用户名: 密码: 验证码:
青海东昆仑沟里地区及外围金矿成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沟里地区地处东昆仑造山带东段,近年来相继发现了多处金矿床。论文运用现代成矿理论,结合东昆仑造山带成矿动力学演化,剖析典型矿床的成矿构造背景、地质特征、成矿流体、成矿物质来源,探讨矿床的成因,建立成矿系列和成矿模式,开展金矿成(找)矿潜力评价。
     提出了东昆仑地区昆中和昆南带存在金的上地幔源区认识。东昆仑地区前寒武纪多次玄武质岩浆活动过程中,因岩石圈地幔的小比例熔融使形成的硅酸盐熔体可能在源区产生硫过饱和而发生硫化物熔体和硅酸盐熔体在源区熔离,因硫化物比重远大于硅酸盐熔体而滞留在上地幔。同时,因金等其他金属在硫化物中的分配系数比在硅酸盐熔体分配系数可高达4个数量级,因此金等多金属随硫化物一起滞留岩石圈上地幔,形成东昆仑地区金的上地幔源区。上地幔硫化物中的金比硅酸盐中的金易活化,容易被幔源C-H-O流体携带上升到地壳参与成矿。
     对典型矿床进行剖析,探讨了矿床成因。硫、铅、氢、氧同位素研究表明,成矿流体具有幔源特征,成矿物质主要来自上地幔。煌斑岩和金矿都属于幔源C-H-O流体分异演化过程中不同阶段的产物,煌斑岩中金的含量高是幔源流体从上地幔带来金的重要证据,认为东昆仑地区有幔源金参与了成矿。
     通过综合分析论证,达里吉格塘金矿床为斑岩型金矿床。矿床围岩蚀变发育,以大面积面型蚀变矿化为特征且具有分带性,蚀变主要为绢英岩化(似千枚岩化)、泥化和青磐岩化;矿石构造特征表现为细脉浸染状、角砾状构造等;流体包裹体研究显示成矿流体为低盐度和低密度流体;激光拉曼光谱分析流体包裹体气相成分普遍含CO2、CH4,成矿流体为CH4-CO2-H2O-NaCl体系,显示了幔源流体特征;石英绢云母化带的形成温度为147.6~435.7℃,峰值为260~320℃。这是整个东昆仑地区首次确定出的斑岩型金矿床。
     通过综合分析,坑得弄舍金多金属矿床为浅成低温热液矿床,并非前人认为的热水喷流成因。该矿床围岩蚀变主要有重晶石化、硅化、碳酸盐化、白云石化、绿泥石化等,表现出以低温为主的蚀变矿物组合特征,重晶石并非前人认为的热水喷流成因;流体包裹体均一温度在101-190℃之间,峰值主要集中于120-160℃之间,矿床受伸展构造体制控制。
     建立了沟里地区及外围金矿床成矿系列:“东昆仑沟里地区印支期金矿成矿系列”,并分为斑岩型成矿亚系列、造山型成矿亚系列和浅成低温热液型矿床成矿亚系列三个成矿亚系列,3个矿床式,即达里吉格塘式、果洛龙洼式与坑得弄舍式。
     建立了沟里地区及外围三种矿床类型成矿模式:
     1.造山型金矿成矿模式:(1)造山型金矿幔源C-H-O流体成矿模式:印支晚期,伸展作用引起岩石圈拆沉减薄,幔源C-H-O流体上涌至金的上地幔源区,萃取金等成矿物质运移至构造适合部位沉淀成矿,形成了本区造山型金矿床;(2)造山型金矿地壳不同深度的连续成矿模式:具有从中深成(阿斯哈金矿)→中成(按纳格)→中浅成(果洛龙洼)不同成矿深度连续成矿的特点,成矿深度分别为8.16~9.58km、6.88~8.86km和4.77~7.65km,成矿深度逐渐变浅,成矿流体均一温度从155℃到425℃范围内由低到高的变化。
     2.斑岩型金矿成矿模式:矿床形成于印支晚期由挤压体制向伸展体制转换的构造背景,幔源物质参与成矿。
     3.浅成低温热液型金多金属矿床成矿模式:矿床形成于印支晚期造山后伸展(?)的构造背景,幔源物质参与成矿。
     总结了矿化富集规律,并分析了矿床剥蚀保存条件,开展金矿成(找)矿潜力评价,认为果洛龙洼金矿床和坑得弄舍金多金属矿床具有很大的找矿潜力,而且根据横向对应规律预测坑得弄舍矿床两条主断裂带的另一条具有很大找矿潜力,应是下一步勘查工作重点。
Gouli area is located in the eastern section of East Kunlun orogenic belt (EKOB). Inrecent years, many gold deposits have been found. This paper uses metallogenic theory,combined with mineralization dynamical evolution of EKOB, to analysis tectonic setting,geological characteristics, ore-forming fluid and mineral sources of typical deposits, todiscuss the genesis, to establish metallogenic series and a metallogenic mode, to carry outpotential evaluation of gold mineralization (prospecting).
     The paper proposes the existence of upper mantle gold in the middle and south beltsof East Kunlun area. During the repeatedly basaltic magmatism process of PrecambrianEast Kunlun, a small percentage melting of lithospheric mantle produced silicate meltforming sulfur supersaturation, and sulphide melt and silicate melt segregated in theregion. Because the sulphide density is much larger than silicate density, sulfides areresorted in the upper mantle. Meanwhile, due to distribution coefficient of gold and othermetals in the sulfide are four orders of magnitude than that in the silicate melt, gold andother metals together with sulphides are stranded on the lithospheric upper mantle,forming upper mantle gold of East Kunlun. Gold in sulfide of upper mantle is moreactivated than that in silicate, easy to be carried to the crust by mantle CHO fluid,involved in mineralization.
     To analyze the typical deposit, discuss the genesis. Sulfur, lead, hydrogen and oxygen isotope studies indicate that ore-forming fluids with characteristics of mantle, mineralmainly derived from the upper mantle. Lamprophyre and gold belong to the differentiationevolution product of mantle CHO fluid at different stages. High gold content oflamprophyre is important evidence of mantle fluids carrying gold derived from uppermantle. It is supposed that mantle gold involved in the mineralization in East Kunlunregion.
     Through comprehensive analysis and demonstration, Dalijigetang gold deposit isporphyry type. Wall-rock alterations are developed, with the characteristics of a large areasurface alteration and mineralization, and have zonation. Alterations are mainly phyllic(like phyllite), argillization and propylitization; ore structure characteristic manifestsveinlet, brecciated structure, etc.; fluid inclusion study displays low salinity and lowdensity of ore-forming fluids; composition of fluid inclusions generally containing CO2,CH4through laser Raman spectroscopy, that means ore-forming fluid isCH4-CO2-H2O-NaCl system, showing the characteristics of mantle fluid; formationtemperature of quartz sericite zone is from147.6℃to435.7℃, the peak is between260℃and320℃. It is the first time that it determines the porphyry gold deposits in thewhole East Kunlun area.
     Through comprehensive analysis, Kengdenongshe gold polymetallic deposits are ofepithermal deposits, not previously considered sedimentation-exhalation origin. The mainwall-rock alterations is barite, silicification, carbonation, dolomitization, chlorite, etc.,showing mainly low-temperature alteration mineral assemblages, barite not previouslyconsidered sedimentation-exhalation causes; fluid inclusion homogenization temperaturesis of101~190℃, mainly in the peak of120~160℃. The deposit is controlled byextensional tectonic regime.
     Establish gold metallogenic series of Gouli regional and peripheral area:" Indosiniangold mineralization series of Gouli area, East Kunlun ", and it is divided into threesub-series, porphyry-type, orogenic-type and epithermal-type metallogenic sub-series,three deposit styles, namely, Dalijigetang style, Guoluolongwa style and kengdenongshestyle.
     Establish metallogenic models of three deposit types of Gouli regional and peripheralarea:
     1. Orogenic gold metallogenic model:(1) Orogenic mantle CHO fluid metallogenicmodel: Late Indosinian, extension caused lithospheric delamination and thinning, mantleCHO fluid influxing into upper mantle gold, extraction of gold and other mineralstransporting to precipitate in a suitable structure site, forming orogenic gold deposits ofthe region;(2) Orogenic gold continuous metallogenic model at different depths in thecrust: It has the characteristics of continuous mineralization at different depths, frommeso-hypozonal (Asiha gold deposit) to meso-epizonal (Annage gold deposit) to epizonal(Guoluolongwa gold deposit), mineralization depth being8.16~9.58km,6.88~8.86kmand4.77~7.65km respectively, mineralization depth turning shallow, ore-forming fluidtemperature transition ranging from155℃to425℃.
     2. Porphyry gold metallogenic model: the formation of deposits in the transformationtectonic setting of Indosinian from extrusion to extension system, mantle-derivedsubstances involved in mineralization.
     3. Epithermal gold-polymetallic metallogenic model: the tectonic setting of thedeposit formed in post-orogenic stretch background of late Indosinian (?), mantle-derivedsubstances involved in mineralization.
     Summarizes the mineralization enrichment regularity, and analyzes the depositerosion and preservation conditions, to carry out gold mineralization (prospecting)potential evaluation. It is suggested that Guoluolongwa gold deposit and kengdenongshegold polymetallic deposits has great prospecting potential. And based on the lateralcorresponding theoretical, it predicts that another fault of the two main faults ofKengdenongshe deposits has prospecting potential, which should be the focus of next stepexploration work.
引文
[1] Barbarin B. A review of the relationships between granitoid types, their origins and theirgeodynamic environments[J]. Lithos.1999.46(3):605-626.
    [2] Barnicoat A C,Richard J F.Groves D J,McNaughton N J.Synmetamorphic lode-gold deposits inhigh-grade Archean settings. Gealogy.1991,19,921-924.
    [3] Benning L G and Seward T M. Hydrosulphide complexing of Au(I) in hydrothermal solutions from150-400°C and500-1500bar[J].Geochim.Cosmochim.Acta,1996,60:1849-1871.
    [4] Bottrell S H,Carr J and Dubessy L P A. Nitrogenrich metamorlphic fluid and coexisting minerals inslates from North Wales. Mineralogical Magazine,1988,52:451-457.
    [5] Boyle R W. Gold deposits in turbidite sequences:Their geology, Geochemistry and history of thetheories of their origin [A]. In: Keppie, Boyle and Haynes, eds. Turbidite_hosted gold deposits.GeologicalAssociation of Canada special paper.1986,32,1-13.
    [6] Boyton WV. Geochemistry of the rare earth elements:Meteorite studies. In: Henderson P (ed.). Rareearth Element Geochemistry[J]. Amsterdam: Elsevier,1984.63-114.
    [7] Boyton WV.1984.Geochemistry of the rare earth elements:Meteorite studies. In: Henderson P (ed.).Rare earth Element Geochemistry. Amsterdam: Elsevier,63-114.
    [8] Condie K C.Mantle Plumes and Their Record in Earth History [M]. Cambridge UniversityPress,Oxford, UK,2001,1-306.
    [9] Edward J. Mikucki hydrothermal transport and depositional processes in Archean lode-goldsystems:Areview[J].Ore Geology Reviews,1998,13:307-321.
    [10] Fyfe W S,Kerrich R. Fluids and thrusting. Chem. Geol,1985,49:353-362.
    [11] Goldfarb R J, Groves D I&Gardoll S.Orogenic gold geologic time:a global synthesis.OreGeol.Rev.,2001,18(1-2):1-75.
    [12] Goldfarb R J, Leach D L, Pickthron W J, et al. Origin of lode gold deposits of the Juneau gold belt,southeastern Alaska.Geol.,1988,16:440-443.
    [13] Goldfarb R J, Phillips G N,Nokleberg W J.Tectonic setting of synorogenic golddeposits of thePacific Rim.Ore Geol.Rev.,1998,13(1-5):185-218.
    [14] Groves D I, Goldfarb R J, gebre-mriam M, et al. Orogenic gold deposits:proposed classification inthe context their crustal distribution and relationship to the other gold deposit types. Ore Geologyreviews,1998,13:7-27.
    [15] Groves D I, Golding S D, Rock N M S, Barley M E, McNaughton N J. Archaean carbon reservoirsand their significance to the fluid source for gold deposits. Nature,1988,331:254-257.
    [16] Groves D I.The crustal continuum model for late-Archean lode-gold deposits of theYilgarn Block,Western Australia.Mineral Deposits,1993,28:366-374.
    [17] Hodgson C J, Love D A, Hamilton J V.Giant mesothermal gold deposits: Descriptivecharacteristics, genetic model and exploration area selection.SEG SP-2GIANT ORE DEPOSITS,1993,157-211.
    [18] Hoefs J. Stable isotope geochemistry.3rd ed. Berlin: spring verlag.1987,1-250.
    [19] Horne R and Culshaw N. Flexural-slip folding in the Meguma group, Nova Scotia, Canada.Journalof Structural Geology.2001,23:1631-1652.
    [20] Jahn, B M. Sm-Nd isotope tracer study of UHP metamorphic rocks: Implications for continentalsubduction and collisional tectonics[J]. International Geology Review.1999.41(10):850-885.
    [21] KeithMLandWeberJN.Carbonandoxygenisotopiccompositionofselectedlimestonesandfossils.Geochim.Cosmochim.Acta,1964,28:1787-1816.
    [22] Kerrich R, Cassidy K F, Temporal relationships of lode gold mineralization to accretion,magmatism, metamorphism and deformation-Archean to present:A review.Ore Geol.Rev.,1994,9:263-310.
    [23] Kerrich R, Goldfarb R J,Groves D I,Garwin S&Jia Y.The characteristics,origins andgeodynamic settings of supergiant gold metallogenic provinces.Science in China(series D),2001,43(supp.):1-68.
    [24] Kerrich R, Wyman D. Geodynamic setting of mesothermal gold deposits,an association withaccretionary tectonic regimes. Geology.1990,18:882-885.
    [25] Kerrich R.perspectives on genetic model,for lode gold deposits.mineral.deposita.1993,28:362-365.
    [26] Large R R. A new approach to the terrane selection, deposit vectoring and ore-depositcharacterization for sediment_hosted gold systems [M]. CODES research project.2004, C330,42p.
    [27] Maniar P D and Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society ofAmerican Bulletin,1989,101(5):635-643.
    [28] Murphy J B, Nance R D. Supercontinent model for the contrasting character of late Proterozoicorogenic belts. Geology,1991,19(5):469-472.
    [29] Norman D I and Musgrave J. N2-Ar-He compositions in fluid inclusion: Indicators of fluidsource.Geochim.Cosmochim.Acta,1994.58:1119-1131.
    [30] Norman D I, Moore J N, Yonaka B,et al. Gaseous species in fluid inclusions: A tracer of fluids andindicator of fluid processes. Proceedings of21st Workshop on Geothermal Reservoir Engineering.Stanford: Stanford University.1996.233-240.
    [31] Norman D I,Moore J M and Musgrave J.1997.Gaseous species as traces in geothermal systems.Proceedings of22nd Workshop on Geothermal Reservoir Engineering. Stanford: StanfordUniversity.419-426.
    [32] Ohmoto H and Rye R O. Isotopes of sulfur and carbon[A].In:Barnes, H L, ed.Geochemistry ofhydrothermal ore deposits[C].NewYork:John Wiley&Sons.1979,509-567.
    [33] Ohmoto H and Rye R O. Isotopes of sulfur and carbon[A].In:Barnes, H L, ed.Geochemistry ofhydrothermal ore deposits[C].NewYork:John Wiley&Sons.1979,509-567.
    [34] Ramboz C,Pichavant M and Weisbrod A. Fluid immiscibility in natural processes:Use andmisuse:Ⅱ. Interpretation of fluid inclusion data in terms of immiscibility. Chem.Geol.1982,37:29-48.
    [35] Salters VJM, Hart SR. The hafnium paradox and the role of garnet in the source ofmid-ocean-ridge basalts.Nature[J],1989.342:420-422.
    [36] Salters VJM,Hart SR.1989. The hafnium paradox and the role of garnet in the source ofmid-ocean-ridge basalts.Nature,342:420-422.
    [37] Sengor A M. The Cimmerides Orogenic System and the Tectonic of Eurasia. geol. Soc. Amer, spec.paper,1984.198.
    [38] Sengor A M. The evolution of the Palaeo-Tethys in the Tibetan segment of Alpides. In: Geologicaland ecological studies of Qinghai-Xizang Plateau. New York: Science Press,1981,I:51-56.
    [39] Sibson R H.Crustal stress faulting and fluid flow. In Parnell J ed.Geological Society Special
    [40] Sillitoe R H.Giant and bonanza gold deposits in the epithermal environment:Assessment ofpotential genetic factors.SEG SP-2GIANT ORE DEPOSITS,1993,125-156.
    [41] SoC-S&YunS-T.Jurassicmesothermalgold mineralizationoftheSamhwanghakmine,Youngdongarea, Republic of Korea;Constraints on hydrothermal fluid geochemistry. Economic Geology,1997,92(1):60-80.
    [42] Sun Fengyue, Zhao Junwei,Chi Xiaoguo et al. Geodynamic Evolution in Eastern Kunlun OrogenicBelt, Western China. Proc. Sino-German Symp. Paleont, Geol. Evol. Environm. Changes ofXinjiang, China. April,2004:93-96.
    [43] Sun S S and Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implicationsfor mantle composition and processes. In: Sauders AD and Norry MJ(eds.). Magmatism in OceanBasins[J]. Geological Society, London: Geological Society of Special Publication,1989.42(1):313-345.
    [44] Tapponnier P, Xu Z Q, Roger F et al. Oblique Stepwise Rise and Growth of the Tibet Plateau.Science,2001,294:1671-1677.
    [45] Taylor S R and McLennan S M.The Continental Crust: Its Composition and Evolution[J]. Oxford:Blackwell Scientific Publication,1985,1-132.
    [46] Whalen J B,Currie K L,Chappell B W.1987.A-type granites: geochemical characteristics,discrimination and Petrogenesis,Contributions to Mineralogy and Petrology,95:407-419.
    [47] Yang J S, Robinson P T, Jiang C F et al.1996Ophiolites of the Kunlun Mountains,China and theirtectonic implications. Tectonophy.258:215-231.
    [48]拜永山,常革红,谈生祥.东昆仑东段加里东造山旋回侵入岩特征研究[J].青海地质,2001,增刊:28-35.
    [49]边千韬,罗小全,陈海泓等.阿尼玛卿蛇绿岩带花岗—英云闪长岩锆石U—Pb同位素定年及大地构造意义[J].地质科学,1999(4):420-426.
    [50]边千韬,罗小全,李涤徽等.青海省阿尼玛卿带布青山蛇绿混杂岩的地球化学性质及形成环境[J].地质学报,2001(1):45-55.
    [51]边千韬,罗小全,李红生等.阿尼玛卿山早古生代和早石炭-早二叠世蛇绿岩的发现[J].地质科学,1999(4):523-524.
    [52]边千韬,尹磊明,孙淑芬等.东昆仑布青山蛇绿混杂岩中发现奥陶纪疑源类[J].科学通报,2001(2):167-171.
    [53]陈爱兵.北衙金—多金属矿成矿系列与综合信息成矿预测[D].昆明理工大学,2005.
    [54]陈昌勇.成矿系列研究现状及展望[J].昆明理工大学学报,1997(2):16-20.
    [55]陈从喜,蔡克勤,沈宝琳.矿床成矿系列研究的若干问题与方向——兼论非金属矿床成矿系列研究的有关问题[J].地质论评,1998(6):596-602.
    [56]陈广俊.青海阿尼玛卿-巴颜喀拉造山带动力学演化及大场金锑矿床成矿作用研究[D].吉林大学,2005.
    [57]陈广俊,孙丰月,李碧乐等。东昆仑沟里地区暗色包体及其寄主岩石地球化学特征及成因。吉林大学学报(地球科学版),2014,44(3):892-904.
    [58]陈亮,孙勇,柳小明等.青海省德尔尼蛇绿岩的地球化学特征及其大地构造意义[J].岩石学报,2000,16(1):106-110.
    [59]陈能松,李晓彦,王新宇等.柴达木地块南缘昆北单元变质新元古花岗岩锆石SHRIMP U-Pb年龄[J].地质通报,2006,25(11):1311-1314.
    [60]陈毓川.矿床的成矿系列[J].地学前缘,1994(3):90-94.
    [61]陈毓川.矿床地质科学的发展与展望[A].中国科学技术协会.科技进步与学科发展——“科学技术面向新世纪”学术年会论文集[C].中国科学技术协会:,1998:4.
    [62]成勇,张锐.新疆西准包古图地区铜金矿成矿规律浅析[J].地质与勘探,2006(4):11-15.
    [63]程裕淇,闻广.区域成矿分析若干问题[J].中国区域地质,1982(2):93-101.
    [64]程裕淇.中国区域地质概况.北京:地质出版社,1994.
    [65]崔美慧,孟繁聪,吴祥珂.东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据[J].岩石学报,2011,27(11):3365-3379.
    [66]戴雪灵.内蒙古太仆寺旗白石头洼钨矿外围成矿花岗岩体特征及成矿作用[D].中南大学,2008.
    [67]丁清峰,金圣凯,王冠等.青海省都兰县果洛龙洼金矿成矿流体[J].吉林大学学报(地球科学版),2013(2):415-426.
    [68]丁清峰.东昆仑造山带区域成矿作用与矿产资源评价[D].吉林大学,2004.
    [69]丁正江.青海省苦海汞矿地质特征及成因研究[D].吉林大学,2006.
    [70]董英君,张德全,徐文艺等.东昆仑地区地球物理特征与矿产资源分布[J].矿床地质,2005(2):179-184.
    [71]范丽琨,蔡岩萍,梁海川等.东昆仑地质构造及地球动力学演化特征[J].地质调查与研究,2009(3):181-186.
    [72]丰成友.青海东昆仑地区的复合造山过程及造山型金矿床成矿作用[D].中国地质科学院,2002.
    [73]付王伟,许德如,傅杨荣等.海南省后万岭铅锌矿床控矿因素、矿床成因及成矿模式探讨[J].矿床地质,2012(6):1211-1226.
    [74]高晓峰,校培喜,谢从瑞等.祁漫塔格地区构造-岩浆作用与成矿[J].西北地质,2010(4):119-123.
    [75]高延林,吴向农,左国朝.东昆仑山清水泉蛇绿岩特征及其大地构造意义[J].西北地质科学,1988(1):17-28.
    [76]古凤宝.东昆仑地质特征及晚古生代——中生代构造演化[J].青海地质,1994,1(1):4-14.
    [77]管波,张晓娟,肖小强等.青海坑得弄舍金多金属矿床地质特征及找矿方向[J].矿产勘查,2012(5):632-637.
    [78]郭彩莲,董增产,李英,等.青海抗得弄舍金多金属矿床金银的赋存状态研究[J].黄金,2013(3):27-30.
    [79]郭春丽,陈毓川,黎传标等.赣南晚侏罗世九龙脑钨锡铅锌矿集区不同成矿类型花岗岩年龄、地球化学特征对比及其地质意义[J].地质学报,2011(7):1188-1205.
    [80]郭通珍,刘荣,陈发彬等.青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICPMS锆石U-Pb定年及地质意义[J].地质通报,2011,08:1203-1211.
    [81]郭跃进.青海东昆仑东段果洛龙洼金矿床地球化学特征与成矿模式[D].昆明理工大学,2011.
    [82]郭正府,邓晋福,许志琴等.青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程[J],现代地质,1998,12(3):344-352。
    [83]韩春明.东天山铜矿区域成矿系列研究[D].中国地质大学(北京),2003.
    [84]何财福,张晓娟,范彦慧.青海坑得弄舍金多金属矿床特征及控矿因素[J].矿产勘查,2012(6):790-794.
    [85]何财福.青海抗得弄舍重晶石型金多金属矿床成矿地质特征[D].中国地质大学(北京),2013.
    [86]侯万荣,聂凤军,江思宏等.蒙古国博洛大型金矿区花岗岩SHRIMP锆石U-Pb测年及地质意义[J].地球学报,2010(3):331-342.
    [87]胡荣国,赖健清,张绍宁等.青海省都兰县果洛龙洼金矿床地质地球化学特征[J].地质与勘探,2010(5):931-941.
    [88]胡荣国.青海省果洛龙洼金矿地质地球化学特征及矿床成因研究[D].中南大学,2008.
    [89]黄春鹏.福建省金矿成矿特征和成矿预测研究[D].中国地质大学(北京),2003.
    [90]黄汲清.对中国大地构造特点的一些认识并着重讨论地槽褶皱带的多旋回发展问题.地质学报,1979,53(2):99-111.
    [91]黄晋显.江西红花脑矿区锡矿床地质特征及成因探讨[J].东华理工学院学报,2006(S1):85-89.
    [92]黄磊.新疆若羌县维宝铅锌矿地质特征及矿床成因[D].中国地质大学(北京),2010.
    [93]贾福聚,高建国,周家喜等.青海果洛龙洼金矿床地球化学垂向分带研究[J].地质与勘探,2013(5):907-913.
    [94]姜春发,王宗起,李锦轶等.中央造山带开合构造.北京:地质出版社,2000。
    [95]姜春发,杨经绥,冯秉贵等.昆仑开合构造.北京:地质出版社,1992。
    [96]姜春发.中央造山带主要地质构造特征.地学研究,1993,(27):103-108。
    [97]焦和.格尔木市大格勒沟脑地区金的成矿及远景评价[D].中国地质大学(北京),2013.
    [98]解玉月.昆中断裂东段不同时代蛇绿岩特征及形成环境[J].青海地质,1998,7(1):27-36.
    [99]李碧乐,沈鑫,陈广俊等.青海东昆仑阿斯哈金矿Ⅰ号脉成矿流体地球化学特征和矿床成因[J].吉林大学学报(地球科学版),2012(6):1676-1687.
    [100]李碧乐,孙丰月,王昭坤.山东招远金岭金矿埠南矿区1#脉流体特征及成矿物理化学条件研究[J].大地构造与成矿学,2004(3):314-319.
    [101]李碧乐,孙丰月,于晓飞等.东昆中隆起带东段闪长岩U-Pb年代学和岩石地球化学研究[J].岩石学报,2012(4):1163-1172.
    [102]李碧乐,孙丰月,于晓飞等.青海东昆仑卡尔却卡地区野拉塞铜矿床成因类型及成矿机制[J].岩石学报,2010(12):3696-3708.
    [103]李德荣.黑龙江三矿沟铜多金属矿区(床)成矿规律及找矿方向[D].中国地质大学(北京),2011.
    [104]李发明,董毅,何财福等.青海省都兰县沟里地区沟系次生晕找矿实例[J].矿产与地质,2008(5):456-460.
    [105]李厚民,沈远超,胡正国等.青海东昆仑五龙沟金矿床成矿条件及成矿机理[J].地质与勘探,2001(1):65-69.
    [106]李金冬.湘东南地区中生代构造—岩浆—成矿动力学研究[D].中国地质大学(北京),2005.
    [107]李明立.河南省大别山地区中生代中酸性小岩体特征及钼多金属成矿系统[D].中国地质大学(北京),2009.
    [108]李舢,王涛,童英等.北山柳园地区双峰山早泥盆世A型花岗岩的确定及其构造演化意义[J].岩石矿物学杂志,2009(5):407-422.
    [109]李舢.北山造山带早中生代花岗岩的确定、成因和构造意义及其邻区早中生代花岗岩时空分布探讨[D].中国地质科学院,2009.
    [110]李廷栋,肖序常.青藏高原地体构造分析.青藏高原岩石圈结构构造和形成演化.中华人民共和国地质矿产部地质专报,五,1996,第20号:6-20.
    [111]李毅,李诺,杨永飞等.大别山北麓钼矿床地质特征和地球动力学背景[J].岩石学报,2013(1):95-106.
    [112]李永军,杨高学,吴宏恩等.东准噶尔贝勒库都克铝质A型花岗岩的厘定及意义[J].岩石矿物学杂志,2009(1):17-25.
    [113]林博磊.吉林东部闹枝金矿成矿构造背景及矿床成因研究[D].吉林大学,2013.
    [114]刘彬,马昌前,张金阳等.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J].岩石学报,2012,06:1785-1807.
    [115]刘斌,朱思林,沈昆.流体包裹体热力学参数计算软件及算例「Ml.北京:地质出版社,2000,1-252.
    [116]刘成东,莫宣学,罗照华等.东昆仑壳-幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报,2004,49(6):596-602.
    [117]刘桂香,王希今,左爱江.MAPGIS地理信息系统在化探工作中的应用——以洛古河普查区面积性土壤化探测量为例[J].地质与资源,2007(2):138-140.
    [118]刘家远.对胶东招—菜地区进一步扩大金矿找矿的几点浅见—从花岗岩成矿的角度[J].山东地质,1993(1):72-81.
    [119]刘莉.黑龙江省穆棱市砍椽沟钼铜矿床成矿地质条件及找矿远景评价[D].吉林大学,2010.
    [120]刘明.云南个旧花岗岩凹陷带锡铜多金属成矿学研究[D].中南大学,2007.
    [121]刘心开,高建国,周家喜.青海东昆仑果洛龙洼金矿床东区Ⅰ矿体群稀土元素地球化学[J].地球化学,2013(2):131-142.
    [122]刘哲东.陕西宁强鸡头山—小燕子沟金矿床地质特征及矿化富集规律研究[D].吉林大学,2013.
    [123]龙晓平,王立社,余能.东昆仑山清水泉镁铁质——超镁铁质岩的地球化学特征[J].地质通报,2004,23(7):664-669.
    [124]卢德源,陈纪平.青藏高原北部沱沱河-格尔木一带地壳深部结构.地质论评,1987,33(2):122-128.
    [125]罗平.江西北武夷地区铜多金属矿成矿规律及找矿方向研究[D].中国地质大学(北京),2010.
    [126]罗照华,邓晋福,曹永清等.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化.现代地质,1999,13(1):51-56.
    [127]罗照华,柯珊,曹永清等.东昆仑印支晚期幔源岩浆活动[J].地质通报,2002(6):292-297.
    [128]马忠贤,杨宝荣,贾吉还.青海果洛龙洼金矿地质特征及找矿潜力分析[J].黄金科学技术,2012(2):32-36.
    [129]孟繁聪,张建新,相振群等.塔里木盆地东北缘敦煌群的形成和演化:锆石U-Pb年代学和Lu-Hf同位素证据[J].岩石学报,2011,27(1):59-76.
    [130]莫宣学,罗照华,邓晋福等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,2007,03:403-414.
    [131]莫宣学,罗照华,邓晋福等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,2007,13(3):403-414.
    [132]潘彤.东昆仑成矿带钴矿成矿系列研究[D].吉林大学,2005.
    [133]潘裕生.青藏高原第五缝合带的发现与论证[J].地球物理学报,1994,37(2),184-192.
    [134]潘裕生.西昆仑山构造特征与演化[J].地质科学,1990,3:224-232.
    [135]庞存廉,方胜,夏元祁.巴颜喀拉山东段及邻区大地电磁测深成果地质解释[J].青海地质,1996,5(1):73-81
    [136]祁月清,何俊江.青海省都兰县沟里金矿地球化学特征[J].西部探矿工程,2012(7):142-145+147.
    [137]钱烨,孙丰月,张雅静等.辽宁清原王家大沟金矿床流体包裹体特征及矿床成因研究[J].黄金,2011(10):17-22.
    [138]青海地质调查院.青海省曲麻莱县大场金锑矿床勘查项目设计书(内部资料).2002,10-15
    [139]青海省地质矿产局.青海省区域地质志.地质出版社,1991.
    [140]青海省地质矿产局.青海省岩石地层.中国地质大学出版社,1997.
    [141]沈鑫.青海东昆仑阿斯哈金矿矿床地质特征及成因研究[D].导师:李碧乐.吉林大学,2012.
    [142]史长军.内蒙克什克腾旗大南沟铅锌矿地质特征[J].中国科技信息,2013(6):47
    [143]宋忠宝,贾群子,张占玉等.东昆仑祁漫塔格地区野马泉铁铜矿床地质特征及成因探讨[J].西北地质,2010(4):209-217.
    [144]孙丰月,陈国华,迟效国等.新疆—青海东昆仑成矿带成矿规律和找矿方向综合研究成果报告(内部资料).2003.
    [145]孙丰月,金巍,李碧乐等.关于脉状热液金矿床成矿深度的思考.长春科技大学学报,2000,30(增刊):27-30.
    [146]孙丰月,石准立,冯本智.胶东金矿地质及幔源C-H-O流体分异成岩成矿[M].长春:吉林人民出版社,1995,1-175.
    [147]孙丰月.东昆仑造山带铜镍硫化物矿床成矿与找矿前景初探.青海夏日哈木铜镍矿勘查研讨会,西安,2012.
    [148]孙珍军.华北克拉通北缘赤峰—朝阳地区金矿成矿作用研究[D].吉林大学,2013.
    [149]谈树成.个旧锡-多金属矿床成矿系列研究[D].昆明理工大学,2004.
    [150]谭成印.黑龙江省主要金属矿产构造—成矿系统基本特征[D].中国地质大学(北京),2009.
    [151]谭运金.矿床地球化学类型与成因类型和成矿系列的关系[J].中国钨业,2000(2):17-21.
    [152]滕吉文.柴达木东盆地的深层地震反射波和地壳构造[J].地球物理学报,1974,17(2):122-135.
    [153]田承盛.东昆仑中段五龙沟矿集区金矿成矿作用及成矿预测研究[D].中国地质大学(北京),2012.
    [154]汪志刚.吉林东部中生代内生金属矿床成矿作用研究[D].吉林大学,2012.
    [155]王风林,赵萍,何财福.青海省坑得弄舍多金属矿地球化学异常特征及找矿远景分析.矿产勘查,2011.
    [156]王凤林,赵萍,何财福等.青海坑得弄舍金多金属矿地球化学异常特征及找矿远景分析[J].矿产勘查,2011(5):574-583.
    [157]王冠,孙丰月,李碧乐等.东昆仑夏日哈木矿区早泥盆世正长花岗岩锆石U-Pb年代学、地球化学及其动力学意义[J].大地构造与成矿学,2013(4):685-697.
    [158]王冠.青海果洛龙洼金矿床地质特征及成因探讨[D].吉林大学,2012.
    [159]王国灿,侯光久,张克信等.东昆仑东段中更新世以来的成山作用及其动力转换[J].地球科学一中国地质大学学报,2002,27(1):4-12.
    [160]王国灿,王青海,简平等.东昆仑前寒武纪基底变质岩系的锆石SHRIMP年龄及其构造意义.地学前缘,2004,11(4):481-490.
    [161]王国灿,魏启荣,贾春兴等.关于东昆仑地区前寒武纪地质的几点认识[J].地质通报,2007,8(8):929-937.
    [162]王国灿,向树元,王岸等.东昆仑及相邻地区中生代—新生代早期构造过程的热年代学记录[J].地球科学,2007,32(5):605-615.
    [163]王海.青海沟里万宝沟岩群岩石地球化学特征及意义[D].长安大学,2009.
    [164]王鸿祯,刘本培,李思田等.中国及邻区大地构造划分和构造发展阶段[Z].武汉:中国地质大学.
    [165]王键.吉林省西岔金银矿床矿化富集规律及成因研究[D].吉林大学,2013.
    [166]王磊,孙丰月,许庆林.吉林大黑山钼矿流体包裹体及矿床成因[J].世界地质,2012(1):58-67.
    [167]王力.华北地块脉状金矿床区域成矿模式研究.吉林大学博士学位论文,2011,80-95.
    [168]王生云.纳米比亚欢乐谷地区花岗岩地球化学特征及成因[D].核工业北京地质研究院,2013.
    [169]王雄军.云南老君山矿集区多因复成成矿模式及空间信息成矿预测模型研究[D].中南大学,2008.
    [170]王永标,黄继春,骆满生等.海西-印支早期东昆仑造山带南侧古海洋洋盆地的演化.地球科学-中国地质大学学报,1997,22(4):369-372.
    [171]魏菊英,曾强.东风山前寒武纪含铁建造金矿床的同位素地球化学特征[J].北京大学学报(自然科学版),1996,4(4):67-75.
    [172]魏菊英,工关玉.1988同位素地球化学.北京:地质出版社.42-80.
    [173]翁文灏.POSITION OF ARSENIC MINERALS IN THE METALLOGENIC SERIES.[J].中国地质学会志,1926,01:61-63.
    [174]吴庭祥,张绍宁,安汝龙等.青海东昆仑东段金矿区地层含矿性分析[J].矿产与地质,2009(5):431-441.
    [175]辛江.内蒙古东南部多金属成矿系列与找矿模型[D].中国地质大学(北京),2013.
    [176]徐云甫.青海省喀雅克登塔格岩浆岩及其与成矿关系[D].中国地质大学(北京),2013.
    [177]许庆林,李碧乐,薛昊日等.辽宁省朝阳市东五家子金矿成矿流体特征及矿床成因探讨[J].西北地质,2010(3):75-84.
    [178]许荣华,Harris N,Lewis C等.拉萨至格尔木的同位素地球化学.见:中一英青藏高原综介地质.
    [179]许志琴,崔军文.大陆山链变形构造动力学.北京:冶金工业出版社1996,204-225。
    [180]许志琴,李海兵,杨经绥等.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用.地质学报,2001,75(2):156-164.
    [181]许志琴,杨经绥,陈方远.阿尼玛卿缝合带及“俯冲-碰撞”动力学.见:张旗主编.蛇绿岩与地球动力学研究.北京:地质出版社,1996,185-189.
    [182]薛昊日.山西中条山桐木沟、篦子沟铜矿床地质特征及成矿模式研究[D].吉林大学,2010.
    [183]薛培林,肖静,薛福林等.青海祁漫塔格—都兰成矿带铜矿找矿前景初探[J].矿产与地质,2006(3):247-250.
    [184]闫杰,蔡岩萍,蔡邦永等.玛多县坑得弄舍地区金多金属矿地球化学特征及找矿思路探讨[J].青海国土经略,2011(1):32-35.
    [185]杨宝荣,杨小斌.青海都兰果洛龙洼金矿床地质特征及控矿因素浅析[J].黄金科学技术,2007(1):26-30.
    [186]杨高学,李永军,司国辉等.东准噶尔贝勒库都克铝质A型花岗岩地球化学特征及锡矿化[J].地质与勘探,2009(5):530-538.
    [187]杨经绥,许志琴,李海兵等.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J].岩石矿物学杂志,2005,05:369-380.
    [188]杨小斌,刘洪川.东昆仑造山带都兰县沟里地区金矿成矿特征及找矿潜力分析[J].青海国土经略,2005(4):34-37.
    [189]杨延乾.青海东昆仑埃坑德勒斯特钼(铜)矿矿床地质特征及成因探讨[D].吉林大学,2013.
    [190]殷鸿福,张克信.东昆仑造山带的一些特点.地球科学—中国地质大学学报,1997,22(4):339—342.
    [191]殷鸿福,张克信.中央造山带的演化及其特点.地球科学,1998,23(5):438—442.
    [192]尹煜春.内蒙古乌奴格吐山次火山斑岩型铜-钼矿床控矿因素分析及找矿方向[J].矿产与地质,2007(3):298-303.
    [193]于晓飞,侯增谦,张晗等.吉林永吉县大黑山斑岩型钼矿床成矿流体地球化学特征及成矿机制[J].吉林大学学报(地球科学版),2012(6):1688-1699.
    [194]于晓飞,孙丰月,王力等.山东招远灵山沟金矿床成矿流体特征研究[J].黄金,2007(6):13-17.
    [195]于晓飞.西昆仑造山带区域成矿规律研究[D].吉林大学,2010.
    [196]袁万明,莫宣学,俞学惠等.东昆仑早石炭世火山岩的地球化学特征及其构造背景.岩石矿物学杂志,1998,17(4):289-295.
    [197]岳可芬.中国东部地幔岩中的金、钼、钨、锡含量及其与成矿关系比较研究[D].西北大学,2006.
    [198]岳维好,高建国,周家喜.青海果洛龙洼金矿基性岩脉锆石U-Pb年龄及岩石地球化学特征[J].矿物岩石,2013(3):93-102.
    [199]翟庆国,李才,程立人等.西藏羌塘角木日地区二叠纪蛇绿岩的地质特征及意义[J].地质通报,2004,12:1228-1230.
    [200]翟裕生,熊永良.关于成矿系列的结构[J].地球科学,1987,04:375-380.
    [201]张博文,孙丰月,薛昊日等.青海青龙沟金矿床地质特征及流体包裹体研究[J].黄金,2010(2):14-18.
    [202]张博文.青海南祁连造山带内生金属矿床成矿作用研究[D].吉林大学,2010.
    [203]张德全,丰成友,李大新等.柴北缘一东昆仑地区的造山型金矿床[J].矿床地质,2001,20(2):137—146.
    [204]张德全,丰成友.柴北缘—东昆仑地区的造山型金矿床[J].矿床地质,2001,20(2):137-146.
    [205]张海心.内蒙古乌奴格吐山铜钼矿床地质特征及成矿模式[D].吉林大学,2006.
    [206]张宏飞,靳兰兰,张利等.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制[J].中国科学(D辑:地球科学),2005,10:10-22.
    [207]张激悟.青海东昆仑沟里地区阿斯哈金矿床元素地球化学特征与成矿分析[D].昆明理工大学,2013.
    [208]张佳楠.山东莱州焦家金矿床矿化富集规律及矿床成因探讨[D].吉林大学,2012.
    [209]张楠,林龙华,管波等.青海坑得弄舍金-多金属矿床的成矿流体及物质来源研究[J].矿床地质,2012,31(增刊):691-692.
    [210]张建新,孟繁聪,万渝生等.柴达木盆地南缘金水口群的早古生代构造热事件:U-Pb SHRIMP年龄证据.地质通报,2003,22(6):397-404.
    [211]张文淮,陈紫.1993,流体包裹体地质学,武汉:中国地质大学出版社.
    [212]张雅静.辽宁红透山铜锌矿矿床地质特征及成矿模式研究[D].吉林大学,2010.
    [213]张亚峰,裴先治.丁仨平等.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MSU-Pb年龄及其意义[J].地质通报,29(1):79-85.
    [214]张亚辉.滇东南薄竹山晚燕山期酸性岩浆热液成矿作用研究[D].昆明理工大学,2013.
    [215]张艳彬,张渊,陈国华,周彦青,董庆吉,关会梅.山东黄埠岭金矿黄铁矿标型特征研究[J].黄金,2004(4):11-14.
    [216]张以弗,庞存廉,李长利等.可可西里-巴颜喀拉三叠纪沉积盆地的形成和演化.西宁:青海人民出版社,1997,136-140.
    [217]张渊,朴寿成.小塔子沟金矿床1号脉流体包裹体特征研究[J].黄金,2009(10):13-16.
    [218]张渊,孙景贵,王可勇等.胶东西北部黄埠岭金矿床流体包裹体特征及其在成矿预测中的意义[J].世界地质,2008(3):245-251.
    [219]章少华,蔡克勤.成矿系列研究若干问题讨论[J].地质论评,1993(5):404-4
    [220]赵财胜.青海东昆仑造山带金、银成矿作用[D].长春:吉林大学地球科学学院,2004:1-115.
    [221]赵俊伟.青海东昆仑造山带造山型金矿床成矿系列岩浆[D].长春:吉林大学地球科学学院,2008:1-151.
    [222]赵一鸣,谭惠静,许振南等.闽西南地区马坑式钙矽卡岩型铁矿床专辑1[C]//地质出版.
    [223]赵英福,吕增尧.河北兴隆洞子沟银-铜矿床地质特征及成因探讨[J].矿产与地质,2004(3):212-216.
    [224]赵泳越.山东省玲珑金矿矿床成因研究[D].吉林大学,2012.
    [225]赵振明,马华东,王秉璋等.东昆仑早泥盆世碰撞造山的侵入岩证据[J].地质论评,2008,01:47-56.
    [226]郑佳浩,郭春丽.湘南王仙岭花岗岩体的锆石U-Pb年代学、地球化学、锆石Hf同位素特征及其地质意义[J].岩石学报,2012(1):75-90.
    [227]郑佳浩.湘南王仙岭花岗岩体的特征及成因研究[D].中国地质大学(北京),2012.
    [228]郑健康.东昆仑区域构造的发展演化[J].青海地质,1992,1(1):15-25.
    [229]朱华平.青海省驼路沟钴矿床地质特征及找矿潜力评价[D].吉林大学,2005.
    [230]朱斯豹.云南田冲白钨矿床萤石包裹体及地球化学研究[D].成都理工大学,2013.
    [231]朱云海,Pan Yuanming,张克信等.东昆仑造山带东段晋宁期岩浆活动及其演化.地球科学——中国地质大学学报,2000,25(3):231,266.
    [232]朱云海.东昆仑造山带不同蛇绿岩带的厘定及其构造意义[J].地球科学:中国地质大学学报,1999,24(2):134-138.
    [233]邹定喜,杨小斌,芦文泉.青海果洛龙洼金矿床同位素特征及成因[J].黄金科学技术,2011(2):26-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700