D H, Zhang Z J. Poroelastic wave equation including the Biot/squirt mechanism andthe solid/fluid coupling anisotropy[J]. Wave Motion,2002,35(3):223-245.
    [37] Cheng Y F, Yang D H, Zhu Y H. Biot/Squirt model in viscoelastic porous media[J]. Chinesephysics letters,2002,19(3):445-448.
    [38] Yang K D, Yang D H, Wang S Q. Numerical simulation of elastic wave propagation based onthe transversely isotropic BISQ equation[J]. Acta Seismologica Sinica,2002,15(6):628-635.
    [39]杨宽德,杨顶辉,王书强.基于Biot-Squirt方程的波场模拟[J].地球物理学报,2002a,45(6):853-861.
    [40]杨宽德,杨顶辉,王书强.基于BISQ高频极限方程的交错网格法数值模拟[J].石油地球物理勘探,2002b,37(5):463-468.
    [41]申义庆,杨顶辉.基于BISQ模型的双相介质位移场Green函数[J].地球物理学报,2004,47(1):101-105.
    [42]孟庆生.基于BISQ机制双相裂隙介质弹性波场正演及其方位属性研究[D].长春:吉林大学,2003.
    [43]王者江.基于BISQ机制的三维双相正交介质正演模拟及传播特性研究[D].长春:吉林大学,2008.
    [44]裴正林,勾永峰.双相各向同性介质BISQ模型弹性波方程数值模拟方法[J].应用声学,2013,32(6):425-432.
    [45]刘维国,包洪洋,董晓丽.双相介质中的密度反演[J].哈尔滨工业大学学报,1994,26(6):1-5.
    [46]郭宝琦,郭惠娟,金大勇,等.双相介质中孔隙率反演的遗传算法[J].哈尔滨工业大学学报,1995,27(2):1-3.
    [47]刘维国,全大勇.双相介质中孔隙率反演的一种方法[J].哈尔滨工业大学学报,1998,30(4):1-3.
    [48]刘克安,刘宏伟,郭慧娟.双相介质中参数的非线性反演模拟[J].哈尔滨建筑大学学报,1996a,29(2):115-120.
    [49]刘克安,刘宏伟,郭宝琦,等.二维双相介质波动方程孔隙率反演的时卷正则迭代法[J].石油地球物理勘探,1996b,31(3):410-414.
    [50]刘克安,刘宏伟.双相介质二维波动方程孔隙率反演的扰动方法[J].哈尔滨建筑大学学报,1996c,29(4):80-84.
    [51]刘克安,刘宏伟,郭宝琦,等.双相介质二维波动方程三参数同时反演的时卷正则迭代法[J].石油地球物理勘探,1997,32(5):615-622.
    [52]杨雨峰,章梓茂,张骏.双相介质物理参数反演的进化策略方法[J].北方交通大学学报,2001,25(4):55-59.
    [53]魏培君,章梓茂,韩华.双相介质参数反演的遗传算法[J].固体力学学报,2002a,23(4):459-462.
    [54]魏培君,章梓茂,韩华.双相介质参数反演的混沌搜索方法[J].计算力学学报,2002b,19(4):399-403.
    [55]韩华,章梓茂,汪越胜,等.双相介质波动方程孔隙率反演的同伦方法[J].力学学报,2003a,35(2):235-239.
    [56]韩华,章梓茂,魏培君.双相介质二参数反演的同伦方法[J].工程力学,2003b,20(4):110-115.
    [57]韩华,章梓茂,魏培君.流体饱和多孔介质参数反演的遗传算法[J].岩石力学与工程学报,2003c,22(9):1458-1462.
    [58]韩华,章梓茂,魏培君.用同伦方法反演流体饱和孔隙介质的参数[J].岩石力学与工程学报,2004a,23(1):129-136.
    [59]韩华,章梓茂,魏培君.二维双相介质多参数反演的同伦法[J].岩石力学与工程学报,2004b,23(18):3144-3151.
    [60]聂建新,杨顶辉,杨慧珠.基于非饱和多孔隙介质BISQ模型的储层参数反演[J].地球物理学报,2004,47(6):1101-1105.
    [61]王德利,何樵登.双相各向异性介质中孔隙度和渗透率反演[C].中国地球物理第二十一届年会论文集,2005.
    [62]班书昊,杨慧珠.小生境遗传算法在孔隙介质反演中的应用研究[J].石油勘探与开发,2005,32(2):78-81.
    [63] Zhang X M, Liu K A, Liu J Q. The wavelet multiscale method for inversion of porosity in thefluid-saturated porous media[J]. Applied mathematics and computation,2006,180(2):419-427.
    [64]张新明,刘克安,刘家琦.流体饱和多孔隙介质波动方程多尺度反演[J].应用力学学报,2007,24(1):88-92.
    [65]张新明,刘家琦,刘克安.一维双相介质孔隙率的小波多尺度反演[J].物理学报,2008,57(2):654-660.
    [66]张新明,周超英,刘家琦,等.流体饱和多孔隙介质多参数反演的小波多尺度-正则化高斯牛顿法[J].应用基础与工程科学学报,2009,17(4):580-589.
    [67] De Barros L, Dietrich M. Full waveform inversion of shot gathers in terms of poro-elasticparameters[C]. EAGE Expanded Abstract,2007.
    [68] De Barros L, Dietrich M, Valette B. Full waveform inversion of seismic waves reflected in astratified porous medium[J]. Geophysical Journal International,2010,182(3):1543-1556.
    [69]高建虎,刘全新,雍学善,等.双相介质叠前储层参数反演方法研究[J].地球科学进展,2007,22(10):1048-1053.
    [70]田迎春.层状黏弹性双相介质的动力响应与物性参数反演研究[D].北京:北京交通大学,2007.
    [71]田迎春,章梓茂,马坚伟,等.黏弹性双相介质参数反演的同伦方法[J].地球物理学报,2009,52(9):2328-2334.
    [72]张军舵.孔隙流体介质波动方程正演模拟与参数反演[D].青岛:中国石油大学(华东),2008.
    [73]巴晶.复杂多孔介质中的地震波传播机理研究[D].北京:清华大学,2008.
    [74]贺英,韩波,陈勇.基于流体饱和多孔隙介质波动方程的时间推移地震反演[J].地球物理学进展,2008,23(5):1526-1531.
    [75] He Y, Han B. A wavelet adaptive-homotopy method for inverse problem in the fluid-saturatedporous media[J]. Applied mathematics and computation,2009,208(1):189-196.
    [76]许多.双相介质储层参数非线性反演[D].成都:成都理工大学,2008.
    [77]张显文.储层地震预测技术与储层地球物理参数反演[D].长春:吉林大学,2010.
    [78]冯国峰,王迎,李壮.二维双相介质波动方程反演的共轭梯度法[J].黑龙江大学自然科学学报,2011,28(3):312-318.
    [79]王立荣.复杂介质参数反演的小生境蚁群算法研究[D].哈尔滨:哈尔滨工业大学,2011.
    [80]彭传正.基于改进BISQ机制的双相介质研究[D].成都:成都理工大学,2007.
    [81]周清强,刘远志.基于改进的BISQ地震波储层参数反演[J].内蒙古石油化工,2008(14):60-62.
    [82]吴涛,李红星,陶春辉,等.基于改进遗传算法的BISQ模型多参数反演方法研究[J].地球物理学进展,2012,27(5):2128-2137.
    [83] Zhang S Q, Han L G, Liu C C, et al. Inverting reservoir parameters in a two-phase fracturedmedium with a niche genetic algorithm[J]. Applied Geophysics,2012,9(4):440-450.
    [84] Zhang S Q, Han L G, Liu C C, et al. Inverting reservoir parameters in a two-phase fracturedmedium with a niche genetic simulated annealing algorithm[C]. EAGE Expanded Abstract,2013.
    [85] Goloshubin G, Van Schuyver C, Korneev V, et al. Reservoir imaging using low frequencies ofseismic reflections[J]. The Leading Edge,2006,25(5):527-531.
    [86] Silin D B, Korneev V A, Goloshubin G M, et al. A hydrologic view on Biot's theory ofporoelasticity: Lawrence Berkeley National Laboratory Report[R]. Berkeley, California, USA,2004.
    [87] Silin D B, Korneev V A, Goloshubin G M, et al. Low-frequency asymptotic analysis ofseismic reflection from a fluid-saturated medium[J]. Transport in Porous Media,2006,62(3):283-305.
    [88] Goloshubin G, Silin D. Frequency-dependent seismic reflection from a permeable boundaryin a fractured reservoir[C]. SEG Expanded Abstract,2006.
    [89] Silin D, Goloshubin G. Seismic wave reflection from a permeable layer: Low-frequencyasymptotic analysis[C]. ASME2008International Mechanical Engineering Congress andExposition,2008.
    [90] Silin D. A low-frequency asymptotic model of seismic reflection from a high-permeabilitylayer: Lawrence Berkeley National Laboratory Report[R]. Berkeley, California, USA,2009.
    [91] Silin D, Goloshubin G. An asymptotic model of seismic reflection from a permeable layer[J].Transport in Porous Media,2010,83(1):233-256.
    [92] Korneev V A, Silin D, Goloshubin G M, et al. Seismic imaging of oil production rate[C].SEG Expanded Abstract,2004.
    [93] Hilterman F, Patzek T, Goloshubin G, et al. Advanced reservoir imaging usingfrequency-dependent seismic attributes[R]. University Of Houston,2007.
    [94] Goloshubin G, Silin D, Vingalov V, et al. Reservoir permeability from seismic attributeanalysis[J]. The Leading Edge,2008,27(3):376-381.
    [95] Goloshubin G, Chabyshova E. A possible explanation of low frequency shadows beneath gasreservoirs[C]. SEG Expanded Abstract,2012.
    [96]蔡涵鹏.基于地震资料低频信息的储层流体识别[D].成都:成都理工大学,2012.
    [97] Chen X H, He Z H, Pei X G, et al. Numerical simulation of frequency-dependent seismicresponse and gas reservoir delineation in turbidites: A case study from China[J]. Journal ofApplied Geophysics,2013,94:22-30.
    [98]杨宽德,杨顶辉,王书强.基于横向各向同性BISQ方程的弹性波传播数值模拟[J].地震学报,2002c,24(6):599-606.
    [99]何樵登,韩立国,朱建伟,等.地震波理论[M].长春:吉林大学出版社,2005.
    [100] Crampin S. Effective anisotropic elastic constants for wave propagation through crackedsolids[J]. Geophysical Journal International,1984,76(1):135-145.
    [101] Hudson J A. Overall properties of a cracked solid[C]. Mathematical Proceedings of theCambridge Philosophical Society. Cambridge University Press,1980,88(02):371-384.
    [102] Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks[J].Geophysical Journal of the Royal Astronomical Society,1981,64(1):133-150.
    [103] Hudson J A. A higher order approximation to the wave propagation constants for a crackedsolid[J]. Geophysical Journal of the Royal Astronomical Society,1986,87(1):265-274.
    [104] Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion, and relatedproblems[J]. Proceedings of the Royal Society of London. Series A. Mathematical andPhysical Sciences,1957,241(1226):376-396.
    [105]刘财,兰慧田,郭智奇,等.基于改进BISQ机制的双相HTI介质波传播伪谱法模拟与特征分析[J].地球物理学报,2013,56(10):3461-3473.
    [106]杨顶辉,牟永光,陈小宏,等.孔隙各向异性介质中基于微观流场的BISQ理论[C].中国地球物理学会第十四届学术年会论文集,1998.
    [107]何樵登,张中杰.横向各向同性介质中地震波及其数值模拟[M].长春:吉林大学出版社,1996.
    [108] Madariaga R. Dynamics of an expanding circular fault[J]. Bulletin of the SeismologicalSociety of America,1976,66(3):639-666.
    [109] Virieux J. SH-wave propagation in heterogeneous media: Velocity-stress finite-differencemethod[J]. Geophysics,1984,49(11):1933-1942.
    [110] Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-differencemethod[J]. Geophysics,1986,51(4):889-901.
    [111] Dablain M A. The application of high-order differencing to the scalar wave equation[J].Geophysics,1986,51(1):54-66.
    [112] Levander A R. Fourth-order finite-difference P-SV seismograms[J]. Geophysics,1988,53(11):1425-1436.
    [113] Igel H, Riollet B, Mora P. Accuracy of staggered3-D finite-difference grids for anisotropicwave propagation[C]. SEG Expanded Abstract,1992.
    [114] Graves R W. Simulating seismic wave propagation in3D elastic media using staggered-gridfinite differences[J]. Bulletin of the Seismological Society of America,1996,86(4):1091-1106.
    [115]董良国,马在田,曹景忠,等.一阶弹性波方程交错网格高阶差分解法[J].地球物理学报,2000,43(3):411-419.
    [116]邓帅奇.全空间弹性波场数值模拟与逆时偏移成像方法研究[D].北京:中国矿业大学,2012.
    [117] Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discreteacoustic and elastic wave equations[J]. Geophysics,1985,50(4):705-708.
    [118]侯安宁.各向异性弹性波及其波动方程正反演研究[D].长春:长春地质学院,1994.
    [119]侯安宁,何樵登.各向异性介质中弹性波动高阶差分法及其稳定性的研究[J].地球物理学报,1995,38(2):243-251.
    [120]董良国,马在田,曹景忠.一阶弹性波方程交错网格高阶差分解法稳定性研究[J].地球物理学报,2000,43(6):856-864.
    [121]苏云.各向异性及双相介质弹性波正演模拟与波场特征分析[D].成都:成都理工大学,2010.
    [122] Zhu X, McMechan G A. Numerical simulation of seismic responses of poroelastic reservoirsusing Biot theory[J]. Geophysics,1991,56(3):328-339.
    [123]王家映.地球物理反演理论[M].北京:高等教育出版社,2002.
    [124]周明,孙树栋.遗传算法原理与应用[M].北京:国防工业出版社,1999.
    [125]杨慧珠,张世俊,杜祥.小生境遗传算法求解多峰问题在反演中应用[J].地球物理学进展,2001,16(2):35-41.
    [126]雷英杰,张善文,李续武,等. Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.
    [127]史峰,王辉,郁磊,等. MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011.
    [128]田东平.一种结合混沌搜索的自适应遗传算法[D].上海:上海师范大学,2007.
    [129] Smith S J, Bourgoin M O, Sims K, et al. Handwritten character classification using nearestneighbor in large databases[J]. Pattern Analysis and Machine Intelligence, IEEETransactions on,1994,16(9):915-919.
    [130] Deb K, Agrawal R B. Simulated binary crossover for continuous search space[J]. ComplexSystems,1994,1(9):115-148.
    [131]刘衍民,牛奔,赵庆祯.基于二进制交叉和变异的粒子群算法及应用[J].计算机科学,2011,38(5):227-230.
    [132] Michalewicz Z, Janikow C Z, Krawczyk J B. A modified genetic algorithm for optimalcontrol problems[J]. Computers&Mathematics with Applications,1992,23(12):83-94.
    [133] Goldberg D E. Genetic algorithms in search, optimization, and machine learning[M].Reading Menlo Park: Addison-wesley,1989.
    [134] Frind E O, Pinder G F. Galerkin solution of the inverse problem for aquifer transmissivity[J].Water Resources Research,1973,9(5):1397-1410.
    [135] Cavicchio D J. Adaptive search using simulated evolution[D]. Ann Arbor: University ofMichigan,1970.
    [136] De Jong K A. An analysis of the behavior of a class of genetic adaptive systems[D]. AnnArbor: University of Michigan,1975.
    [137]陈国良,王煦法,庄镇泉.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [138] Mahfoud S W. Crowding and preselection revisited[J]. Parallel Problem Solving FromNature,1992,2:27-36.
    [139] Mahfoud S W. Niching methods for genetic algorithms[D]. Urbana-Champaign: Universityof Illinois,1995.
    [140] Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal functionoptimization[C]. Genetic algorithms and their applications: Proceedings of the SecondInternational Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum,1987:41-49.
    [141] Deb K, Goldberg D E. An investigation of niche and species formation in genetic functionoptimization[C]. Proceedings of the3rd International Conference on Genetic Algorithms.Morgan Kaufmann Publishers Inc.,1989:42-50.
    [142] Berkhout A. Changing the mindset in seismic data acquisition[J]. The Leading Edge,2008,27(7):924-938.
    [143] Goldberg D E. Genetic and evolutionary algorithms come of age[J]. Communications of theACM,1994,37(3):113-119.
    [144]都志辉.高性能计算之并行编程技术—MPI并行程序设计[M].北京:清华大学出版社,2001.
    [145]张武生,薛巍,李建江,等. MPI并行程序设计实例教程[M].北京:清华大学出版社,2009.
    [146]刘晓平,安竹林,郑利平.基于MPI的主从式并行遗传算法框架[J].系统仿真学报,2004,16(9):1938-1940.
    [147] Cantú-Paz E. A survey of parallel genetic algorithms[J]. Calculateurs paralleles, reseaux etsystems repartis,1998,10(2):141-171.
    [148]高家全,何桂霞.并行遗传算法研究综述[J].浙江工业大学学报,2007,35(1):56-59.
    [149]谭尘青.多源地震混合采集波场高保真分离方法研究[D].长春:吉林大学,2013.
    [150]张生强,刘春成,韩立国,等.基于L-BFGS算法和同时激发震源的频率多尺度全波形反演[J].吉林大学学报(地球科学版),2013,43(3):1004-1012.
    [151]王汉闯.多震源地震勘探方法技术研究[D].杭州:浙江大学,2012.
    [152] Neelamani R, Krohn C E, Krebs J R, et al. Efficient seismic forward modeling usingsimultaneous random sources and sparsity[J]. Geophysics,2010,75(6): WB15-WB27.
    [153] Cantu-Paz E. Designing efficient and accurate parallel genetic algorithms[D].Urbana-Champaign: University of Illinois a,1999.
    [154] Batzle M L, Han D-H, Hofmann R. Fluid mobility and frequency-dependent seismicvelocity-Direct measurements[J]. Geophysics,2006,71(1): N1-N9.
    [155] Frenkel J. On the theory of seismic and seismoelectric phenomena in a moist soil[J]. J. Phys.,1944,8(4):230-241.
    [156] Kosachevskii L I. On the reflection of sound waves from stratified two-component media[J].Journal of Applied Mathematics and Mechanics,1961,25(6):1608-1617.
    [157] Geertsma J, Smit D C. Some aspects of elastic wave propagation in fluid-saturated poroussolids[J]. Geophysics,1961,26(2):169-181.
    [158] Deresiewicz H, Rice J T. The effect of boundaries on wave propagation in a liquid-filledporous solid: III. Reflection of plane waves at a free plane boundary (general case)[J].Bulletin of the Seismological Society of America,1962,52(3):595-625.
    [159] Hilterman F J. Seismic amplitude interpretation:2001distinguished instructor shortcourse[M]. SEG Books,2001.
    [160]韩利.高分辨率全谱分解方法研究[D].长春:吉林大学,2013.
    [161] Castagna J P, Sun S, Siegfried R W. Instantaneous spectral analysis: Detection oflow-frequency shadows associated with hydrocarbons[J]. The Leading Edge,2003,22(2):120-127.
    [162] Liu J, Marfurt K J. Instantaneous spectral attributes to detect channels[J]. Geophysics,2007,72(2): P23-P31.
    [163] Sinha S, Routh P S, Anno P D, et al. Spectral decomposition of seismic data withcontinuous-wavelet transform[J]. Geophysics,2005,70(6): P19-P25.
    [164] Wang Y. Seismic time-frequency spectral decomposition by matching pursuit[J]. Geophysics,2007,72(1): V13-V20.
    [165] Partyka G, Gridley J, Lopez J. Interpretational applications of spectral decomposition inreservoir characterization[J]. The Leading Edge,1999,18(3):353-360.
    [166] Marfurt K, Kirlin R. Narrow-band spectral analysis and thin-bed tuning[J]. Geophysics,2001,66(4):1274-1283.
    [167] Stockwell R G, Mansinha L, Lowe R. Localization of the complex spectrum: the Stransform[J]. Signal Processing, IEEE Transactions on,1996,44(4):998-1001.
    [168] Pinnegar C R, Mansinha L. The S-transform with windows of arbitrary and varying shape[J].Geophysics,2003,68(1):381-385.
    [169]高静怀,陈文超,李幼铭,等.广义S变换与薄互层地震响应分析[J].地球物理学报,2003,46(4):526-532.
    [170] Wu X Y, Liu T Y. Seismic spectral decomposition and analysis based on Wigner-Villedistribution for sandstone reservoir characterization in West Sichuan depression[J]. Journalof Geophysics and Engineering,2010,7(2):126-134.
    [171]张显文,韩立国,王宇,等.地震信号谱分解匹配追踪快速算法及其应用[J].石油物探,2010,49(1):1-6.
    [172] Han L, Sacchi M D, Han L G. Spectral decomposition and de-noising via time-frequencyand space-wavenumber reassignment[J]. Geophysical Prospecting,2014,62(2):244-257.
    [173] Portniaguine O, Castagna J. Inverse spectral decomposition[C]. SEG Expanded Abstract,2004.
    [174] Bonar D C, Sacchi M D. Complex spectral decomposition via inversion strategies[C]. SEGExpanded Abstract,2010.
    [175] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverseproblems[J]. SIAM Journal on Imaging Sciences,2009,2(1):183-202.
    [176] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAMjournal on scientific computing,1998,20(1):33-61.
    [177] Yang J F, Zhang Y. Alternating direction algorithms for L1-problems in compressivesensing[J]. SIAM journal on scientific computing,2011,33(1):250-278.
    [178] Van Den Berg E, Friedlander M P. Probing the Pareto frontier for basis pursuit solutions[J].SIAM journal on scientific computing,2008,31(2):890-912.
    [179] Yun S, Toh K-C. A coordinate gradient descent method for L1-regularized convexminimization[J]. Computational Optimization and Applications,2011,48(2):273-307.
    [180] Bruckstein A M, Donoho D L, Elad M. From sparse solutions of systems of equations tosparse modeling of signals and images[J]. SIAM review,2009,51(1):34-81.
    [181] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAMReview,2001,43(1):129-159.
    [182] Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccuratemeasurements[J]. Communications on pure and applied mathematics,2006,59(8):1207-1223.
    [183] Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstructionfrom highly incomplete frequency information[J]. Information Theory, IEEE Transactionson,2006,52(2):489-509.
    [184] Donoho D L. Compressed sensing[J]. Information Theory, IEEE Transactions on,2006,52(4):1289-1306.
    [185] Donoho D L. For most large underdetermined systems of linear equations the minimalL1-norm solution is also the sparsest solution[J]. Communications on pure and appliedmathematics,2006,59(6):797-829.
    [186] Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverseproblems with a sparsity constraint[J]. Communications on pure and applied mathematics,2004,57(11):1413-1457.
    [187] Hale E T, Yin W, Zhang Y. Fixed-point continuation for L1-minimization: Methodology andconvergence[J]. SIAM Journal on Optimization,2008,19(3):1107-1130.
    [188] Glowinski R. Numerical methods for nonlinear variational problems[M]. New York:Springer-Verlag,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700