用户名: 密码: 验证码:
华北板块北缘中段早古生代—泥盆纪构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北板块北缘中段作为中亚造山带的核心部位,经历和记录了古亚洲洋构造域的形成、发展和消亡,是研究中亚造山带地质演化历史问题的关键部位。本文以板块构造和大陆动力学理论为指导,在野外地质调查基础上,利用锆石U-Pb同位素LA-ICP-MS定年技术和岩石地球化学测试等手段,深入探讨了华北板块北缘中段早古生代-泥盆纪期间的构造演化历史。
     1.早古生代俯冲-增生杂岩带
     华北板块北缘早古生代期间发生洋内俯冲作用,形成了一套由温都尔庙蛇绿岩组合、超基性岩块、德言其庙斜长角闪岩和奥长花岗岩组成的俯冲增生杂岩,为古亚洲洋大洋板块俯冲消减的残留和岛弧岩浆活动的产物,其形成演化到最终构造侵位从寒武纪一直持续到中志留世。温都尔庙蛇绿岩组合为SSZ型(俯冲带)蛇绿岩,为古亚洲洋大洋板块俯冲消减的残留;德言其庙斜长角闪岩原岩为中基性岩浆岩,是岛弧岩浆活动的产物,晚奥陶世期间受后期热流体作用影响发生高温角闪岩相变质作用;晚奥陶世奥长花岗岩属于低钾拉斑系列,具有较高的Sr含量和明显的Sr、Eu正异常及Nb负异常,为大洋斜长花岗岩与埃达克质岩浆之间的过渡类型,形成于岛弧的构造环境;温都尔庙群高压变质带中的蓝片岩为B型蓝片岩,形成于洋壳俯冲碰撞带的构造环境。
     早古生代期间古亚洲洋板块的自北向南俯冲作用,在温都尔庙群地层中形成了三期褶皱构造和一期韧性变形带。早期小型层间倒转-平卧褶皱为岩石塑性流动变形的产物;中期近东西向褶皱规模巨大,形态多样,为南北向俯冲挤压作用的产物;晚期褶皱的主应力方位发生改变,受东西向挤压作用,叠加改造中期褶皱。在褶皱带南部的温都尔庙群地层中发育伸展韧性变形带,带内岩石线理发育,形成大量L构造岩和L>S型构造岩,线理统计分析显示存在一期南东东向的伸展作用,为南北向俯冲挤压折返作用的产物。
     2.早古生代岛弧岩浆活动带
     白乃庙岛弧岩浆活动带内早古生代火山沉积地层和侵入岩发育。白乃庙群火山岩下部以酸性火山岩为主,上部则主要为基性火山岩,其源区性质为受俯冲流体交代的地幔源区,同时受到一定程度地壳物质混染,属于安第斯型活动大陆边缘火山岩。晚寒武世石榴石白云母花岗岩由于强烈的热液蚀变而发生稀土元素四分组效应,具有平坦的稀土元素配分型式和强烈的负Eu异常,类似于四分组效应的“M”型配分曲线,为经历了强烈热液蚀变的高分异I型花岗岩,是早期俯冲作用的产物;晚奥陶世石英闪长岩具有相对富钠、贫钾和准铝质的特征,轻稀土元素富集,重稀土元素亏损,无明显的Eu异常,强烈亏损高场强元素Nb、P、Ti,反映了俯冲带岛弧或大陆边缘弧火山岩的特征,为白乃庙岛弧岩浆活动的产物。
     3.早古生代弧后盆地沉积
     白乃庙岛弧岩浆岩带南部分布着一套中上志留统徐尼乌苏组复理石沉积,其物源为白乃庙岛弧岩浆岩,在粒度上具有明显的韵律性,可分为6个大的沉积旋回,每个旋回都是由底向顶粒度逐渐变细,属于复理石建造下部的粗复理石沉积,代表了水动力条件较强的沉积环境,而远离岛弧带的晒勿苏组地层则为相对稳定的浅海相沉积环境。不整合覆盖在徐尼乌苏组和晒勿苏组之上的顶志留统西别河组与四道杖棚组地层为一套磨拉石建造,地层层序具明显的韵律性,可分为多个沉积旋回,每个旋回都是以砾岩开始,向上粒度变细,反映出其沉积时有大量的陆源碎屑物质和地壳频繁波动的沉积环境。西别河组磨拉石建造属于造山带前陆盆地堆积的磨拉石沉积,形成于挤压的前陆盆地的构造环境,说明在志留纪末期白乃庙岛弧与华北板块发生弧-陆碰撞,形成了西别河组前陆盆地磨拉石建造,标志着华北板块北缘中段在早古生代期间完成了沟-弧-盆体系的构造演化。
     4.泥盆纪碰撞后伸展
     华北板块北缘在志留纪末期经历了与白乃庙岛弧的弧-陆碰撞事件后,发生了区域性的大规模伸展,在固阳、商都、张家口及赤峰一带形成了早-中泥盆纪的岩浆活动。其中赤峰-解放营子地区发育的中泥盆世A型花岗岩,属于A2型花岗岩,形成于后碰撞或后造山的环境,表明在泥盆纪期间华北板块北缘进入了碰撞后的伸展阶段,年代学数据显示该期伸展作用可能持续了整个泥盆纪。
The central segment of the northern margin of the North China Plate as a corepart of the Central Asian Orogenic Belt, is a key part of the study of geologicalevolution in the Central Asian Orogenic Belt, which experience and records theformation, development and demise of the Palao Asian tectonic domain. In this paper,based on field geological survey, explore the tectonic evolution of the northern marginof the North China Plate from Early Paleozoic to Devonian using geochronology andgeochemistry research, which is guided by the theory of plate tectonics andcontinental dynamics.
     1.Early Paleozoic subduction-accretion complex belt
     The subduction-accretion complex consisting of the Ondor Sum ophiolite,ultrabasic rock, Deyanqimiao amphibolite and trondhjemite formed in intra-oceanicsubduction in the the central segment of the northern margin of the North China Plate,which is the product of the residual Paleoasian Ocean Plate and arc magmatism, itsformation, evolution and tectonic emplacement from the Cambrian until the middleSilurian. The Ondor Sum ophiolite is a typic SSZ(subduction belt) ophiolite suite,which formed forearc in the subduction belt. Deyanqimiao amphibolite original rockis mafic igneous rocks, which is affected by the hydrothermal fluid, experienced ahigh temperature amphibolite facies metamorphism in the late Ordovician. The lateOrdovician trondhjemite belonged low potassium tholeiitic sreies, positive anomaliesin Sr, Eu and negative anomalies in Nb, which is a transitional type between oceanplagiogranite and adakitic magmatic rock, formed in arc tectonic environment. TheB-type blue schist in Ondor Sum group high-pressure metamorphic belt is formed in the environment of the oceanic subduction-collision zone.
     The Paleoasian Ocean Plate subducted from north to south in early Palaeozoic, inOndor Sum group formed three fold and a ductile deformation zone. The early interlaminar overturned-recumbent fords formed in the plastic flow defermation of rocks.The middle fords are huge and diverse, trace nearly east-west axis, which are theproducts of north-south compressional deformation. The late fords’ maxumumprincipal stress orientation changes to east-west compressional deformation. There arelots of L-type and L>S type tectonites in the ductile deformation zones which islocated in the southern of the fords belt, lineation statistical analysis showed asoutheast-east stretch which is the tectonic deformation in the deeper levels of thefords belt.
     2.Early Paleozoic arc magmatic active belt
     Early Palaezoic volcanic and intrusive rocks in Bainaimiao arc magmatic activebelt are commonly. The acidic volcanic rocks are in the lower of Bainaimiao Group,but the basic volcanic rocks of the upper, its nature of the source regions are thesubduction fluid metasomatism of the mantle source region, at the same time to acertain extent crustal material contamination, similar to Anden-type active continentalmargin volcanic rocks. The Late Cambrian garnet muscovite granite which issubjected to the occurrence of hydrothermal alteration of REE tetrad effect, has a flatREE pattern and strong negative Eu anomaly, similar to the “M” type distributionpattern of the tetrad effect, is experiencing a strong hydrothermal alteration of I-typegranites, which is an early produce of subduction of oceanic crust. The lateOrdovician quartz diorite has the characteristics of rich Na, poor K, LREE enrichmentand HREE loss, there is no obvious Eu anomaly and strongly depleted in high fieldstrength elements Nb, P, Ti in the quartz diorite, which is similar to arc subductionzone and continental margin arc volcanic rocks, is a produce of Bainaimiao arcmagmatism.
     3.Early Paleozoic back-arc basin
     The Mid-Upper Silurian Xuniwusu Group is the lower coarse flysch formation inthe south of Bainaimiao arc magmatic rocks, its provenance comes from Bainaimiao arc magmatic rocks. The Xuniwusu Group has obvious rhythmic, which can bedevided into six major depositional cycles and each cycle is from the bottom to thetop of granularity tapering, belong to the lower of the coarse flysch formation,represents a strong hydrodynamic conditions sedimentary environment, but theShaiwusu Group which stay away from Bainaimiao arc reflect relatively stableshallow marine depositional environment. The Upper Silurian Xibiehe andSidaozhangpeng Group which is a set of molasse formation, have obvious rhythmic,they are devided into many sedimentary cycles and each cycle begins withconglomerate, tapering upward granularity, reflecting the large number of terrigenousmaterial and frequent fluctuatuons in the crust sedimentary environment. XibieheGroup belongs to orogen foreland basin molasse formation, which is formed in theextrusion of tectonic environment. It shows that Bainaimiao island arc and the NorthChina Plate happened arc-continent collision in the Late Silurian, which marks thetrench-arc-basin tectonic evolution fanished in early Paleozoic in the middle of thenorthern margin of the North China Plate.
     4.Devonian post-collision extension
     After Bainaimiao island arc-continent collision in the late Silurian, begin to largescale regional extension, which formed early-middle Devonian magmatism in theGuyang, Shangdu, Zhangjiakou and Chifeng area. The middle Devonian A-typegranites in the Chifeng Jiefangyingzi and its southern regions are belong toA2-type(post-collision or post-orogenesis), which show that the northern margin ofthe North China Plate entered post-collision extension stage in the Devonian, andgeochrononlogy data show that the extension is likely to continue throughout thewhole Devonian.
引文
1.Auwera J V,Bogaerts M,Liegeois J P,et al.Derivation of1.0-0.9Ga ferro-potassicA-type granitoids of southern Norway by extreme differentiation from basicmagmas[J].Precambrian Research,2003,124:107-148.
    2.Bonin B,Azzouni S A,Bussy F,et al.Alkali-calcic and alkaline post-orogenic(PO) granite magmatism:Petrologic constraints and geodynamic settings[J].Lithos,1998,45:45-70.
    3.Bonin B.A-type granites and related rocks:Evolution of a concept,problem andprospects[J].Lithos,2007,97:1-29.
    4.Boynton W V.Geochemistry of the rare earth elements:meteorite studies[M].In:Henderson P.Rare Earth Element Geochemistry.New York:Elsevier,1984,63-114.
    5.Coleman R G..Ophiolites[M],Printed by Springer Verlag Berlin Heidelberg inGermany,1977.
    6.Coleman R G..Continental growth of Northwest China[J].Tectonics,1989,8:621–635.
    7.Collins W J,Beams S D,White A J P,et al.Nature and origin of A-type graniteswith particular reference to southeastern Australia[J].Contrib Mineral Petrol,1982,80:189-200.
    8.Clemens J D,Holloway J R and White A J R..Origin of an A-type granite:Experimental constraints[J].Am.Mineral,1986,71:317-324.
    9.Chen B,Jahn B M,Wilde S,et al.Two contrasting Paleozoic magmaticbelts in northern Inner Mongolia,China:petrogenesis and tectonic implications[J].Tectonophysics,2000,328:157–182.
    10.Creaser R A,Price R C and Wormald R J.A-type granites revisited:Assessmentof a residual-source model[J].Geology,1991,19:163-166.
    11.Costa S and Rey P.Lower crustal rejuvenation and growth during post-thickeningcollapse:Insights from a crustal cross section through a Variscan metamorphic corecomplex[J].Geology,1995,23:905-908.
    12.Chappell B W and White A J R.Two contrasting granite types[J].Pac Geol,1974,8:173-174.
    13.Coleman R G,Peterman Z E.Oceanic plagiogranite[J].J.Geophs.Res.,1975,80:1099-1108.
    14.Dewey J F,Bird J.Origin an d em placement of the ophiolite suite:Appalachianophiolites in New f oundland[J].J.Geophy.Res.,1971,76:3179~3206.
    15.De J K,Xiao W J,Windley B F,et al.Ordovician40Ar/39Ar phengite ages fromthe blueschist-facies Ondor Sum subduction-accretion complex (Inner Mongolia) andimplications for the Early Paleozoic history of continental blocks in China andadjacent areas[J].American Journal of Science,2006,306(12):799-845.
    16.Defant M J and Drummond M S.Derivation of some modern arc magmas bymelting of young subducted lithosphere[J].Nature,1990,347:662-665.
    17.Eby G N.The A-type granitiods:a review of their occurrence and chemicalcharacteristics and speculations on their petrogenesis[J].Lithos,1990,26:115-134.
    18.Eby G N.Chemical subdivision of the A-type granitoids:Petrogenetic and tectonicimplications[J].Geology,1992,20:641-644.
    19.Filippova I B,Bush V A,Didenko A N.Middle Paleozoic subduction belts:theleading factor in the formation of the Central Asian fold-and-thrust belt[J].RussianJournal of Earth Science,2001,3:405–426.
    20.Fidelis I,Siekierski S.The regularities in stability constants of some rare earthcomplexes[J].Journal of Inorganic and Nuclear Chemistry,1966,28:185–188.
    21.Floyd P A,Yaliniz M K,Goncuoglu M C.Geochemistry and petrogenesis ofintrusive and extrusive ophiolitic plagiogranites, Central Anatolian CrystallineComplex,Turkey[J].Lithos,1998,42:225-241.
    22.Gass I G.Is the Troodos Massif of Cyprus a fragment of Mesozoic oceanic floor?[J].Nature,1968,220:39~42.
    23.Gerlanch D C,Leeman W P,Avé Lallemant H G.Petrology and Geochemistryof Plagiogranite in the Canyon Mountain Ophiolite Oregon[J].Contributions toMineralogy and Petrology,1981,77:82-92.
    24.Goodenough K M,Upton B G J,Ellam R M..Geochemical evolution of theIvigtut granite,South Greenland:a fluorine-rich “A-type” intrusion[J].Lithos,2000,51:205-221.
    25.Irber W.The lanthanide tetrad effect and its correlation with K/Rb,Eu/Eu*,Sr/Eu,Y/Ho,and Zr/Hf of evolving peraluminous granite suites[J].Geochimica etCosmochimica Acta,1999,63:489-508.
    26.Jiang N.Petrology and geochemistry of the Shuiquangou syenitic complex,northern margin of the North China Craton[J].Journal of the Geoligical Society,2005,162(1):203-215.
    27.Jian P,Liu D Y,Alfred K,et al.Time scale of an early to mid-Paleozoic orogeniccycle of the long-lived Central Asian Orogenic Belt,Inner Mongolia of China:Implications for continental growth[J].Lithos,2008,101:233-259.
    28.Jian P,Liu DY,Alfred K,et al.Evolution of a Permian intraoceanic arc-trenchsystem in the Solonker suture zone,Central Asian Orogenic Belt,China andMongolia[J].Lithos,2010,118:169-190.
    29.Jahn B M,Wu F Y,Hong D W.Important crustal growth in the Phanerozoic:Isotopic evidence of granitoids from East central Asia[J].Proc,Indian Acad.Sci,(Earth Planet Sci),2000a,109:5-20.
    30.Jahn B M,Wu F Y,Capdevila R,et al.Highly evolved juvenile granites withtetrad REE patterns: the Woduhe and Baerzhe granites from the GreatXing’an(Khingan) Mountains in NE China.Lithos,2001,59:171-198.
    31.Koschek G.Origin and significance of the SEM cathodoluminescence fromzircon[J].Journal of Microscopy,1993,171:223-232.
    32.Kerr A and Fryer B J.Nd isotope evidence for crust-mantle interaction in thegeneration of A-type granitoid suites in Labrador[J],Canada.Chemical Geology,1993,104:39-60.
    33.Kawabe I,Kitahara Y,Naito K,et al.Non-chondritic yttrium/holmium ratio andlanthanide tetrad effect observed in pre-Cenozoic limestones[J]. GeochemicalJournal,1991,25:31–44.
    34.Khain E V,Bibikova E V,Kr ner A,et al.The most ancient ophiolite of theCentral Asian fold belt:U-Pb and Pb-Pb zircon ages for the Dunzhugur complex,eastern Sayan,Siberia,and geodynamic implications[J].Earth and Planetary ScienceLetters,2002,199(3-4):311-325.
    35.Khain E V,Bibikova E V,Salnikova E B,et al..The Palaeo-Asian ocean in theNe-oproterozoic and earth Palaeozoic:new geochronologic data and Palaeotectonicreconstructions[J].Precambrian Research,2003,122(1-4):329-358.
    36.Kuzmichev A,Kr ner A,Hegner E,et al.The Shishkhid ophiolite,northernMongolia:a key to the reconstruction of a Neoproterozoic island-arc system incentral Asia[J].Precambrian Research,2005,138:125–150.
    37.King P L,White A J R and Chappell B W.Chatacterization and origin ofaluminous A type granites of the Lachlan Fold Belt,Southeastern Australia[J].JPetrol,1997,36:371-391.
    38.King P L,Chappell B W,Allen C M,et al.Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J].Australian.J.Earth Sciene,2001,48:501-514.
    39.Liegeois J P.Some words on the post-collisional magmatism[J].Lithos,1998,45:15-17.
    40.Landenberger B,Collins W J.Derivation of A-type granites from a dehydratedcharnockitic lower crust: Evidence from the Chaelundi Complex easternAustralia[J].Petrology,1996,37(1):145-170.41. Loiselle M C, Wones D R. Characteristic and Origin of anorogenicgranite[J].Geol.Soc.Am.Abstr.Prog.,1979,11:468.
    42.Martin H.Adakitic magmas:modern analogues of Archaean granitoids[J].Lithos,1999,46:411-429.
    43.Miller C F.Are strongly peraluminous maamas derived from politic sedimentarysources?[J].J.Geol,1985,93:673-689.44. Miyashio A. Volcanic rock series in island arcs and activecontinentalmargins[J].American Journal of Science,1974,27(4):321-355.
    45.Masuda A,Akagi T.Lanthanide tetrad effect observed in leucogranites fromChina[J].Geochemical Journal,1989,23:245–253.46. Middlemost E A K. Naming materials in the magma/igneous rocksystem[M].London:Longman,1985.47. Masuda A, Ikeuchi Y. Lanthanide tetrad effect observed in marineenvironment[J]. Geochemical Journal,1979,13:19–22.
    48.Moores E M,Jackson.Ophiolit es and oceanic crust[J].Nature,1974,250:136-139.
    49.Masuda A,Kawakami O,Dohmoto Y,et al.Lanthanide tetrad effects in nature:two mutually opposite type W and M[J].Geochemical Journal,1987,21:119–124.
    50.Maniar P D,Piccoli P M.Tectonic discrimination of granitoids[J].Geologicalsociety of America bulletin,1989,101(5):635-643.
    51.Monecke T,Kempe U,Monecke J,et al.Tetrad effect in rare earth elementdistribution patterns:a method of quantification with application to rock and mineralsamples from granite-related rare metal deposits[J].Geochimica et CosmochimicaActa,2002,66:1185-1196.
    52.Mossakavsky A A,Ruzhentsev S V,Samygin S G,et al.Central Asian fold belt:geodynamic evolution and history of formation[J].Geotectonics,1993,6:3-33.
    53.Nicolas A,Boudier F,Meshi A.Slow spreading accret ion and mantle denudationin the Mirdit a Ophiolite (Albania)[J].J.Geophys.Res.B,1999,104:15155-15167.
    54.Nicolas A, Dupuy C.Origin of ophiolit ic and oceaniclherzolites[J].Tectonophysics,1984,110(3-4):177-187.
    55.Patino D A E.Generation of metaluminous A-type granites by low-pressuremelting of calc-alkaline granittoids[J].Geology,1997,25:743-746.
    56.Pitcher W S.The nature and origin of granite[D].Blackie Academic andProfessional,London:Chapman and Hall,1993,1-464.57. Pearce J A. Trace element characteristics of lava from destructive plateboundaries[J].Journal of Petrology,1982,25(4):956-983.
    58.Pearce J A,Harris N B W ang Tindle A G.Trace element discrimination diagramsfor the tectonic interpretation of granitic rocks[J].J.Petrol.,1984a,(25):956-983.
    59.Pearce J A,Lippard S J,Roberts S.Characteristics and tectonic significance ofsupra-subduction zone ophiolites[M]//Kokelaar B P and Howells M F.Marginalbasin geology.Geological Society of London Special Publication16.London:Blackwell Publications,1984b.77-94.60. Pearce J A. Supra-subduction zone ophiolites: The search for modernanalogues.Ophiolite concept and the evolution of geological thought(eds.DilekY&Newcomb S)Colorado[J],Geological Society of American Special Paper,2003,373:269-293.
    61.Peppard D F,Mason G W,Lewey S.A tetrad effect in the liquidliquid extractionordering of lanthanide(III)[J].Journal of Inorganic and Nuclear Chemistry,1969,31:339-343.
    62.Peccerillo A,Taylor A R.Geochemistry of Eocene calc-alkaline volcanic rocksfrom the Kastamonu area,Northern Turkey[J].Contribution to Mineralogy andPetrology,1976,58:63-81.
    63.Robertson A H F.Overview of the genesis and emplacement of Mesozoicophiolites in th Eastern Mediterranean Tethyan region[J].Lithos,2002,65:1-67.
    64.Sylvester P J.Post-collisional alkaline granites[J].J.Geol,1989,97:261-280.
    65.Sylvester P J,Post-collisional strongly peraluminous granites[J].Lithos,1998,45:29-34.
    66.Stampfli G M,Borel G D.A plate tectonic model for the Paleozoic and Mesozoicconstrained by dynamic plate boundaries and restored synthetic oceanicisochrones[J].Earth and Planetary Science Letters,2002,196:17-33.
    67.Shi G Z,Faure M,Xu B,et al.Structural and kinematic analysis of the EarthPaleozoic Ondor Sum-Hongqi mélange belt, eastern part of the Altaids (CAOB) inInner Mongolia, China[J].Journal of Asian Earth Sciences,2013,66:123-139.
    68.Shi G H,Liu D Y,Zhang F Q,et al.SHRIMP U–Pb zircon geochronology andits implicationson the Xilin Gol Complex,Inner Mongolia,China[J].Chinese ScienceBulletin,2003,48:2742–2748.
    69.Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and process[M].In:Saundern A D,Norry MJ(eds.).Magmatism in the ocean basins.London:Geoloical Society SpecialPublication,1989,42(1):313-345.
    70.Seng r A M C,Natal’in B A,Burtman V S.Evolution of the Altaid tectoniccollage and Paleozoic crustal growth in Eurasia[J].Nature,1993,364:209-307.
    71.Shi Y R,Liu D Y,Miao L C,et al.Devonian A-type granitic magmatism on thenorthern margin of the North China Craton:SHRIMP U-Pb zircon dating andHf-isotopes of the Hongshan granite at Chifeng,Inner Mongolia,China[J].GondwanaResearch,2010,17:632-641.
    72.Skjerlie K P and Johnston A D.Fluid-absent melting behavior of an F-richtonalitic gneiss at mid-crustal pressure:Implications for the generation of anorogenicgranites[J].J.Petrol.,1993a,34:785-815.
    73.Skjerlie K P and Johnston A D.Vapor-absent melting at10kbar of a biotite andamphibole-bearing tonalitic gnesis: Implications for the generation of A-typegranites[J].Geology,1993b,20:263-266.
    74.Tang K.Tectonic development of Paleozoic fold belts at the north margin of theSino-Korean craton[J].Tectonics,1990,9:249–260.
    75.Windley B F,Allen M B,Zhang C,et al..Paleozoic accretion and Cenozoicredeformation of the Chinese TienShan Range[J].Central Asia Geology,1990,18(2):128-131.
    76.Windley B F,Alexeiev D,Xiao W J,et al.Tectonic models for accretion ofCentral Asian Orogenic Belt[J].Journal of the Geological Society.2007,164(1):31-47.
    77.Whalen J B,Currie K L and Chappell B W.A-type granites:Geochemicalcharacteristics,discrimination and petrogenesis[J].Contrib Mineral Petrol,1987,95:407-419.
    78.Wang X B,Hao Z G.Time-Space Dist ribution and Tectonic types of Ophiolitesin China[J].Proc.29th Intql Geol.Congr.PartD,1984:183-204
    79.Wu F Y,Sun D Y,Jahn B M,et al.A Jurassic garnet-bearing granitic pluton fromNE China showing tetrad REE patterns[J].Journal of Asian Earth Sciences,2004,23:731-744.
    80.Wu F Y,Sun D Y,Jahn B M,et al.A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis[J].Chemical Geology,2002,187:143-173.
    81.Xu B,Jacques C,Chen Y,et al.Middle Paleozoic convergent orogenic belts inwestern Inner Mongolia(China): framework, kinematics, geochronology andimplications for tectonic evolution of the Central Asin Orogenic Belt[J].GondwanaResearch,2013,23:1342-1364.
    82.Xiao W J,Windly B F,Hao J,et al.Accretion leading to collision and the PermianSolonker suture,Inner Mongolia,China:Termination of the central Asian orogenicbelt.Tectonics,2003,22(6):1069-1089.
    83.Xiao W J,Windly B F,Hao J,et al.End-Permian to mid-Triassic terminationof the accretionary processes of the southern Altaids:implications for the geodynamicevolution, Phanerozoic continental growth, and metallogeny of CentralAsia[J].Original Paper,2009,98:1189-1217.
    84.Yakubchuk A.Architecture and mineral deposit settings of the Altaid orogeniccollage:a revised model[J].Journal of Asian Earth Sciences,2004,23(5):761-779.
    85.Yan Z Y,Tang K D,Bai J W,et al.High pressure metamorphic rocks and theirtectonic environment in northeastern China[J].Journal of Southeastern Asian EarthScience,1989,3:303-313.
    86.Zen E A.Aluminium enrichment in silicate melts by fractional crystallization:some mineralogical and petrographic constraints[J].Journal of Petrology,1986,27:1095-1117.
    87.Zhai M G.Cratonization and the Ancient North China Continent:A summary andreview[J].Science in China (Series D),2011,54(8):1110-1120.
    88.Zhao G C,Sun M and Wilde S A.Major tectonic units of the North China Cratonand their Paleoproterozoic assembly.Science in China (Series D)[J],2003,46(1):23-38.
    89.Zhao G C,Sun M and Wilde S A.Major tectonic units of the North China Cratonand their Paleoproterozoic assembly[J].Science in China (Series D),2003,46(1):23-38.
    90.Zhao G C,Sun M,Wilde S A,et al.Late Archean to Paleoproterozoic evolutionof the North China Craton Key issues revisited[J].Precambrian Research,2005,136:177-202.
    91.Zhao G C,Wilde S A,Cawood P A,et al.Archean blocks and their boundariesin the North China Craton:Lithological。Geochemical。structural and P-T pathconstraints and tectonic evolution[J].Precambrian Research,2001,107:45-73.
    92.Zhang S H,Zhao Y,Liu X C,et al.Late Paleozoic to Early Mesozoicmafic-ultramafic complexes from the northern North China Block:Constraints on thecomposition and evolution of the lithospheric mantle[J].Lithos,2009,110:229-246.
    93.邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳幔成矿系统[J].地学前缘,1999,6(2):259-269.
    94.邓晋福,肖庆辉,苏尚国,等.火成岩组合与构造环境讨论[J].高校地质学报,2007,13(3):392-402.
    95.谷丛南.内蒙古白乃庙地区锆石年龄和Hf同位素特征及其构造意义[D].北京:中国地质大学,2012.
    96.高长林,吉让受,秦德余,等.论中国北方三类构造环境中的蓝片岩[J].地质论评,1990,36(3):210-219.
    97.耿元生,沈其韩,任留东.华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制[J].岩石学报,2010,26(7):1945-1966.
    98.黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓[J].地质学报,1977,51(2):117-135.
    99.黄汲清,任纪舜,姜春发,等.中国大地构造及其演化(1/400万中国大地构造图简要说明)[M].北京:科学出版社,1980.
    100.胡骁,许传诗,牛树银,等.华北地台北缘早古生代大陆边缘演化[M].北京:北京大学出版社.1990.
    101.贾小辉,王强,唐功建.A型花岗岩的研究进展及意义[J].大地构造与成矿学,2009,33(3):465-480.
    99.李春昱.中国板块构造的轮廓[J].中国地质科学院院报,1980,2(1):11-22.
    102.李春昱.板块构造学的起源、发展和展望—板块构造基本问题[M].北京:地震出版社,1986.
    103.刘建峰.内蒙古林西-东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约[D].长春:吉林大学,2009.
    104.柳长峰.内蒙古四子王旗地区古生代-早中生代岩浆岩带及其构造意义.北京:中国地质大学,2011.
    105.刘建峰,李锦轶,迟效国,等.华北克拉通北缘与弧-陆碰撞相关的早泥盆世长英质火山岩[J].地质通报,2013,32(2-3):267-278.
    106.刘敦一,简平,张旗,等.内蒙古图林凯蛇绿岩中埃达克岩SHRIMP测年:早古生代洋壳消减的证据[J].地质学报,2003,77(3):317-327.
    107.刘志宏,刘正宏,梁一鸿,等.构造地质学[M].北京:地质出版社,2011.
    108.罗镇宽,苗来成,关康,等.河北张家口水泉沟岩体SHRIMP年代学研究及其意义[J].地球化学,2001,30(2):116-122.
    109.廖忠礼,莫宣学,潘桂堂,等.西藏过铝质花岗岩锆石群型的成因信息[J].大地构造与成矿学,2006,30(1):63-71.
    110.李鹏春,陈广浩,许德如,等.湘东北新元古代过铝质花岗岩的岩石地球化学特征及其成因讨论[J].大地构造与成矿学,2007,31(1):126-136.
    111.李承东,冉皞,赵利刚,等.温都尔庙群锆石的LA-MC-ICPMS U-Pb年龄及构造意义[J].岩石学报,2012,28(11):3705-3714.
    112.李锦轶,张进,杨天南,等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报,2009,39(4):584-605.
    113.莫宣学.蛇绿岩:壳幔过程的地质记录,见:蛇绿岩与地球动力学研究[C].北京:地质出版社,1997.
    114.马文璞,李锦轶,李江海,等.造山带概念的演变及它在现今大陆构造研究中面临的问题[J].地质论评,2002,48(2):153-159
    115.内蒙古自治区地质矿产局.1:100万区域地质报告(K-49).1958.
    116.内蒙古自治区地质矿产局.1:20万白乃庙幅区域调查报告(K-49-17).1975.
    117.内蒙古自治区地质矿产局.1:20万镶黄旗幅区域调查报告(K-49-18).1976.
    118.内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991.
    119.内蒙古自治区地质矿产局.内蒙古自治区岩石地层[M].北京:中国地质大学出版社,1996.
    120.聂凤军,裴荣富,吴良士.内蒙古白乃庙地区绿片岩和花岗闪长斑岩的钕和锶同位素研究[J].地球学报,1995,1:36-44.
    121.聂凤军,张洪涛,陈琦,等.内蒙古白乃庙群变质基性火山岩锆石铀-铅年龄[J].科学通报,1991,35(13):1012-1015.
    122.任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93.
    123.邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社,1991.
    124.史仁灯.蛇绿岩研究进展、存在问题及思考[J].地质论评,2005,51(6):681-693.
    125.沈其韩,耿元生.中国蓝片岩带的时空分布、地质特征和成因[J].地质学报,2012,86(9):1407-1446.
    126.尚恒胜,陶继雄,宝音乌力吉,等.内蒙古白云鄂博地区早古生代弧-盆体系及其构造意义[J].地质调查与研究,2003,26(3):160-168.
    127.苏玉平,唐红峰.A型花岗岩的微量元素地球化学[J].矿物岩石地球化学通报,2005,24(3):245-251.
    128.唐克东.中朝板块北侧褶皱带构造演化及其成矿规律[M].北京:北京大学出版社,1992.
    129.唐克东,颜竹筠,张允平,等.论温都尔庙群及其构造意义—中国北方板块构造文集1[M].北京:地质出版社,1983.
    130.陶继雄,许立权,贺锋,等.内蒙古巴特敖包地区早古生代洋壳消减的岩石证据[J].地质调查与研究,2005,28(1),1-8.
    131.王东方.内蒙古白乃庙古生代岛弧岩系的地球化学及同位素年龄测定[J].中国北方板块构造文集,1983,(1):461-468.
    132.王东方.关于温都尔庙群内涵、时代问题的讨论及其在板块汇聚带构造发展中的意义[J].地质论评,1985,31(5):461-468.
    133.王希斌,郝梓国.中国缝合带蛇绿岩的时空分布及构造类型[J].中国区域地质,1994,3:193-204.
    134.王荃,刘雪亚,李锦轶.中国华夏与安加拉古陆间的板块构造[D].北京:北京大学出版社.
    135.王友勤,苏养正.东北区区域地层发育与地壳演化[J].吉林地质,1996,15(3-4):118-132.
    136.王友勤,苏养正,刘尔义.东北区区域地层[M].武汉:中国地质大学出版社,1997.
    137.王兴安,徐仲元,刘正宏,等.大兴安岭中部柴河地区钾长花岗岩的成因及构造背景:岩石地球化学、锆石U-Pb同位素年代学的制约[J].岩石学报,2012,28(8):2647-2655.
    138.王惠初,相振群,赵凤清,等.内蒙古固阳东部碱性侵入岩:年代学、成因与地质意义[J].岩石学报,2012,28(9):2843-2854.
    139.王德滋,周新民.中国东南部晚中生代花岗质火山-侵入杂岩成因与地壳演化[M].北京:科学出版社,2002.
    140.王强,赵振华,熊小林.桐柏-大别造山带燕山晚期A型花岗岩的厘定[J].岩石矿物学,2000,19(4):297-306.
    141.吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238.
    142.吴泰然,张臣,万基虎.内蒙古温都尔庙地区温都尔庙群的形成环境和构造意义[J].高校地质学报,1998,4(2):168-176.
    143.谢鸣谦.拼贴板块构造及其驱动机理-中国东北及其邻区的大地构造演化[M].北京:科学出版社,2000.
    144.徐备.内蒙古北部温都尔庙群北带沉积环境及构造意义[J].地质科学,1998,33(4):406-411.
    145.肖序常.从扩张速率试论蛇绿岩的类型划分[J].岩石学报,1995,11(增):10-23.
    146.徐备,陈斌.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构及演化.中国科学(D辑),1997,27(3):227-232.
    147.肖序常,陈国铭,朱志直.祁连山古蛇绿岩的地质构造意义[J].地质学报,1987,54(1):287-295.
    148.徐备,史冠中,赵盼.内蒙古西部温都尔庙群与古亚洲洋东段的构造演化[C].地质构造,2011年全国岩石学与地球动力学研讨会摘要集(下册),2011,28-29.
    149.肖庆辉,李晓波,贾跃明,等.当代造山带研究中值得重视的若干前沿问题[J].地学前缘,1995,(1-2):43-50.
    150.徐夕生,邱检生.火成岩岩石学[M].北京:科学出版社,2009.
    151.肖文交,舒良树,高俊,等.中亚造山带大陆动力学过程与成矿作用[J].新疆地质,2008,26(1):4-8.
    152.许保良,黄福生.A型花岗岩的类型、特征及其地质意义[J].地球探索,1990,3:113-120.
    153.许保良,阎国翰,张臣,等.A型花岗岩的岩石学亚类及其物质来源[J].地学前缘,1998,5(3):113-124.
    154.夏邦栋,方中,吕洪波等.磨拉石与全球构造[J].石油实验地质,1989,11(4):314-319.
    155.袁忠信.关于A型花岗岩命名问题的讨论[J].岩石矿物学杂志,2001,20(3):293-296.
    156.杨芳林,曹从周,田昌烈.内蒙古某些蛇绿岩中大洋斜长花岗岩特征[J].中国地质科学院沈阳地质矿产研究所所刊,1987,16:84-94.
    157.姚玉鹏,田兴有,易善锋,等.中国蛇绿岩研究的现状及今后的研究方向[J].地球科学进展,1997,12(2):134-137.
    158.杨德彬,徐文良,裴福萍,王清海.蚌埠隆起区古元古代钾长花岗岩的成因:岩石地球化学、锆石U-Pb年代学与Hf同位素的制约[J].地球科学-中国地质大学学报,2009,34(1):148-164.
    159.张超.内蒙古苏尼特右旗地区白乃庙群的岩石组合、锆石U-Pb年代学特征及地质意义[D].长春:吉林大学,2013.
    160.翟明国.华北克拉通2.1~1.7Ga地质事件群的分解和构造意义探讨[J].岩石学报,2004,20(6):1343-1354.
    161.张旗.蛇绿岩的分类[J].地质科学,1990,1:54~61.
    162.张旗.蛇绿岩研究中的几个问题[J].岩石学报,1995a,11(增刊):228-240.
    163.周宇章.A型花岗岩研究进展与问题讨论[J].安徽地质,2011,21(3):169-175.
    164.赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学,2007,31(1):92-103.
    165.赵越,陈斌,张栓宏,等.华北克拉通北缘及临区前燕山期主要地质事件[J].中国地质,2010,37(4):900-915.
    166.张忠义,董树文.大巴山西北缘叠加褶皱研究[J].地质学报,2009,83(7):923-936.
    167.张国伟,董云鹏,姚平安.造山带与造山作用及其研究的新起点[J].西北地质,2001,34(1):1-9.
    168.张国伟,李曙光.秦岭缝合带的蛇绿岩[J].地学研究,1994,26:13-24.
    169.张永清,孟二根,巩智镇,等.内蒙古中部中-晚志留世西别河组的划分和时代[J].地质通报,2004,23(4):352-359.
    170.张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面1:1000000说明书[M].北京:地质出版社,1998.
    171.张臣,吴泰然.内蒙古苏左旗南部温都尔庙群的解体及其构造意义[C].中国古陆块构造演化与超大陆旋回专题学术会议论文摘要集.2000:61-62.
    172.张臣,吴泰然.内蒙古苏尼特左旗南部华北板块北缘中新元古代-古生代裂解-汇聚事件的地质记录[J].岩石学报,2001,17(2):199-205.
    173.张旗,肖序常.中国蛇绿岩研究概述[J].岩石学报,1995b,11(增刊):1-9.
    174.张旗,周国庆.中国蛇绿岩[M].北京:科学出版社,2001.
    175.张栓宏,赵越,刘建民,等.华北板块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景[J].岩石矿物学杂志,2010,29(6):824-842.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700