用户名: 密码: 验证码:
西南印度洋脊中段岩浆—构造动力学模式(49°~51°E)
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洋中脊是全球地质演化中最重要的构造单元之一。超慢速扩张洋脊一般是指全扩张速率小于20mm/a的大洋中脊,其长度约占全球洋中脊的36%,是全球洋中脊的重要组成部分。超慢速扩张洋脊总体岩浆供应不足,但趋于集中作用,使得岩浆洋壳在沿轴方向具有不连续性和不均匀性,表现为离散的火山中心,火山中心之间为较薄洋壳甚至出露地幔橄榄岩;构造拉张作用在海底扩张中所起的作用则变得相对重要,强烈的构造拉张使得岩浆洋壳在扩张方向上具有不连续性和不均匀性,表现为在拆离断层的作用下出露下地壳或者上地幔。超慢速扩张洋脊独特的岩浆、构造活动,使其在地形地貌、地球物理场、岩石地球化学上都与较快速扩张的洋脊表现出本质的差别,它的扩张方式是对传统海底扩张模型的补充修正,因此成为当今地球科学领域的研究热点。
     西南印度洋脊(SWIR)扩张速率仅为14~16mm/a,是研究超慢速扩张洋脊的理想场所,但是由于其偏远的地理位置,相对于大西洋中脊(MAR)、东太平洋海隆(EPR),调查研究程度较低。SWIR中段的Indomed-Gallieni洋脊段,地形上表现为轴部高地,广泛分布的火山说明了其火山成因,低剩余地幔布格重力异常(RMBA)指示了较厚的洋壳,尤其是27洋段(根据(Cannat等,1999)分段及命名)50.5°E附近,OBS探测初步反演表明洋壳厚度达8~10km,说明此处具有十分充分的岩浆供应。该洋段的地质现象非常丰富,十分具有科研价值。首先,27洋段地形上缺失轴部裂谷,轴部为火山喷发高地所占据;其次,28洋段轴部以南,地形地貌、OBS反演,都发现存在一处基底拆离带,约有40km2的下地壳或者上地幔出露洋底,即大洋核杂岩(OCC);再者,在28洋段以南37°47′S、49°39′E位置,还发现了首个超慢速扩张洋脊上高温热液活动喷口。这些现象引出一系列的科学问题。在岩浆供应不足的超慢速扩张洋脊,为何能发育火山成因的轴部地形高地?是受到了什么因素的影响?岩浆供应的增加,对原本岩浆供应不足的超慢速扩张洋脊的扩张演化会产生怎样的影响?在岩浆供应如此强烈的情况下,为何还能发育指示强烈构造拉张的拆离断层?拆离断层和热液喷口的位置如此接近,是巧合还是存在某种联系?
     为讨论以上问题,本文利用我国大洋DY115-21航次第6航段采集的SWIR (49°~51°E)全覆盖高精度多波束地形资料,主要应用构造地貌学的方法,并结合该地区OBS、重力、磁力等地球物理资料,就该洋段的岩浆与构造演化展开了探讨。主要得出以下一些认识。
     28、29洋段在轴部不对称深断层的控制之下表现出明显的不对称扩张,北翼为古火山脊增生带,轴部火山建造主要向北翼迁移;南翼构造拉张作用强烈,地貌上可观察到大量断块,拆离断层可能大量存在,28洋段以南的OCC便是拆离断层作用的产物,且该拆离断层的影响范围向西延伸更远,热液喷口的位置也在影响区之内,很可能是该拆离断层为热液喷口的发育提供了物质与能量的通道。
     轴部地形随海底扩张向翼部迁移,通过地貌的相似性,认为北翼的火山地貌是轴部火山脊(AVRs)在翼部的遗迹,较光滑的地形则是非转换不连续带(NTDs)在翼部的遗迹。然而,北翼这种地形分区的展布方向偏离了扩张方向,这说明轴部发育AVRs的位置是在随时间变化的,进一步说明轴部深部岩浆集中的位置是在发生变化的。从北翼地形展布分析,研究区岩浆集中的位置在向西迁移。
     从28、29洋段轴部脊槽相间、雁列式排列的地形特征来看,其岩浆作用模式属于超慢速扩张洋脊岩浆总体供应不足情况下的岩浆集中作用的模式。从北翼古火山脊增生带被大断裂分期情况来看,该区岩浆作用应该存在岩浆供应由多至少的周期,岩浆供应多时轴部成脊,少时由构造作用将其拆分运移;28、29洋段这种周期大概为1.5Ma。27洋段以轴对称的若干组共轭隆起,说明岩浆供应也存在由多至少的周期,但可能由于27洋段总体具有更大的岩浆通量,这种岩浆供应周期的表现形式与28、29洋段有所不同。主要表现为火山建造裂离方式、岩浆供应周期长短以及构造活动强烈程度的不同。
     一次岩浆增强事件在10~8Ma时开始影响Indomed-Gallieni洋段,建造了该洋脊段轴部地形高地。然而现今受该事件影响的区域仅局限于轴部缺失裂谷的27洋段,4Ma以来,Indomed-Gallieni段其余部分很可能如28、29洋段一样,已经恢复到岩浆供应不足的超慢速扩张洋脊的状态,这也是该区构造活动强烈的原因。在此之前,该洋段的很大部分都可能经历了如目前27洋段的演化状态。27洋段为目前仍受岩浆增强事件影响的唯一区段,超慢速扩张速率下表现出较快速扩张洋脊的扩张特点,但其岩浆活动的强度和范围也在逐渐减小,该岩浆增强事件可能已处于寿命末期。通过地形地貌、地球物理场、岩石地球化学以及其他分析,认为这次岩浆增强事件并非由于受Crozet热点影响,有可能是源自不均一地幔导致的局部岩浆增加。
The Mid-ocean ridge system is one of the most important geological units of the whole earth.The ultra-slow spreading ridges, whose spreading rate is generally as slow as less than20mm/a,account for36%of the global mid-ocean ridges. Generally speaking, ultra-slow spreading ridgeshave a very limited magma supply, but tend to supply in focus pattern, and leading to adiscontinuous and uneven crust along the axis. Focus magmatism builds volcanic centers, andregion between those centers, the crust is very thin, even mantle peridotite exposed. Forultra-slow spreading ridges, tectonic extension plays a more important role in seafloor spreading,and leading to a thinning crust along the spreading direction, even exposed lower crust or uppermantle at the seafloor usually resulted from detachment faults. As the unique magmato-tectonicpattern, ultra-slow spreading ridges perform very distinctly at topography, geophysical fields andgeochemistry, and its spreading pattern should be a complement and amendment to thetraditional seafloor spreading model. Thus, study on ultra-slow spreading ridges is a hot topic inthe field of earth sciences today.
     Southwest Indian Ridge (SWIR) has a spreading rate of only14~16mm/a, and is an idealplace to study ultra-slow spreading ridges. However, as its remote location, compared toMid-Atlantic Ridge (MAR) and East Pacific Rise (EPR), research on SWIR is still poor.Indomed-Gallieni Segment, located at the middle SWIR, shows an axial highland with volcanoswidely distributed, indicating its volcanogenic. This segment also shows very low residualmantle bouguer gravity anomaly (RMBA), indicating a very thick crust. Especially near50.5°Eof Segment27(Cannat et al,1999), preliminary OBS inversion shows a crust as thick as8~10km, suggesting a very adequate magma supply here. This segment shows very richgeological phenomenons, and of great scientific value. First, axial rift is absent at Segment27,and occupied by volcanic eruption high. Second, at south of Segment28, a oceanic core complex(OCC), as large as40km2, was identified both by topography and OBS data. Third, at theposition of37°47′S/49°39′E, also the south side of Segment28, reported the frst active high-temperature hydrothermal feld on ultra-slow spreading ridges worldwide. All thse bring outa series of scientific problems. Why such an axial highland can be built at ultra-slow spreadingridges whose magma supply is low? Is it effected by anything others? How magma increase willeffect the evolution of ultra-slow spreading ridges? Why under such a high magma supply candetachment faults develop which generally mean strong tectonic extension? The locations of thedetachment fault and the hydrothermal vent are very close, so is that just a coincidence, or thereis a link?
     To discuss problems mentioned above, Using the high-resolution and full-coveragemultibeam bathymetric data of SWIR (49°~51°E) mainly collected by voyage DY115-21ofChina in2010, and combined with relevant research results from regional gravity and magneticdata and3D OBS detection, mainly by the method of morphotectonics, this thesis tries to talkabout its magmato-tectonic evoluton, and draws following main understandings.Segment28and29are experiencing an asymmetry spreading under the control of deepasymmetrical faults. The north flank is ancient volcanic ridge accretion zone as the axialvolcanic constructions are mainly migrating to the north. There are lots of blocks at the southflank as the production of strong tectonic extension. Detachment faults may widely distribute atthe south flank, and the OCC is resulted from one detachment fault, whose influence range mayextend farther westward, covering the location of the hydrothermal vent. This detachment faultmay provided the material and energy access for the development of the hydrothermal vent.By comparing the geomorphological characteristic between axial area and the flank, it isbelieved that the volcanic seafloor of the north flank is the trace of the axial volcanic ridges(AVRs), while the smooth seafloor corresponds to the nontransform discontinuous (NTDs).However, the extending direction of such geomorphological partition is inconsistent with thespreading direction. This should suggest that the loaction of AVRs is migrating, and so thepositon of focus magmatism is migrating, too. Judged from the geomorphological characteristicof the north flank, the positon of focus magmatism here shows a westward migration.The axial topography, which is alternated with ridge and trough and arranged in en echelonpattern, is often owned by ultra-slow oblique spreading ridges, which suggests a strong focusmagmatism pattern. The volcanic seafloor at the north flank is divided into several phases bylarge long faults, and this indicates that the axial magmatism also has some kind of cycle duringwhich magma supply gradually becomes less. During the magma supply high time, AVRs arebuilt, while splited when becomes much lower. Such magmatism cycle at Segment28and29is about1.5Ma. The several conjugate uplifts of Segment27distributed axial symmetricallyindicates a similar magmatism cycle here, too. However, it may be because Segment27hasmuch larger magma flux, it behaves quite differently from Segment28,29in splitting pattern,period length and strength of tectonism.
     It is deduced a magma increased event started to effect Segment Indomed-Gallieni at about10~8Ma ago, and had built the axial highland here. However, this a magma increased event nowonly still has an effect on Segment27. Since4Ma ago, other part of Segment Indomed-Gallienihad restored to normal ultraslow spreading evolution, just as Segment28and29, and this is whythey now have evry strong tectonic activity. During the earlier time, most part of SegmentIndomed-Gallieni may have experienced the same evolution as today’s Segment27. Segment27is the only area still affected by this magma increased event, and shows some characteristicusually owned by faster spreading ridges in spite of an ultraslow spreading rate. Nevertheless itsintensity and extent are decreasing, and the magma increased event may be already at the end ofits life. After an analysis of topography, geophysical field and geochemical characteristics, it isthought that this magma increased event is not because of effect from Crozet hotspot, and maybe resulted from a local heterogeneous mantle.
引文
[1] Solomon S C, Toomey D R. The structure of mid-ocean ridges[J]. Annual Review of Earthand Planetary Sciences,1992,20:329-364.
    [2] Heezen B C. The rift in the ocean floor[J]. Scientific American,1960,203:98-110.
    [3] Sempere J C, MacDonald K C. Marine tectonics: Processes at mid‐ocean ridges[J].Reviews of Geophysics,1987,25(6):1313-1347.
    [4] Kisslinger C. International Lithosphere Program [J]. Eos, Transactions AmericanGeophysical Union,1980,61(45):710.
    [5] Macdonald KC. Exploring The Global Mid-Ocean Ridge [J]. Oceanus-Woods Hole Mass,1998,41):2-6.
    [6]田丽艳,林间.全球大洋中脊研究十年科学规划(2004-2013)[J].海洋地质动态,2004,20(3):10-15.
    [7] Tao C, Lin J, Guo S, et al. First active hydrothermal vents on an ultraslow-spreading center:Southwest Indian Ridge [J]. Geology,2011,40(1):47-50.
    [8] Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge [J]. Nature,2003,426(6965):405-412.
    [9] Montési L G J, Behn M D. Mantle flow and melting underneath oblique and ultraslow mid‐ocean ridges[J]. Geophysical Research Letters,2007,34(24).
    [10]任建业.海洋底构造导论[M].武汉:中国地质大学出版社,2008.
    [11] Ballard R D, van Andel T H. Morphology and tectonics of the inner rift valley at lat3650′N on the Mid-Atlantic Ridge[J]. Geological Society of America Bulletin,1977,88(4):507-530.
    [12]马宗晋,杜品仁,洪汉净.地球构造与动力学[M].广东:广东科技出版社,2003.
    [13] Wilson J T. A new class of faults and their bearing on continental drift [J]. Nature,1965,207(4996):343-347.
    [14] Garfunkel Z. Review of oceanic transform activity and development [J]. Journal of theGeological Society,1986,143(5):775-784.
    [15] Taylor B, Hayes D E. The tectonic evolution of the South China Basin [J]. GeophysicalMonograph Series,1980,23:89-104.
    [16]李家彪,丁巍伟,高金耀, et al.南海新生代海底扩张的构造演化模式-来自高分辨率地球物理数据的新认识[J].地球物理学报,2011,54(12):3004-3015.
    [17] Levi B G,肖莉风.洋中脊地幔熔岩上涌的地球物理模型[J].地质科学译丛,1998,15(4):55-57.
    [18] Ahern J L, Turcotte D L. Magma migration beneath an ocean ridge[J]. Earth and PlanetaryScience Letters,1979,45(1):115-122.
    [19] Whitehead J A, Dick H J B, Schouten H. A mechanism for magmatic accretion underspreading centres[J]. Nature,1984,312(5990):146-148..
    [20] Niu Y, Langmuir C H, Kinzler R J. The origin of abyssal peridotites: a new perspective[J].Earth and Planetary Science Letters,1997,152(1):251-265.
    [21] Cann J R. A Model for Oceanic Crystal Structure Developed[J]. Geophysical Journal of theRoyal Astronomical Society,1974,39(1):169-187.
    [22] Kent G M, Harding A J, Orcutt J A. Evidence for a smaller magma chamber beneath theEast Pacific Rise at930′N[J]. Nature,1990,344(6267):650-653.
    [23] Macdonald K C, Fox P J, Perram L J, et al. A new view of the mid-ocean ridge from thebehaviour of ridge-axis discontinuities[J]. Nature,1988,335(6187):217-225.
    [24] MacDonald K C, Scheirer D S, Carbotte S M. Mid-ocean ridges: Discontinuities, segmentsand giant cracks[J]. Science,1991,253(5023):986-994.
    [25]张涛.西南印度洋洋中脊及其与热点交互作用方式的地球物理研究[D].武汉;中国科学院测量与地球物理研究所,2010.
    [26] Schouten H, Klitgord K D, Whitehead J A. Segmentation of mid-ocean ridges[J]. Nature,1985,317(6034):225-229.
    [27] Eldholm O, Grue K. North Atlantic volcanic margins: Dimensions and production rates[J].Journal of Geophysical Research: Solid Earth (1978–2012),1994,99(B2):2955-2968.
    [28] Cochran J R, Kurras G J, Edwards M H, et al. The Gakkel Ridge: Bathymetry, gravityanomalies, and crustal accretion at extremely slow spreading rates[J]. Journal ofGeophysical Research: Solid Earth (1978–2012),2003,108(B2).
    [29] Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature,2003,426(6965):405-412.
    [30] Cannat M, Sauter D, Mendel V, et al. Spreading geometry and melt supply at theultraslow-spreading Southwest Indian Ridge[C]//AGU Fall Meeting Abstracts.2004,1:03.
    [31] Okino K, Curewitz D, Asada M, et al. Preliminary analysis of the Knipovich Ridgesegmentation: influence of focused magmatism and ridge obliquity on an ultraslowspreading system[J]. Earth and Planetary Science Letters,2002,202(2):275-288.
    [32] Vogt P R, Jung W Y. The Terceira Rift as hyper-slow, hotspot-dominated oblique spreadingaxis: A comparison with other slow-spreading plate boundaries[J]. Earth and PlanetaryScience Letters,2004,218(1):77-90.
    [33] Haase K M, Mühe R, Stoffers P. Magmatism during extension of the lithosphere:geochemical constraints from lavas of the Shaban Deep, northern Red Sea[J]. ChemicalGeology,2000,166(3):225-239.
    [34] Solomon S. in Drilling the Oceanic Lower Crust and Mantle [J]. JOI/USSAC WorkshopReport,1989,73-74.
    [35] Standish J J, Dick H J B, Michael P J, et al. MORB generation beneath the ultraslowspreading Southwest Indian Ridge (9–25E): Major element chemistry and the importanceof process versus source[J]. Geochemistry, Geophysics, Geosystems,2008,9(5).
    [36] Sauter D, Patriat P, Rommevaux-Jestin C, et al. The Southwest Indian Ridge between4915′E and57E: Focused accretion and magma redistribution[J]. Earth and Planetary ScienceLetters,2001,192(3):303-317.
    [37] Cannat M, Rommevaux‐Jestin C, Sauter D, et al. Formation of the axial relief at the veryslow spreading Southwest Indian Ridge (49to69E)[J]. Journal of Geophysical Research:Solid Earth (1978–2012),1999,104(B10):22825-22843.
    [38] Cannat M, Sauter D, Bezos A, et al. Spreading rate, spreading obliquity, and melt supply atthe ultraslow spreading Southwest Indian Ridge[J]. Geochemistry, geophysics, geosystems,2008,9(4).
    [39] Okino K, Curewitz D, Asada M, et al. Preliminary analysis of the Knipovich Ridgesegmentation: influence of focused magmatism and ridge obliquity on an ultraslowspreading system[J]. Earth and Planetary Science Letters,2002,202(2):275-288.
    [40] Cannat M, Rommevaux‐Jestin C, Sauter D, et al. Formation of the axial relief at the veryslow spreading Southwest Indian Ridge (49to69E)[J]. Journal of Geophysical Research:Solid Earth (1978–2012),1999,104(B10):22825-22843.
    [41] Sparks D W, Parmentier E M. Melt extraction from the mantle beneath spreading centers[J].Earth and Planetary Science Letters,1991,105(4):368-377.
    [42] Montési L G J, Behn M D, Hebert L B, et al. Controls on melt migration and extraction atthe ultraslow Southwest Indian Ridge10–16E[J]. Journal of Geophysical Research: SolidEarth (1978–2012),2011,116(B10).
    [43] Sleep N H. Tapping of melt by veins and dikes[J]. Journal of Geophysical Research: SolidEarth (1978–2012),1988,93(B9):10255-10272.
    [44] Lin J, Purdy G M, Schouten H, et al. Evidence from gravity data for focused magmaticaccretion along the Mid-Atlantic Ridge[J]. Nature,1990,344(6267):627-632.
    [45] Sauter D, Mendel V, Rommevaux‐Jestin C, et al. Focused magmatism versus amagmaticspreading along the ultra‐slow spreading Southwest Indian Ridge: Evidence from TOBIside scan sonar imagery[J]. Geochemistry, Geophysics, Geosystems,2004,5(10).
    [46] Sauter D, Patriat P, Rommevaux-Jestin C, et al. The Southwest Indian Ridge between4915′E and57E: Focused accretion and magma redistribution[J]. Earth and Planetary ScienceLetters,2001,192(3):303-317.
    [47] Schlindwein V, Demuth A, Geissler W H, et al. Seismic gap beneath Logachev Seamount:Indicator for melt focusing at an ultraslow mid‐ocean ridge?[J]. Geophysical ResearchLetters,2013,40(9):1703-1707.
    [48] Macdonald K C, Fox P J. The Mid-Ocean Ridge [J]. Scientific American,1990,262(6).
    [49] Jokat W, Ritzmann O, Schmidt-Aursch M C, et al. Geophysical evidence for reduced meltproduction on the Arctic ultraslow Gakkel mid-ocean ridge[J]. Nature,2003,423(6943):962-965.
    [50] Yu Zhiteng, Li Jiabiao, Liang Yuyang, et al. Distribution of large-scale detachment faults onmid-ocean ridges in relation to spreading rates [J]. Acta Oceanologica Sinica,2013,32(12):109–117.
    [51] Vine F J, Moores E M. A model for the gross structure, petrology, and magnetic propertiesof oceanic crust[J]. Studies in Earth and Space Sciences: A Memoir in Honor of HarryHammond Hess,1973,132:195.
    [52] Sauter D, Cannat M, Rouméjon S, et al. Continuous exhumation of mantle-derived rocks atthe Southwest Indian Ridge for11million years[J]. Nature geoscience,2013,6(4):314-320.
    [53] Smith D. Mantle spread across the sea floor [J]. Nature Geoscience,2013,6(4):247-278.
    [54] Zhao M, Qiu X, Li J, et al. Three‐dimensional seismic structure of the Dragon Flagoceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39′E)[J].Geochemistry, Geophysics, Geosystems,2013,14(10):4544-4563.
    [55] Swallow J C, Crease J. Hot salty water at the bottom of the Red Sea[J]. Nature,1965,205:165-166.
    [56] Miller A R, Densmore C D, Degens E T, et al. Hot brines and recent iron deposits in deepsof the Red Sea[J]. Geochimica et Cosmochimica Acta,1966,30(3):341-359.
    [57] Hunt J M, Hays E E, Degens E T, et al. Red Sea: detailed survey of hot-brine areas[J].Science,1967,156(3774):514-516.
    [58] Scott M R, Scott R B, Rona P A, et al. Rapidly accumulating manganese deposit from theMedian Valley of the Mid‐Atlantic Ridge[J]. Geophysical Research Letters,1974,1(8):355-358.
    [59] Coriss J B. Submarine thermal springs on the Galápagos Rift [J]. Science,1979,203:1073.
    [60] Hannington M D, De Ronde C D J, Petersen S. Sea-floor tectonics and submarinehydrothermal systems [J]. Society of Economic Geologists,2005, Economic Geology100thAnniversary Volume:111-141.
    [61] Rona P A, Klinkhammer G, Nelsen T A, et al. Black smokers, massive sulphides and ventbiota at the Mid-Atlantic Ridge [J]. Nature,1986,321:33-37.
    [62] Baker E T, Chen Y J, Phipps Morgan J. The relationship between near-axis hydrothermalcooling and the spreading rate of mid-ocean ridges[J]. Earth and Planetary Science Letters,1996,142(1):137-145.
    [63] Baker E T. Relationships between hydrothermal activity and axial magma chamberdistribution, depth, and melt content[J]. Geochemistry, Geophysics, Geosystems,2009,10(6).
    [64] Baker E T, German C R. On the global distribution of hydrothermal vent fields[J].Geophysical Monograph Series,2004,148:245-266.
    [65] German C R, Baker E T, Mevel C, et al. Hydrothermal activity along the southwest Indianridge[J]. Nature,1998,395(6701):490-493.
    [66] Münch U, Lalou C, Halbach P, et al. Relict hydrothermal events along the super-slowSouthwest Indian spreading ridge near6356′E—Mineralogy, chemistry and chronology ofsulfide samples[J]. Chemical Geology,2001,177(3):341-349.
    [67] Fujimoto H, Cannat M, Fujioka K, et al. First submersible investigations of mid-oceanridges in the Indian Ocean [J]. InterRidge News,1999,8(1):22-24.
    [68] Baker E T, Edmonds H N, Michael P J, et al. Hydrothermal venting in magma deserts: Theultraslow‐spreading Gakkel and Southwest Indian Ridges[J]. Geochemistry, Geophysics,Geosystems,2004,5(8).
    [69] Bach W, Banerjee N R, Dick H J B, et al. Discovery of ancient and active hydrothermalsystems along the ultra‐slow spreading Southwest Indian Ridge10°–16°E[J].Geochemistry, Geophysics, Geosystems,2002,3(7).
    [70] Bach W, Banerjee N R, Dick H J B, et al. Discovery of ancient and active hydrothermalsystems along the ultra-slow spreading Southwest Indian Ridge10°–16°E [J]. Geochemistry,Geophysics, Geosystems,2002,3(7).
    [71] Michael P J, Langmuir C H, Dick H J B, et al. Magmatic and amagmatic seafloorgeneration at the ultraslow-spreading Gakkel ridge, Arctic Ocean[J]. Nature,2003,423(6943):956-961.
    [72] Grindlay N R, Madsen J A, Rommevaux-Jestin C, et al. A different pattern of ridgesegmentation and mantle Bouguer gravity anomalies along the ultra-slow spreadingSouthwest Indian Ridge (1530′E to25E)[J]. Earth and planetary science letters,1998,161(1):243-253.
    [73] Mendel V, Sauter D, Rommevaux‐Jestin C, et al. Magmato‐tectonic cyclicity at the ultra‐slow spreading Southwest Indian Ridge: Evidence from variations of axial volcanic ridgemorphology and abyssal hills pattern[J]. Geochemistry, Geophysics, Geosystems,2003,4(5).
    [74] Van Wijk J W, Blackman D K. Development of en echelon magmatic segments alongoblique spreading ridges[J]. Geology,2007,35(7):599-602.
    [75] Cannat M, Sauter D, Mendel V, et al. Modes of seafloor generation at a melt-poorultraslow-spreading ridge [J]. Geology,2006,34(7):605-608.
    [76] Seyler M, Cannat M, Mével C. Evidence for major‐element heterogeneity in the mantlesource of abyssal peridotites from the Southwest Indian Ridge (52°to68°E)[J].Geochemistry, Geophysics, Geosystems,2003,4(2).
    [77] Edmonds H N, Michael P J, Baker E T, et al. Discovery of abundant hydrothermal ventingon the ultraslow-spreading Gakkel ridge in the Arctic Ocean[J]. Nature,2003,421(6920):252-256.
    [78] Cann J R, Blackman D K, Smith D K, et al. Corrugated slip surfaces formed atridge-transform intersections on the Mid-Atlantic Ridge[J]. Nature,1997,385(6614):329-332.
    [79] SMith D K, EScARtíN J, Schouten H A, et al. Active Long-Lived Faults Emerging AlongSlow-Spreading Mid-Ocean Ridges [J]. Oceanography,2012,25(1):94-99.
    [80] Cannat M, Sauter D, Mendel V, et al. Modes of seafloor generation at a melt-poorultraslow-spreading ridge[J]. Geology,2006,34(7):605-608.
    [81] Morgan W J. Convection plumes in the lower mantle [J]. Nature,1971,230:42.
    [82]王登红.地幔柱的概念、分类、演化与大规模成矿——对中国西南部的探讨[J].地学前缘,2001,8(3):67-72.
    [83]鄢全树,石学法.洋中脊与地幔柱热点相互作用研究进展[J].海洋地质与第四纪地质,2006,26(5):131-138.
    [84] DYMENT J, LIN J, BAKER E T. Ridge-hotspot interactions: what mid-ocean ridges tell usabout deep Earth processe [J]. Oceanography2007,20(1):102-115.
    [85]Jacoby W, Gudmundsson M T. Hotspot Iceland: an introduction[J]. Journal of Geodynamics,2007,43(1):1-5.
    [86] Riedel C, Ebbing J. Hotspot–ridge interaction and its influence on Icelandic crust formationand dynamics[J]. Tectonophysics,2008,447(1):1-4.
    [87] Behn M D, Sinton J M, Detrick R S. Effect of the Galapagos hotspot on seafloor volcanismalong the Galapagos Spreading Center (90.9–97.6W)[J]. Earth and Planetary ScienceLetters,2004,217(3):331-347.
    [88] Morgan W J. Rodriguez, Darwin, Amsterdam,..., a second type of hotspot island [J]. Journalof Geophysical Research: Solid Earth,1978,83(B11):5355-5360.
    [89] Small C. Observations of ridge‐hotspot interactions in the Southern Ocean[J]. Journal ofGeophysical Research: Solid Earth (1978–2012),1995,100(B9):17931-17946.
    [90] Mittelstaedt E, Ito G. Plume‐ridge interaction, lithospheric stresses, and the origin of near‐ridge volcanic lineaments[J]. Geochemistry, Geophysics, Geosystems,2005,6(6).
    [91] Maia M, Ackermand D, Dehghani G A, et al. The Pacific-Antarctic Ridge–Foundationhotspot interaction: a case study of a ridge approaching a hotspot[J]. Marine Geology,2000,167(1):61-84.
    [92] Grevemeyer I. Hotspot-ridge interaction in the Indian Ocean: constraints from Geosat/ERMaltimetry[J]. Geophysical Journal International,1996,126(3):796-804.
    [93] Leroy S, d'Acremont E, Tiberi C, et al. Recent off-axis volcanism in the eastern Gulf ofAden: implications for plume–ridge interaction[J]. Earth and Planetary Science Letters,2010,293(1):140-153.
    [94] Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of theMarion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets[J]. Earth and Planetary Science Letters,2001,187(3):283-300.
    [95] Ito G, Lin J, Graham D. Observational and theoretical studies of the dynamics of mantleplume–mid‐ocean ridge interaction[J]. Reviews of Geophysics,2003,41(4).
    [96] Füri E, Hilton D R, Murton B J, et al. Helium isotope variations between Réunion Islandand the Central Indian Ridge (17°–21°S): New evidence for ridge–hot spot interaction[J].Journal of Geophysical Research: Solid Earth (1978–2012),2011,116(B2).
    [97] Schilling J G. Upper mantle heterogeneities and dynamics[J]. Nature,1985,314:62-67.
    [98] Gente P, Dyment J, Maia M, et al. Interaction between the Mid‐Atlantic Ridge and theAzores hot spot during the last85Myr: Emplacement and rifting of the hot spot‐derivedplateaus[J]. Geochemistry, Geophysics, Geosystems,2003,4(10).
    [99] Georgen J E, Lin J. Plume‐transform interactions at ultra‐slow spreading ridges:Implications for the Southwest Indian Ridge[J]. Geochemistry, Geophysics, Geosystems,2003,4(9).
    [100] Maia M, Pessanha I, Courrèges E, et al. Building of the Amsterdam‐Saint Paul plateau:A10Myr history of a ridge‐hot spot interaction and variations in the strength of the hotspot source[J]. Journal of Geophysical Research: Solid Earth (1978–2012),2011,116(B9).
    [101] Kincaid C, Schilling J G, Gable C. The dynamics of off-axis plume-ridge interaction inthe uppermost mantle[J]. Earth and Planetary Science Letters,1996,137(1):29-43.
    [102] Yale M M, Phipps Morgan J. Asthenosphere flow model of hotspot–ridge interactions: acomparison of Iceland and Kerguelen[J]. Earth and planetary science letters,1998,161(1):45-56.
    [103] Hauff F, Werner R. Plume–ridge interaction studied at the Galápagos spreading center:Evidence from226Ra–230Th–238U and231Pa–235U isotopic disequilibria[J]. Earthand Planetary Science Letters,2005,234:165-187.
    [104] Sleep N H. Lateral flow of hot plume material ponded at sublithospheric depths[J].Journal of Geophysical Research: Solid Earth (1978–2012),1996,101(B12):28065-28083.
    [105] Stroncik N A, Niedermann S, Haase K M. Plume–ridge interaction revisited: Evidencefor melt mixing from He, Ne and Ar isotope and abundance systematics[J]. Earth andPlanetary Science Letters,2008,268(3):424-432.
    [106] Mittelstaedt E, Soule S, Harpp K, et al. Multiple expressions of plume‐ridgeinteraction in the Galápagos: Volcanic lineaments and ridge jumps[J]. Geochemistry,Geophysics, Geosystems,2012,13(5).
    [107] Villagómez D R, Toomey D R, Hooft E E E, et al. Crustal structure beneath theGalápagos Archipelago from ambient noise tomography and its implications for plume‐lithosphere interactions[J]. Journal of Geophysical Research: Solid Earth (1978–2012),2011,116(B4).
    [108] d’Acremont E, Leroy S, Maia M, et al. Volcanism, jump and propagation on the Shebaridge, eastern Gulf of Aden: segmentation evolution and implications for oceanic accretionprocesses[J]. Geophysical Journal International,2010,180(2):535-551.
    [109] Li X, Kind R, Yuan X, et al. Rejuvenation of the lithosphere by the Hawaiian plume[J].Nature,2004,427(6977):827-829.
    [110] Mittelstaedt E, Ito G, Behn M D. Mid-ocean ridge jumps associated with hotspotmagmatism[J]. Earth and Planetary Science Letters,2008,266(3):256-270.
    [111] Mittelstaedt E, Ito G, van Hunen J. Repeat ridge jumps associated with plume‐ridgeinteraction, melt transport, and ridge migration[J]. Journal of Geophysical Research: SolidEarth (1978–2012),2011,116(B1).
    [112] Zhang T, Lin J, Gao J Y. Magmatism and tectonic processes in Area A hydrothermalvent on the Southwest Indian Ridge[J]. Science China Earth Sciences,2013,56(12):2186-2197.
    [113] Sauter D, Cannat M, Meyzen C, et al. Propagation of a melting anomaly along theultraslow Southwest Indian Ridge between46°E and52°20′E: interaction with the Crozethotspot?[J]. Geophysical Journal International,2009,179(2):687-699.
    [114] Debayle E, Kennett B, Priestley K. Global azimuthal seismic anisotropy and the uniqueplate-motion deformation of Australia[J]. Nature,2005,433(7025):509-512.
    [115] Marks K M, Tikku A A. Cretaceous reconstructions of East Antarctica, Africa andMadagascar[J]. Earth and Planetary Science Letters,2001,186(3):479-495.
    [116] Patriat P, Segoufin J. Reconstruction of the central Indian Ocean[J]. Tectonophysics,1988,155(1):211-234.
    [117] Bernard A, Munschy M, Rotstein Y, et al. Refined spreading history at the SouthwestIndian Ridge for the last96Ma, with the aid of satellite gravity data[J]. Geophysical JournalInternational,2005,162(3):765-778.
    [118] Mendel V, Sauter D, Rommevaux‐Jestin C, et al. Magmato‐tectonic cyclicity at theultra‐slow spreading Southwest Indian Ridge: Evidence from variations of axial volcanicridge morphology and abyssal hills pattern[J]. Geochemistry, Geophysics, Geosystems,2003,4(5).
    [119] Klein E M, Langmuir C H. Global correlations of ocean ridge basalt chemistry withaxial depth and crustal thickness[J]. Journal of Geophysical Research: Solid Earth(1978–2012),1987,92(B8):8089-8115.
    [120] Li J B, Chen Y John. First Chinese OBS experiment at Southwest Indian Ridge [J].InterRidge Newsletter,2010,19):16-28.
    [121] Sauter D, Carton H, Mendel V, et al. Ridge segmentation and the magnetic structure ofthe Southwest Indian Ridge (at5030′E,5530′E and6620′E): Implications for magmaticprocesses at ultraslow spreading centers[J]. Geochemistry, Geophysics, Geosystems,2004,5(5).
    [122] Zhu J, Lin J, Chen Y J, et al. A reduced crustal magnetization zone near the firstobserved active hydrothermal vent field on the Southwest Indian Ridge[J]. GeophysicalResearch Letters,2010,37(18).
    [123]叶俊.西南印度洋超慢速扩张脊49.6°E热液区多金属硫化物成矿作用研究[D].青岛;中国科学院,2010.
    [124] Breton T, Nauret F, Pichat S, et al. Geochemical heterogeneities within the Crozethotspot[J]. Earth and Planetary Science Letters,2013,376:126-136.
    [125] Tucholke B E, Behn M D, Buck W R, et al. Role of melt supply in oceanic detachmentfaulting and formation of megamullions[J]. Geology,2008,36(6):455-458.
    [126] Escartin J, Smith D K, Cann J, et al. Central role of detachment faults in accretion ofslow-spreading oceanic lithosphere [J]. Nature,2008,455(7214):790-794.
    [127] Zhou H Y, Dick H J. Thin crust as evidence for depleted mantle supporting the MarionRise [J]. Nature,2013,494(7436):195-200.
    [128] Humphris S E, Kleinrock M C. Detailed morphology of the TAG active hydrothermalmound: Insights into its formation and growth[J]. Geophysical research letters,1996,23(23):3443-3446.
    [129] Kleinrock M C, Humphris S E. Structural control on sea-floor hydrothermal activity atthe TAG active mound[J]. Nature,1996,382(6587):149-153.
    [130]李家彪,金翔龙,阮爱国, et al.马尼拉海沟增生楔中段的挤入构造[J].科学通报,2004,49(10):1000-1008.
    [131] Kukowski N, Schillhorn T, Huhn K, et al. Morphotectonics and mechanics of the centralMakran accretionary wedge off Pakistan[J]. Marine Geology,2001,173(1):1-19.
    [132] Grando G, McClay K. Morphotectonics domains and structural styles in the Makranaccretionary prism, offshore Iran[J]. Sedimentary Geology,2007,196(1):157-179.
    [133] Papanikolaou D, Alexandri M, Nomikou P, et al. Morphotectonic structure of thewestern part of the North Aegean Basin based on swath bathymetry[J]. Marine Geology,2002,190(1):465-492.
    [134]吴自银,金翔龙,李家彪, et al.冲绳海槽的典型构造地貌及其地质意义[J].海底科学发展战略研讨会论文集,2003,114-124.
    [135]李家彪,金翔龙,高金耀.南海东部海盆晚期扩张的构造地貌研究[J].中国科学(D辑),2002,32(3):239-248.
    [136]李家彪,丁巍伟,吴自银, et al.南海西南海盆的渐进式扩张[J].科学通报,2012,57(20):1896-1905.
    [137]李家彪,丁巍伟,高金耀, et al.南海新生代海底扩张的构造演化模式:来自高分辨率地球物理数据的新认识[J].地球物理学报,2011,54(12):3004-3015.
    [138] Louren o N, Miranda J M, Luis J F, et al. Morpho-tectonic analysis of the AzoresVolcanic Plateau from a new bathymetric compilation of the area[J]. Marine GeophysicalResearches,1998,20(3):141-156.
    [139] Terrinha P, Matias L, Vicente J, et al. Morphotectonics and strain partitioning at theIberia–Africa plate boundary from multibeam and seismic reflection data[J]. MarineGeology,2009,267(3):156-174.
    [140] Rosas F M, Duarte J C, Terrinha P, et al. Morphotectonic characterization of majorbathymetric lineaments in Gulf of Cadiz (Africa–Iberia plate boundary): insights fromanalogue modelling experiments[J]. Marine Geology,2009,261(1):33-47.
    [141] Carbotte S, Macdonald K. East Pacific Rise8–1030′N: Evolution of ridge segmentsand discontinuities from SeaMARC II and three‐dimensional magnetic studies[J]. Journalof Geophysical Research: Solid Earth (1978–2012),1992,97(B5):6959-6982.
    [142] Purdy G M, Sempere J C, Schouten H, et al. Bathymetry of the Mid-Atlantic Ridge,24-31N: A map series[J]. Marine Geophysical Researches,1990,12(4):247-252.
    [143] Grindlay N R, Fox P J, Vogt P R. Morphology and tectonics of the Mid‐Atlantic Ridge(25°–27°30′S) from Sea Beam and magnetic data[J]. Journal of Geophysical Research:Solid Earth (1978–2012),1992,97(B5):6983-7010.
    [144] SempéréJ C, Lin J, Brown H S, et al. Segmentation and morphotectonic variationsalong a slow-spreading center: The Mid-Atlantic Ridge (2400′N–3040′N)[J]. Marinegeophysical researches,1993,15(3):153-200.
    [145] Searle R C, Bralee A V. Asymmetric generation of oceanic crust at the ultra‐slowspreading Southwest Indian Ridge,64°E[J]. Geochemistry, Geophysics, Geosystems,2007,8(5).
    [146] Sauter D, Cannat M, Meyzen C, et al. Propagation of a melting anomaly along theultraslow Southwest Indian Ridge between46°E and52°20′E: interaction with the Crozethotspot?[J]. Geophysical Journal International,2009,179(2):687-699.
    [147] Buck W R. Flexural rotation of normal faults[J]. Tectonics,1988,7(5):959-973.
    [148] Zhang T, Lin J, Gao J Y. Magmatism and tectonic processes in Area A hydrothermalvent on the Southwest Indian Ridge. Science China: Earth Sciences,2013, doi:10.1007/s11430-013-4630-5
    [149] Searle R C, Bralee A V. Asymmetric generation of oceanic crust at the ultra‐slowspreading Southwest Indian Ridge,64°E[J]. Geochemistry, Geophysics, Geosystems,2007,8(5).
    [150] Cannat M, Rommevaux‐Jestin C, Fujimoto H. Melt supply variations to a magma‐poor ultra‐slow spreading ridge (Southwest Indian Ridge61to69E)[J]. Geochemistry,Geophysics, Geosystems,2003,4(8).
    [151] Cannat M, Rommevaux‐Jestin C, Fujimoto H. Melt supply variations to a magma‐poor ultra‐slow spreading ridge (Southwest Indian Ridge61to69E)[J]. Geochemistry,Geophysics, Geosystems,2003,4(8).
    [152] Sauter D, Mendel V, Rommevaux‐Jestin C, et al. Focused magmatism versusamagmatic spreading along the ultra‐slow spreading Southwest Indian Ridge: Evidencefrom TOBI side scan sonar imagery[J]. Geochemistry, Geophysics, Geosystems,2004,5(10).
    [153] Liang Yuyang, Li Jiabiao, Li Shoujun, et al. The morphotectonics and its evolutionarydynamics of the central Southwest Indian Ridge (49°to51°E)[J]. Acta Oceanologica Sinica,2013,32(12):87–95.
    [154] Montelli R, Nolet G, Dahlen F A, et al. Finite-frequency tomography reveals a varietyof plumes in the mantle[J]. Science,2004,303(5656):338-343.
    [155] Montelli R, Nolet G, Dahlen F A, et al. A catalogue of deep mantle plumes: New resultsfrom finite‐frequency tomography[J]. Geochemistry, Geophysics, Geosystems,2006,7(11).
    [156] Van Der Hilst R D, Maarten V. Banana-doughnut kernels and mantle tomography[J].Geophysical Journal International,2005,163(3):956-961.
    [157] Zhang T, Lin J, Gao J Y. Interactions between hotspots and the Southwest Indian Ridgeduring the last90Ma: Implications on the formation of oceanic plateaus and intra-plateseamounts[J]. Science China Earth Sciences,2011,54(8):1177-1188.
    [158] Foulger G R. The``plate''model for the genesis of melting anomalies[J]. SpecialPapers-Geological Society Of America,2007,430:1.
    [159] Hoernle K, Hauff F, Kokfelt T F, et al. On-and off-axis chemical heterogeneities alongthe South Atlantic Mid-Ocean-Ridge (5–11°S): Shallow or deep recycling of ocean crustand/or intraplate volcanism?[J]. Earth and Planetary Science Letters,2011,306(1):86-97.
    [160] Paulick H, Münker C, Schuth S. The influence of small-scale mantle heterogeneities onMid-Ocean Ridge volcanism: evidence from the southern Mid-Atlantic Ridge (730′S to1130′S) andAscension Island[J]. Earth and Planetary Science Letters,2010,296(3):299-310.
    [161] Bruguier N J, Minshull T A, Brozena J M. Morphology and tectonics of the Mid‐Atlantic Ridge,7°–12°S[J]. Journal of Geophysical Research: Solid Earth (1978–2012),2003,108(B2).
    [162] Regelous M, Niu Y, Abouchami W, et al. Shallow origin for South Atlantic DupalAnomaly from lower continental crust: Geochemical evidence from the Mid-Atlantic Ridgeat26S[J]. Lithos,2009,112(1):57-72.
    [163] Niu Y, Bideau D, Hékinian R, et al. Mantle compositional control on the extent ofmantle melting, crust production, gravity anomaly, ridge morphology, and ridgesegmentation: A case study at the Mid-Atlantic Ridge33–35N[J]. Earth and PlanetaryScience Letters,2001,186(3):383-399

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700