用户名: 密码: 验证码:
北极高纬度苔原温室气体源汇研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北极高纬度地区是全球变化最为敏感的地区之一,也是全球增温剧烈的地区,大面积冻土融化使苔原土壤微区环境发生了很大变化,有利于土壤微生物的活动和温室气体的产生。另外,北极高纬度地区的濒海苔原,是全球重要的海鸟栖息地,海鸟通过捕食活将海洋中的碳氮磷等养分元素转移到陆地苔原,海鸟活动与鸟粪的沉降强烈影响着当地苔原土壤的理化性质,对高纬度北极苔原温室气体的源汇过程产生了重要影响,但是目前关于北极高纬度苔原温室气体通量的研究很少有文献报道,尤其是海鸟活动对北极苔原温室气体通量的影响研究还未开展。因此,在全球变化的背景下,研究海鸟活动与环境因子对高纬度北极苔原温室气体产生与排放过程的影响尤为重要。本文采用密闭箱法对北极高纬度地区的新奥尔松(Ny-Alesund)苔原温室气体(C02. CH4和N2O)通量的时空变化规律进行了观测研究,探讨了海鸟活动和环境因子对这些气体通量的影响;通过模拟实验,详细研究了冻融循环过程对北极苔原土壤温室气体产生速率的影响;此外,还分析了海洋大气中CO2浓度及其稳定同位素值的空间分布规律及其影响因素等。主要研究内容和结果分述如下:
     (1)北极新奥尔松地区近地面温室气体浓度的时空变化规律
     在2008和2009年夏季,对北极新奥尔松地区(Ny-Alesund)不同生态区包括鸟类保护区、普通苔原、废弃的矿区和人类活动考察站等区域的近地面CO2、 CH4和N20浓度进行了监测。结果表明:2008年夏季鸟类保护区苔原C02和N20平均浓度比2009年高约30ppm和25ppb;而CH4浓度比2009年低约700ppb。普通苔原CO2平均浓度2009年比2008年高约30ppm, CH4平均浓度低约700ppb, N2O浓度低约11ppb。温室气体浓度的年际差异可能是由气象条件和地表覆盖状况的差异所引起的。综合不同苔原区域:新奥尔松地区CO2和CH4浓度高于背景大气浓度,而N2O低于背景大气浓度。从海鸟活动高密度区到海鸟活动边缘区CO2浓度增大;且鸟类保护区苔原C02浓度低于普通苔原,N20浓度高于普通苔原。温室气体浓度的空间变化主要是由于海鸟活动和鸟粪增加了土壤营养元素,影响苔藓植被的发育情况并改变上垫面状况。矿区苔原和站区苔原温室气体浓度的变化主要受人类活动的影响。
     (2)北极新奥尔松地区苔原温室气体通量的时空变异规律及其影响因素
     采用密闭箱法对北极新奥尔松地区(Ny-Alesund)不同苔原区域包括鸟类活动区苔原、普通苔原、人类活动区(矿区苔原和站区苔原)的N2O和CH4通量进行了观测,发现鸟类活动区苔原CH4和N20通量受控于海鸟活动强度的变化。强海鸟活动区CH4和N2O排放高于中等海鸟活动区和弱海鸟活动区。强海鸟活动区CO2净通量(NEE)和光合速率也显著高于中等海鸟活动区和弱海鸟活动区,表明鸟类活动显著增加了苔原生态系统净通量(NEE)和光合速率;而平均呼吸速率差异不明显。普通海滩苔原和矿区苔原整体上表现为C02排放源。海鸟活动区苔原N2O和CH4平均通量分别为18.3±3.6μgN2Om-2h-1和53.5±20.3μgCH4m-2h-1;而普通海滩苔原是弱的N2O源(8.3±13.2μgN2Om-2h-1)和强的CH4汇(-82.8±22.3μgCH4m-2h-1)。矿区苔原和站区苔原是CH4和N2O的排放源,特别是N2O通量比普通海滩苔原和鸟类活动区苔原高一个数量级。统计分析表明:C02净通量(NEE)和呼吸速率与土壤温度呈正相关。北极高纬度苔原土壤总碳(TC)和土壤水分含量是影响苔原CH4通量的重要因素。强海鸟活动区土壤总氮(TN)、氨氮(NH4+-N)、硝氮(NO3--N)、总磷(TP)和总硫(TS)平均含量比非海鸟活动区高约一到两个数量级,说明海鸟活动和海鸟粪便的沉降强烈地影响了此苔原区域土壤的化学性质。鸟类保护区苔原N20通量与TN、NH4+-N和NO3--N含量显著正相关,表明海鸟的N输入和大气N沉降是控制苔原N2O通量空间变化的主要因素。N20通量与NH4+-N显著正相关(r=0.66,p<0.001),说明NH4+-N含量是高纬度北极苔原土壤N20排放率强有力的指示剂。
     (3)冻融循环对北极苔原土壤温室气体产生速率的影响
     选取南北极普通苔原、北极鸟类活动区、南极企鹅与海豹活动区等苔原的土壤样品以及鸟粪和苔藓样品,开展冻融循环模拟实验,探究冻结温度、冻融频率和水分含量对温室气体产生速率的影响,发现冻结的苔原土壤温室气体产生速率较低,融化阶段产生速率急剧升高。冻融循环过程中,苔原土壤-20℃冻结温室气体的产生速率和累积排放量比-10℃冻结时高,尤其是CH4累积排放量几乎均为-10℃冻结时的2倍;五周期冻融循环中温室气体的累积排放量明显高于三周期,但随着冻融循环次数的增加产生速率和每周期累计排放量几乎均呈减少的趋势。冻融循环实验中,企鹅粪土CH4和CO2累积排放量均比其它土壤样品高约2-3个数量级;海豹活动区和北极鸟类保护区苔原土壤N20累积排放量均比其它土壤样品高约1个数量级。不同水分含量前处理(0、2、5、10和20m1)的冻融循环实验中:土壤含水率的变化对CH4产生速率的影响很小;C02累积排放量随着土壤含水率的增加而减小;N2O累积排放量随水量的增加而增加,普通苔原土壤的最大累积排放量是在5ml添水处理后,鸟类保护区土壤最大累积排放量是在10ml添水处理后。
     (4)上海—南极海洋边界层大气CO2稳定同位素空间变化特征
     在中国第24次南极科学考察期间,采用Tedlar气袋采集了“雪龙号”考察船航线上海洋边界层大气样品以及东南极米洛半岛近地面大气样品。在室内采用Thermo Finnigan MAT-253同位素质谱仪对气体样品中CO2稳定同位素组成进行了测量,并分析了其δ13C与δ18O的空间变化规律,结果表明:上海—南极海洋边界层大气CO2的δ13C(-9.08%o~-7.09%o)与δ18O(-2.24%o-2.65%o)平均值分别为-8.37‰±0.5‰和0.03‰±1.4‰。在33.2°N~69.2°S随纬度的变化,δ13C与δ18O略呈增加趋势,增加率分别为0.002‰和0.005‰/纬度。大气中CO2浓度与δ13C呈显著负相关,与δ180呈正相关;而δ13C与δ180呈显著负相关。米洛半岛大气CO2的δ13C和δ18O平均分别为-8.08‰±0.8‰和-0.49‰4±0.7‰,接近于海洋边界层大气CO2同位素值。分析讨论了影响海洋边界层大气CO2的δ13C与δ180空间变化的因素,提出海洋边界层大气CO2稳定同位素组成是海洋CO2源汇强度变化灵敏的指示剂。本文提供了全球大区域海洋边界层大气CO2的同位素资料,有助于定量评估全球与区域海洋大气CO2的净收支。
The High Arctic regions are very sensitive to response and feedback to global warming, and in which permafrost thaws and alters microsites environment in tundra and stimulates microorganism activity to generate and emit greenhouse gases. In addition, major seabird colonies are typically found in high Arctic coastal areas. Seabird activity such as prey and trample transfers carbon, nitrogen and phosphorus from marine to terrestrial tundra ecosystem. Seabird activity and bird dropping affect physical and chemical properties in tundra soil, which further have important impact on the processes of sources and sinks of greenhouse gases in High Arctic. However, little research on CO2, N2O and CH4fluxes has been conducted at High Arctic tundra, such as at Svalbard, especially, effects of seabird activity on greenhouse gases in tundra. Therefore it is very important to study the influence of seabird activity and environment factors on production and emission of greenhouse gases in High Arctic tundra ecosystems During the4th and5th Chinese Arctic Research Expedition, temporal and spatial variations of greenhouse gases (CO2, N2O and CH4) fluxes and their influence factors were investigated from tundra ecosystems in Ny-Alesund, Svalbard, a Norwegian archipelago located in the High Arctic using the close chamber method. The objects of this paper were to evaluate the potential importance of CO2, N2O and CH4emissions from the tundra ecotopes affected by seabird activity and meteorological factor in the High Arctic region. Simulation experiments were designed and carried out to discuss the influence of freezing-thawing cycles on the emission rates of greenhouse gases in High Arctic tundra soil. In addition, spatial variation of CO2concentration and its isotopic compositions were and their affecting factors were also analyzed in the marine atmosphere. The main research contents are as follows:
     (1) Spatial and temporal variations of atmospheric of CO2, CH4and N2O concentration in NY-Alesund, High Arctic
     During the summers of2008and2009, gas samples were collected from in the different ecologic areas, including bird sanctuary tundra, including bird sanctuary, beach tundra, mining area, human activity area, etc. in Ny-Alesund, Svalbard, Norway. The concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in these gas samples were determined by gas chromatography in the laboratory, the spatial and temporal variations of their concentrations were analyzed, and the factors affecting their concentrations were discussed in this study. The diurnal mean CO2and N2O concentrations in summer2008were about30ppm and25ppb higher than those in summer2009at the sites in the bird sanctuary. The mean CO2concentration at the sites in beach tundra were30ppm higher in summer2008than in summer2009while the mean N2O concentration was11ppb lower in summer2008than in summer2009. The CH4concentration in summer2008was0.7ppm lower than that in summer2009at the bird sanctuary, vice versus for the sites in the beach tundra. The interannual variation of greenhouse gases concentrations might be related to environmental conditions. High seabird activity sites showed lower CO2concentrations than medium and low seabird activity sites in bird sanctuary. Overall the mean concentration of CO2in the bird sanctuary was lower than that in the beach tundra, but higher N2O concentration occurred there, indicating that CO2uptake and N2O emission might be associated with seabird activities. The deposition of seabird guano supplied much organic carbon, nitrogen into local soils, and further stimulated tundra vegetation growth, which might increase tundra CO2sink and N2O emission. Overall the mean concentrations of CO2and CH4in Ny-Alesund were higher than the mean background concentration monitored at Zeppelin Station, whereas the mean N2O concentration was lower than background concentration. In addition, the mining area and human activity areas around the base and airport did not show evidently higher atmospheric concentrations of CO2, CH4and N2O concentrations.
     (2) Spatial and temporal variations of carbon dioxide, nitrous oxide and methane fluxes from High Arctic tundra in Svalbard, Norway
     During the summers of2008and2009, net carbon dioxide, respiration rate, photosynthetic rate, net methane (CH4) and nitrous oxide (N2O) fluxes were investigated from five tundra ecotopes:bird sanctuary tundra, normal lowland tundra, non-seabird colony tundra, the tundra in abandoned coal mine and the tundra in scientific bases in Ny-Alesund (79°55'N,11°56'E) of High Arctic, Svalbard. High seabird activity sites showed large N2O and CH4emissions and CO2uptakes while low N2O and CH4emission, even high N2O and CH4uptake and high CO2emission occurred at medium and low seabird activity sites. Photosynthetic rates decreased from high seabird activity area to low seabird activity, indicating seabird activity significantly increased atmosphere CO2uptake from local tundra ecosystems. The respiration rates had no significant differences between the observation sites. Normal lowland tundra and the tundra in abandoned coal mine were the CO2sources. Overall the mean fluxes were18.3±3.6μgN2Om-2h-1and53.5±20.3μgCH4m-2h-1from tundra bird sanctuary tundra whereas non-seabird colony tundra and normal lowland tundra represented a relatively weak N2O source (8.3±13.2μgN2Om-2h-1) and strong CH4sink (-82.8±22.3μgCH4m-2h-1). Tundra soils in the tundra in abandoned coal mine and the tundra in scientific bases showed high CH4emissions due to effects of human activities, whereas high CH4uptake or low emission occurred in the soils of normal lowland tundra and bird sanctuary tundra. The mean N2O fluxes from the tundra in abandoned coal mine and the tundra in scientific bases were one order of magnitude higher than those from normal lowland tundra and bird sanctuary tundra, indicating that human activities significantly increased N2O emissions from tundra soils. NEE were positively related to air temperature and ground temperature, with no significant correlation with precipitation and air humidity. The mean TN, NH4+-N, NO3--N, TP and TS concentrations in the soils of High seabird activity sites are one to two orders of magnitude higher than those in the soils of non-seabird colony tundra, indicating seabird activity was the strongest soil physical and chemical processes. Soil TC and soil water regime were important factors affecting CH4fluxes from tundra soils in High Arctic. A strong positive correlation between N2O flux and the contents of soil TN, NH4+-N and NO3--N in bird sanctuary tundra further confirms that seabird guano N inputs and atmospheric N (as NH3) deposition are the predominant factors controlling the spatial variability of tundra N2O fluxes. The N2O fluxes showed a significant positive correlation with soil NH4+-N contents (r=0.66, p<0.001) at all the observation sites although the fluxes weakly correlated with soil total nitrogen (TN) contents (r=0.35, p=0.09), indicating that NH4+-N content acted as a strong predictor for N2O emission rates in tundra soils.
     (3) Impact of freezing-thawing cycles on emission rates of greenhouse gases from tundra soil in the Arctic
     In this study, normal tundra soil of Arctic, moss, normal tundra soil of Antartic, bird sanctuary tundra soil, seabird ornithogenic, Seal colony tundra soil and Penguin guanos were collected from six tundra regions in Arctic and Antarctic, and experimentally subjected to three freezing-thawing cycles (FTCs). We investigated the effects of FTCs on the emissions of three GHGs N2O, CO2and CH4, with special focus on the effects of freezing temperature, frequency and water content. The GHG emission rates were extremely low in frozen tundra soils. However, there was a fast increase in the emission rates of three GHGs following thawing. The emission rates and their variations were different from different experimental processes and different tundra soils. The greenhouse gases emission rates were higher during FTCs when the freezing temperature was at-20℃than-10℃. Furthermore, accumulated greenhouse gases fluxes were higher from5FTCs than3FTCs with different emission rates in each FTCs. CO2and CH4emission rates from the soils impacted by penguin guano were two or three orders of magnitude higher than those from other tundra soils. N2O emissions fluxes were one order of magnitude from bird sanctuary tundra soil and Seal colony tundra soil larger than those from others. Added0,2,5,10and20ml deionized water to tundra soil and experienced3FTCs, the variation of CH4fluxes was smallest. However, CO2emissions rates decreased with adding more water into tundra soil. The variation of N2O emission rates increased with adding more water into tundra soil. Fluxes of greenhouse gases and its variation were affected by soil physical and chemical properties during freeze-thaw cycle. Greenhouse gases emission rates from tundra soil were significantly affected by freeze-thaw cycles in Arctic and Antarctic, especially C cycle of penguin activity tundra area and N cycle of the seal activity tundra area.
     (4) Stable isotopes of carbon dioxide in the marine atmosphere along a hemispheric course from China to Antarctica
     During the24th Chinese Antarctic Expedition, the air samples were collected at10:00and22:00(local times) along the north-south track of the ship "Xuelong" from Shanghai Harbor, China to Antarctica. Carbon dioxide (CO2) concentrations and its isotopic compositions were measured in these samples. Mean CO2concentration at22:00(419.4±27.1ppm) was higher than that at10:00(392.7±20.0ppm), whereas δ13C-CO2values at22:00(-8.58±0.47%o) were lower than those at10:00(-8.23±0.49%o) in the marine atmosphere, indicating that the13C/12C ratio of the CO2might be associated with the photosynthetic uptake and respiration activity of terrestrial or marine organisms during the diurnal cycle. Overall the mean δ13C-and δ18O-CO2were-8.39±0.51‰and0.03±1.39‰, respectively, in the atmosphere from30°N to69°S. Atmospheric δ13C-and δ18O-CO2averaged-8.08±0.83%o and-0.49±0.66%o on Millor Peninsula of East Antarctica. A small but progressive increase in δ13C values with increasing latitudes southward was in good agreement with the expected trend. The enhanced CO2concentrations occurred in the atmosphere close to Eurasia continent, Philippines, Malaysia and Indonesia, and the δ13C oscillations in the atmosphere of33°N-30°S agreed well with anthropogenic pollution from the adjacent countries. In the range of30°S-50°S, atmospheric CO2concentrations were generally low with a relatively stable value of δ13C and δ18O. A great difference of δ13C occurred between10:00and22:00following the pronounced change of CO2concentrations in the range of50°S-70°S, and atmospheric CO2was significantly depleted in13C in the Antarctic Convergence Zone. The δ13C significantly negatively correlated with δ18O-CO2, and they showed a significant negative and positive correlation with CO2concentrations. Our results indicated that the isotopic compositions of CO2in the marine atmosphere might be a sensitive indicator for the strength of CO2source and sink from the ocean.
引文
Ainsworth EA, Long SP.2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist,165,351-372. doi: 10.1111/j.1469-8137.2004.01224.x
    Allen DE, Dalal RC, Rennenberg H, Meyer RL, Reeves S, Schmidt S.2007. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biology & Biochemistry,39:622-631.doi:10.1016/j.soilbio.2006.09.013
    Ambus P, Christensen S.1995. Spatial and seasonal nitrous oxide and methane fluxes in Danish forest, grassland, and agroecosystems. Journal of Environmental Quality,24:993-1001.
    Ambus P, Robertson GP.2006. The effect of increased N deposition on nitrous oxide, methane and carbon dioxide fluxes from unmanaged forest and grassland communities in Michigan. Biogeochemistry,79:315-337. doi:10.1007/s10533-005-5313-x
    Ambus P, Lowrance R.1991. Comparison of denitrification in two riparian soils. Soil Science Society of America Journal,55(4):994-997.
    Anderson IC, Poth M, Homstead J, Burdige D.1993. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Applied and Environmental Microbiology,59:3525-3533.
    Aspila KI, Agemian H, Chau ASY.1976. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments, Analyst,101:187-93.
    Baggs EM, Blum H.2004. CH4 oxidation and emissions of CH4 and N2O from Lolium perenne swards under elevated atmospheric CO2. Soil Biology & Biochemistry,36:713-723.doi: 10.1016/j.soilbio.2004.01.008.
    Baldocchi DD, Hicks BB, Meyers TP.1988. Measuring biosphere atmosphere exchanges of biologically related gases with micrometeorological methods[J]. Ecology,69 (5):1331-1340.
    Baldocchi DD, Valentini R, Running SR, Oechel W, Dahlman R.1996. Strategies for measuring and modeling CO2 and water vapor fluxes over terrestrial ecosystems[J]. Global Change Biology,2(3):159-168.
    Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer Ch., Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw UKT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S.2001. FLUXNET:A New Tool to Study the Temporal and Spatial Variability of Ecosystem Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities[J]. Bulletin of the American Meteorological Society,82:2415-2434.
    Ball BC, Dobbie KE, Parker JP, Smith KA.1997. The influence of gas transport and porosity on methane oxidation in soils. Journal of Geophysical Research 102,23301-23308. doi: 10.1029/97JD00870
    Ball BC, Scott A, Parker JP.1999. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil & Tillage Research,53:29-39. doi: 10.1016/S0167-1987(99)00074-4.
    Barnola JM, Raynaud D, Korot kevitch YS, Lorius C.1987. Vostok ice core:A 160000-year record of atmospheric CO2. Nature,329:408-414.
    Bartlett KB, Crill PM, Sass RL, Harriss RC, Dise NB.1992. Methane emissions from tundra environments in the Yukon-kuskokwim delta, Alaska, J. Geophys. Res., 97(D15):16645-16660.
    Bartlett KB, Harriss RC.1993. Review and assessment of methane emissions from wetlands. Chemosphere,26:261-320.doi:10.1016/0045-6535(93)90427-7.
    Basiliko N, Yavitt JB.2001. Influence of Ni, Co, Fe, and Na additions on methane production in Sphagnum-dominated Northern American peatlands. Biogeochemistry,52:133-153. doi: 10.1023/A:1006461803585.
    Bateman EJ, Baggs EM.2005. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space, Biol. Fert. Soils,41:379-388.
    Battle M, Bender ML, Tans PP, et al.2000.Global Carbon Sinks and Their Variability Inferred from Atmospheric O2 and δ13C. Science,287:2467-2471.
    Bedard C, Knowles R.1989. Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiological Reviews,53,68-84.
    Benstead J, King GM.2001. The effect of soil acidification on atmospheric methane uptake by a Maine forest soil. FEMS Microbiology Ecology,34:207-212.
    Bernhardt ES, Barber JJ, Pippen JS, Taneva L, Andrews J A, Schlesinger WH.2006. Long term effects of free air CO2 enrichment (FACE) on soil respiration. Biogeochemistry.77:91-116. doi:10.1007/s10533-005-1062-0.
    Beringer J, Hutley LB, Tapper NJ, Cernusak LA.2007. Savanna fires and their impact on net ecosystem productivity in North Australia. Global Change Biology,13:990-1004. doi: 10.1111/j.1365-2486.2007.01334.x
    Berg B, Matzner E.1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews,5:1-25. doi:10.1139/er-5-1-1
    Birks HJB, Vivienne JJ, Rose NL.2004. Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments-an introduction, J. Paleolimnol., 31:403-410.
    Blackall TD, Wilson LJ, Theobald MR, Milford C, Nemitz E, Bull J, Bacon PJ, Hamer KC, Wanless S, Sutton MA.2007. Ammonia emissions from seabird colonies, Geophys. Res. Lett., 34:L10801
    Blackall TD, Wilson LJ, Bull J, Theobald MR, Bacon PJ, Hamer KC, Wanless S, Sutton MA. 2008. Temporal variation in atmospheric ammonia concentrations above seabird colonies, Atmos. Environ.,42:6942-6950.
    Blais AM, Lorrain S, Tremblay A.2005. Greenhouse Gas Fluxes (CO2, CH4 and N2O) in Forests and Wetlands of Boreal, Temperate and Tropical Regions. In 'Greenhouse Gas Emissions-Fluxes and Processes'. (Eds A Tremblay, L Varfalvy, C Roehm, M Garneau) pp.87-127. (Springer-Verlag:Berlin)
    Boeckx P, Van Cleemput O.1997. Methane emission from a freshwater wetland in Belgium. Soil Science Society of America Journal,61:1250-1256.
    Boon PI, Lee K.1997. Methane oxidation in sediments of a flood plain wetland in south-eastern Australia. Letters in Applied Microbiology,25:138-142. doi: 10.1046/j.1472-765X.1997.00189.x.
    Boon PI, Mitchell A, Lee K.1997. Effects of wetting and drying on methane emissions from ephemeral flood plain wetlands in south-eastern Australia. Hydrobiologia,357,73-87. doi:10.1023/A:1003126601466.
    Bond-Lamberty B, Peckham SD, Ahl DE, Gower ST.2007. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature,450:89-92. doi:10.1038/nature06272
    Borken W, Davidson EA, Savage K, Sundquist ET, Steudler P.2006. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biology & Biochemistry,38:1388-1395. doi:10.1016/j.soilbio.2005.10.011
    Bottner, P.1985. Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C- and 15N-labelled plant material. Soil Biology and Biochemistry,17(3): 329-337.
    Bowling DR, McDowell NG, Welker JM, Bond BJ, Law BE, Ehleringer JR,2003. Oxygen isotope content of CO2 in nocturnal ecosystem respiration:2. Short-term dynamics of foliar and soil component fluxes in an old-growth ponderosa pine forest. Global Biogeochemical Cycles,17. DOI:10.1029/2003GB002082.
    Bowden RD, Nadelhoffer KJ, Boone RD, et al.1993. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a temperate mixed hardwood forest. Canadian Journal of Forest Research,23(7):1402-1407.
    Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, Coale KH, Cullen JJ, De Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson A J.2007. Mesoscale iron enrichment experiments 1993-2005:Synthesis and future directions. Science, 315:612-617. doi:10.1126/science.1131669.
    Bradford MA, Ineson P, Wookey PA, Lappin-Scott HM.2001. Role of CH4 oxidation, production and transport in forest soil CH4 flux. Soil Biology & Biochemistry,33:1625-1631. doi: 10.1016/S0038-0717(01)00078-5
    Bremner JM, Blackmer AM.1981. Terrestrial nitrification as a source of atmospheric nitrous oxide. In 'Denitrification, nitrification and atmospheric N2O'. (Ed. CC Delwiche) pp. 151-170. (John Wiley & Sons Ltd:Chichester, UK)
    Bremner JM, Shaw K.1958. Denitrification in soil. Ⅱ. Factors affecting denitrification. Journal of Agricultural Science,51:40-52.
    Brierley EDR, Wood M.2001. Heterotrophic nitrification in an acid forest soil:isolation and characterisation of a nitrifying bacterium. Soil Biology & Biochemistry 33,1403-1409. doi: 10.1016/S0038-0717(01)00045-1
    Browns LAE.1984. Biomass of tropical forests:Anew estimate based on forest volumes. Science, 223:1290-1293.
    Bryan BA.1981. Physiology and biochemistry of denitrification. In'Denitrification, nitrification and atmospheric N2O'. (Ed. CC Delwiche) pp.67-84. (John Wiley & Sons:New York).
    Brumme R, Borken W, Finke S.1999. Hierarchical control on nitrous oxide emission in forest ecosystems. Global Biogeochemical Cycles,13:1137-1148. doi:10.1029/1999GB900017.
    Bubier J, Crill P, Mosedale A.2002. Net ecosystem CO2 exchange measured by autochambers during the snow-covered seasonat a temperate peatland. Hydrological Processes, 16:3667-3682.
    Burrows EH, Bubier JL, Mosedale A, Cobb GW, Crill P M.2005. Net ecosystem exchange of carbon dioxide in a temperate poor fen:A comparison of automated and manual chamber techniques, Biogeochemistry,7:21-45.
    Burford J R, Bremner J M. Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil Biology & Biochemistry. 1975,7,389-394. doi:10.1016/0038-0717(75)90055-3
    Butterbach-Bahl K, Papen H.2002. Four years continuous record of CH4-exchange between the atmosphere and untreated and limed soil of an N-saturated spruce and beech forest ecosystem in Germany. Plant and Soil,240:77-90. doi:10.1023/A:1015856617553
    Butterbach-Bahl K, Gasche R, Huber C, Kreutzer K, Papen H.1998. Impact of N-input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of the temperate zone in Europe. Atmospheric Environment,32:559-564. doi: 10.1016/S1352-2310(97)00234-3
    Butterbach-Bahl K, Gasche R, Willibald G, Papen H.2002. Exchange of N-gases at the Hoglwald Forest-a summary. Plant and Soil,240:117-123. doi:10.1023/A:1015825615309
    Burton DL, Beauchamp EG. 1994. Profile nitrous oxide and carbon dioxide concentrations in a soil subject to freezing. Soil Sci. Soc. Am. J.,58:115-122
    Castaldi S, Ermice A, Strumia S.2006. Fluxes of N2O and CH4 from soils of savannas and seasonally-dry ecosystems. Journal of Biogeography,33:401-415. doi: 10.1111/j.1365-2699.2005.01447.x.
    Castaldi S.2000. Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biology and Fertility of Soils,32,67-72. doi: 10.1007/s003740000218.
    Castaldi S, Fierro A.2005. Soil-atmosphere methane exchange in undisturbed and burned Mediterranean shrubland of southern Italy. Ecosystems,8:182-190. doi: 10.1007/s10021-004-0093-z.
    Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD.1995. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles,9:1-10. doi: 10.1029/94GB02651.
    Carran RA, Theobald PW, Evans JP.1995. Emission of nitrous oxide from some grazed pasture soils in New Zealand. Australian Journal of Soil Research,33:341-352.
    Ceulemans R, Mousseau M.1994. Effects of elevated atmospheric CO2 on woody plants. New Phytologist,127:425-446. doi:10.1111/j.1469-8137.1994.tb03961.x.
    Chapin III FS, Mcguire AD, Randerson J, Pielke Sr. R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW,2000. Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biol.,6:211-223.
    Chaban B, Ng SYM, Jarrell KF.2006. Archaeal habitats-From the extreme to the ordinary. Canadian Journal of Microbiology,52:73-116. doi:10.1139/w05-147.
    Chalk PM, Smith CJ.1983. Chemodenitrification. In 'Gaseous loss of nitrogen from plant-soil systems'. (Eds JR Freney, JR Simpson) pp.65-89. (Martinus Nijhoff/Dr W Junk Publishers: The Hague)
    Chan ASK, Parkin TB.2001. Methane oxidation and production activity in soils from natural and agricultural ecosystems. Journal of Environmental Quality,30:1896-1903.
    Chang C, Janzen HH, Cho CM, Nakonechny EM.1998. Nitrous oxide emission through plants. Soil Science Society of America Journal,62:35-38.
    Chanton JP, Whiting GJ, Blair NE, Lindau CW, Bollich PK.1997. Methane emission from rice: stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochemical Cycles, 11:15-27. doi:10.1029/96GB03761.
    Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M.2007. Soils, a sink for N2O? A review. Global Change Biology,13:1-17. doi:10.1111/j.1365-2486.2006.01280.x
    Cheng W, Yagi K, Sakai H, Kobayashi K.2006. Effects of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil:an experiment in controlled-environment chambers. Biogeochemistry.,77:351-373. doi: 10.1007/s10533-005-1534-2
    Chen GBT, Bourget SJ, Ou Ellert GJ.1971. Influence of alternate freezing and thawing on the availability of some soil minerals. Canadian Journal of Soil Science,51:323-328.
    Christensen TR, Michelsen A, Jonasson S.1999. Exchange of CH4 and N2O in a subarctic heath soil:effects of inorganic N and P and amino acid addition. Soil Biol. Biochem.,31:637-641.
    Christensen TR, Jonasson S, Callaghan TV, et al.1999. Carbon cycling and methane exchange in Eurasian tundra ecosystems. Ambio,28(3):239-244.
    Christensen TR.1999. Potential and ecosystems actual trace gas fluxes in Arctic terrestrial. Polar Research,18(2):199-206.
    Christensen TR, Jonasson S, Callaghan TV, Havstrom M.1995. Spatial variation in high-latitude methane flux along a transect across Siberian and European tundra environments. J Geophys Res,100D:21035-21045.
    Christensen TR, Johansson T, Akerman HJ, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH.2004. Thawing sub-arctic permafrost:Effects on vegetation and methane emissions. Geophys. Res. Lett.,31:L04501. doi:10.1029/2003GL018680.
    Christensen S, Christensen BT.1991. Organic matter available for denitrification in different soil fractions:effect of freeze/thaw cycles and straw disposal. Journal of Soil Science,42(4): 637-647.
    Christensen TR, Freiberg T, Sommerkorn M, Kaplan J, Illeris L, Soegaard H, Nordstroem C, Jonasson S.2000. Trace gas exchange in a high-arctic valley.1. Variations in CO2 and CH4 flux between tundra vegetation types. Global Biogeochemical Cycles,14:701-713. doi: 10.1029/1999GB001134
    Cho CM, Sakdinan L.1978. Mass spectrometric investigation on denitrification. Canadian Journal of Soil Science,58:443-457.
    Choi DW, Kunz RC, Boyd ES, Semrau JD, Antholine WE, Han JI, Zahn JA, Boyd JM, De la Mora AM, DiSpirito AA.2003. The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH:Quinone oxidoreductase complex from Methylococcus capsulatus bath. Journal of Bacteriology,185:5755-5764. doi:10.1128/JB.185.19.5755-5764.2003
    Choudhary MA, Akramkhanov A, Saggar S.2002. Nitrous oxide emissions from a New Zealand cropped soil:Tillage effects, spatial and seasonal variability. Agriculture, Ecosystems and Environment,93:33-43.
    Ciais P, Denning AS, Tans PP, Berry JA, Randall DA, Collate GJ, Sellers PJ, White JWC, Trolier M, Meijer HAJ, Francey RJ, Monfray P, Heimann M.1997. A three-dimensional synthesis study of δ18O in atmospheric CO2 1. Surface fluxes. Journal of Geophysical Research,102: 5857-5872.
    Ciais P, Tans PP, Denning AS, et al.1997. A three-dimensional synthesis study of δ18O in atmospheric CO2 part Ⅱ. Simulations with the TM2 transport model. Journal of Geophysical Research,102:5873-5883.
    Ciais P, Tans PP, Trolier M, White JWC, Francey RJ.1995a. A large northern hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 269:1098-1102.
    Ciais P, Tans PP, White JWC, Trolier M, Francey RJ, Berry JA, Randall DR, Sellers PJ, Collatz JG., Schime DS.1995b. Partitioning of ocean and land uptake of CO2 as inferred by 813C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. Journal of Geophysical Research,100:5051-5070.
    Conrad R.2005. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Organic Geochemistry.36:739-752. doi: 10.1016/j.orggeochem.2004.09.006
    Cook SA, Shiemke AK.1996. Evidence that copper is a required cofactor for the membrane-bound form of methane monooxygenase. Journal of Inorganic Biochemistry,63, 273-284. doi:10.1016/0162-0134(95)00239-1
    Corradi C, Kolle O, Walter KM, Zimov SA, Schulze ED.2005. Carbon dioxide and methane exchange of a north-east Siberian tussock tundra. Global Change Biology,11:1910-1925.
    Coyne PI, Kelly JJ.1975. CO2 exchange over the Alaskan arctic tundra:meteorological assessment by an aerodynamic method. J Appl Ecol,12:587-611.
    Corredor JE, Morell JM, Bauza J.1999. Atmospheric nitrous oxide fluxes from mangrove sediments. Marine Pollution Bulletin,38:473-478.doi:10.1016/S0025-326X(98)00172-6.
    Corton TM, Bajita JB, Grospe FS, Pamplona RR, Asis CAJr, Wassmann R, Lantin RS, Buendia LV. 2000. Methane emission from irrigated and intensively managed rice fields in central Luzon(Philippines). Nutrient Cycling in Agroecosystems,58:37-53. doi: 10.1023/A:1009826131741
    Curtis PS, Wang X.1998. A meta-analysis of elevated CO2 effects on woody plants mass, form and physiology. Oecologia,113:299-313. doi:10.1007/s004420050381
    Cuntz M,2011. A dent in carbon's gold standard. Nature,477:547-548.
    Dalal RC, Wang WJ, Robertson GP, Parton WJ.2003a. Nitrous oxide emission from Australian agricultural lands and mitigation options:a review. Australian Journal of Soil Research,41: 165-195. doi:10.1071/SR02064.
    Dalal RC, Wang WJ, Robertson GP, Parton WJ, Myer CM, Raison RJ.2003b. Emission sources of nitrous oxide from Australian agricultural and forest lands and mitigation options. Australian Greenhouse Office. National Carbon Accounting System Technical Report No.35.
    Dale AW, Regnier P.2006. Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments:a theoretical analysis. American Journal of Science,306:246-294.
    Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho JEM.2000. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry,48(1):53-69.
    Davidson EA, Janssens IA.2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature,440:165-173. doi:10.1038/nature04514
    Dawson JJC, Billett MF, Hope D, Palmer SM, Deacon CM.2004. Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochemistry,70:71-92.
    Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM.2002. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. International Journal of Systematic and Evolutionary Microbiology,52:251-261.
    De Graaf MA, Van Groenigen KJ, Six J, Hungate B, van Kessel C.2006. Interactions between plant growth and soil nutrient cycling under elevated CO2:a meta-analysis. Global Change Biology,12:2077-2091. doi:10.1111/j.1365-2486.2006.01240.x
    Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Potter CS, Borken W, Brumme R, Butterbach-Bahl K, Crill PM, Dobbie K, Smith KA.2000. General CH4 oxidation in natural and managed systems. Global Biogeochemical Cycles,14:999-1019. doi: 10.1029/1999GB001226
    De Lucia EH, Hamilton JG, Naidu SL, et al.1999. Net primary production of a forest ecosystem with experimental CO2 enrichment. Science,284 (5417):1177-1179.
    Dengel S, Levy PE, Grace J, Jones SK, Skiba UM.2011. Methane emissions from sheep pasture, measured with an open-path eddy covariance system, Global Change Biol.,17(12), 3524-3533.
    Denier Van Der Gon HAC, Neue HU.1995. Methane emission from a wetland rice field as affected by salinity. Plant and Soil,170:307-313. doi:10.1007/BF00010483.
    Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, et al.2007. Couplings between changes in the climate system and biogeochemistry. In 'Climate Change 2007:The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change'. (Eds S Solomon, D Qin, M Manning, Z Chen, M Marquis, K B Averyt, M Tignor, H L Miller) pp.499-587. (Cambridge University Press: Cambridge, UK)
    Denmead OT.1979. Chamber systems for measuring nitrous oxide emission from soils in the field[J]. Soil Sci. Soc. Am. J.43:89-95.
    Denmead OT.1983. Micrometerological methods for measuring gaseous losses of nitrogen in the field. Freney, J. R., Simpso n, J. R. Gaseous loss of nitrogen from plant-soil systems. The Hague:Martinus Nijhoff/Dr. W. Junk Publisher.
    Devol AH, Richey JE, Forsberg BR, Martinelli LA.1990. Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere. Journal of Geophysical Research,95:16417-16426. doi:10.1029/JD095iD10p16417
    Ding W, Cai Z.2003. Effect of temperature on methane production and oxidation in soils. Chinese Journal of Applied Ecology,14:604-608.
    Dobbie KE, McTaggart IP, Smith KA.1999. Nitrous oxide emissions from intensive agricultural systems:Variations between crops and seasons, key driving variables, and mean emission factors[J]. J Geophys Res,104(NO. D21):26891-26899.
    Dong YS, Zhang S, Qi YC, et al.2000. Fluxes of CO2, N2O and CH4 from a typical temperate grassland in Inner Mongolia and its daily variation [J]. Source Chinese Science Bullet in, 45(17):1590-1594.
    Dorlan DS, Beauchamp EG 1991. Dinitrification and ammonification at low soil temperatures[J]. CanadianJournalofSoilScience,71:293-303.
    Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, Aerts R.2009. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic, Nature,460(7255):616-619.
    Dorr H, Katruff L, Levin I.1993. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere,26:697-713. doi:10.1016/0045-6535(93)90454-D.
    Dorsch P, PalojOrvi A, Mommertz S.2004. Overwinter greenhouse gas fluxes in two contrasting agricultural habitats.Nutrient CyclinginAgroecosystems,70:117-133.
    Dsonea DI, Belk E, Boone RD.1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in temperate mixed hardwood forest [J]. Global Change Biology,4(2):217-227.
    Dueck TA, de Visser R, Poorter H, Persijn S, Gorissen A, de Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJM, Ngai AKY, Verstappen F, Bouwmeester H, Voesnek LACJ, van der Werf A.2007. No evidence for substantial aerobic methane emission by terrestrial plants:a 13C-labelling approach.New Phytologist,175:29-35. doi:10.1111/j.1469-8137.2007.02103.x
    Dubey SK.2005. Microbial ecology of methane emission in rice agroecosystem:a review. Applied Ecology and Environmental Research.3:1-27.
    Dunfield PF, Topp E, Archambault C, Knowles R.1995. Effect of nitrogen fertilizers and moisture content on CH4 and N2O fluxes in a humisol:Measurements in the field and intact soil cores. Biogeochemistry.29:199-222. doi:10.1007/BF02186048
    Dutta K, Schuur EAG, Neff JC, Zimov SA.2006. Potential carbon release from permafrost soils of Northeastern Siberia.Glob. Change Biol.,12:2336-2351.
    Eckard RJ, Chen D, White RE, Chapman DF.2003. Gaseous nitrogen loss from temperate perennial grass and clover dairy pastures in South-Eastern Australia, Aust. J. Agric.
    Edwards AC, Killham K.1986. The effect of freeze/thaw on gaseous nitrogen loss from upland soils. Soil Use and Management,2(3):86-91.
    Elberling B, Christiansen HH, Hansen BU.2010. High nitrous oxide production from thawing permafrost. Nature Geoscience,3:332-335.
    Elberling BO.2003. Seasonal trends of soil CO2 dynamics in a soil subject to freezing. Journal of Hydrology,276:159-175
    Ewel KC, Cropper WP, Gholz HL.1987. Soil CO2 evolutionin Florida slash pine plantations[J]. Canadian Journal of Forest Research,17:325-329.
    Farquhar GD, Lloyd J, Taylor JA, Flanagan LB, Syvertsen JP, Hubick KT, Wong SC, Ehleringer JR,1993. Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature,363:439-443.Fan SM, Wofsy SC, Bakwin PS, et al.1992. Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and the subarctic tundra. J Geophys Res,97:16627-16644.
    Fang C, Moncrieff JB.1996. An improved dynamic chamber technique for measuring CO2 efflux from the surface of soil[J]. Functional Ecology,10:297-305.
    Ferretti DF, Miller JB, White JWC, Lassey KR, Lowe DC, Etheridge DM.2007. Stable isotopes provide revised global limits of aerobic methane emissions from plants. Atmospheric Chemistry and Physics,7:237-241.
    Firestone MK, Firestone RB, Tiedje JM.1980. Nitrous oxide from soil denitrification:factors controlling its biological production. Science,208:749-751. doi: 10.1126/science.208.4445.749
    Flessa H, Dorsch P, Beese F, Konig H, Bouwman AF.1996. Influence of cattle wastes on nitrous oxide and methane fluxes in pasture land. J. Environ. Quality,25:1366-1370.
    F(?)rland E, Hanssen-Bauer I, Nordli P.1997. Climate statistics and long-term series of temperatures and precipitation at Svalbard and Jan Mayen, Det Norske Meteorologiske Institutt Klima Report 21/97,1997.
    Focht DD, Verstraete W.1977. Biochemical ecology of nitrification and denitrification. In 'Advances in microbial ecology'. (Ed. M. Alexander) pp.135-214. (Plenum Press:New York)
    Francey RJ, Tans PP,1987. Latitudinal variation in oxygen-18 of atmospheric CO2. Nature,327: 495-497.
    French HMThe Periglacial Environment 3rd edn (John Wiley,2007).
    Freney JR, Denmead OT, Simpson JR.1979. Nitrous oxide emission from soils at low moisture contents. Soil Biology & Biochemistry,11:167-173. doi:10.1016/0038-0717(79)90096-8.
    Friborg T, Christensen TR, Hansen BU, Nordstroem C, Soegaard H.2000. Trace gas exchange in a high-Arctic valley:2. Landscape CH4 fluxes measured and modeled using eddy correlation data, Global Biogeochem. Cycles,14(3):715-723.
    Friend AD, Arneth A, Kiang NY, Lomas M, Ogee J, ROdenbeck C, Running SW, Santaren Jean-Diego, Sitch S, Viovyn, Woodward FI, Zaehle S.2007. FLUXNET and modeling the global carbon cycle[J]. Global Change Biology,13(3):610-633.
    Fung I, Field CB, Berry JA,Thompson MV、, Randerson JT, Malmstrom CM, Vitousek PM, James Collate G, Sellers PJ, Randall DA, Denning AS, Badeck F, John J.1997. Carbon-13 exchanges between the atmosphere and biosphere. Global Biogeochemical Cycles,11: 507-533. DOI:10.1029/97GB01751
    Gal'chenko VF, Dulov LE, Cramer B, Konova NI, Barysheva SV.2001. Biogeochemical processes of methane cycle in the soils, bogs, and lakes of western Siberia. Microbiology,70: 175-185. doi:10.1023/A:1010477413264.
    Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ.2004. Nitrogen cycles:past, present, and future. Biogeochemistry,70:53-226. doi:10.1007/s10533-004-0370-0.
    Gao ZY, Chen LJ, Wang WJ.2001. Air-sea fluxes and the distribution of sink and source of CO2 between 80°W and 80°E in the southern ocean. Chinese Journal of Polar Research,13: 175-186.
    Gary JW, Jeffrey PC, David SB, et al.1991. Relationships between CH4 emission, biomass and CO2 exchange in a subtropical grassland[J]. J Geophys Res,90(NO. D7):13067-13071.
    Georlette D.2002. Cold 2 adapted enzymes[J]. Focuson Biotechnology,7:177-196.
    Gillon J, Yakir D.2001. Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science,291:2584-2587.
    Goldberg SD, Knorr K, Blodau C, Lischeid G, Gebauer G 2010. Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations, Global Change Biol., 16,220-233.
    Goldberg SD, BorkenW, Gebauer G 2009. N2O emission in a Norway spruce forest due to soil frost:Concentration and isotope profiles sheda new light on an old story. Biogeo-chemistry,doi:10.1007/s10533-009-9294-z.
    Goldberg SD, Muhr J, BorkenW, et al.2008. Fluxes of climate relevant trace gases between a Norway spruce forest soil and atmosphere during repeated freeze-thaw cycles in mesocosms. Journal of Plant Nutrition and Soil Science,171:729-739.
    Goodroad LL, Keeney DR.1984. Nitrous oxide emissions from soild uring thawing[J]. Canadian Journal of Soil Science,64:187-194.
    Grace J, San Jose J, Meir P, Miranda HS, Montes RA.2006. Productivity and carbon fluxes of tropical savannas. Journal of Biogeography,3:87-400.doi:10.1111/j.1365-2699.2005.01448.x.
    Granli T, Bockman OC.1994. Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences 12 (Suppl.):7-128.
    Grant RF.1999. Simulation of methanotrophy in the mathematical model Ecosys. Soil Biology & Biochemistry,31:287-297. doi:10.1016/S0038-0717(98)00119-9.
    Gregorich EG, Hopkins DW, Elberling B, Sparrow AD, Novis P, Greenfield LG, Rochette P.2006. Emission of CO2, CH4 and N2O from lakeshore soils in an Antarctic dry valley. Soil Biology & Biochemistry,38:3120-3129. doi:10.1016/j.soilbio.2006.01.015.
    Groffman PM, Hardy JP, Driscoll CT, et al.2006. Snow depth, soil freezing, and fluxes of carbondi oxide, nitrous oxide and methane in a northern hardwood forest. Global Change Biology,12:1748-1760.
    Groffinan PM, Gold A J, Jacinthe PA.1998. Nitrous oxide production in riparian zones and groundwater. Nutrient Cycling in Agroecosystems,52:179-186. doi: 10.1023/A:1009719923861.
    Grogan P, Michelsen A, Ambus P, et al.2004. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biology and Biochemistry,36(4): 641-654.
    Groendahl L, Friborg T, Soegaard H.2007. Temperature and snow-melt controls on interannual variability in carbon exchange in the high arctic, Theoretical and Applied Climatology,2007,88:111-125.
    Gruber N, Keeling CD.2001. An improved estimate of the isotopic air-sea disequilibrium of CO2: Implications for the oceanic uptake of anthropogenic CO2. Geophysical Research Letters,28: 555-558.
    Gutknecht JLM, Goodman RM, Balser TC.2006. Linking soil process and microbial ecology in freshwater wetland ecosystems. Plant and Soil,289:17-34. doi:10.1007/s11104-006-9105-4.
    Hanson RS, Hanson TE.1996. Methanotrophic bacteria. Microbiological Reviews,60:439-471.
    Hao WM, Scharffe D, Crutzen PJ, Sanhueza E.1988. Production of N2O, CH4, and CO2 from soils in the tropical savanna during the dry season. Journal of Atmospheric Chemistry,7:93-105. doi:10.1007/BF00048256.
    Harazono Y., Mano M, Miyata A, Zulueta RC, Oechel WC.2003. Inter-annual carbon dioxide uptake at a wet sedge tundra ecosystem in the Arctic.Tellus,55B:215-231.
    Haynes BE, Gower ST.1995. Belowground carbon allocation in unfertilization and fertilized red pine plantations in northern Wisconsin[J]. Tree Physiol,15:317-325.
    Heikkinen JEP, Elsakov V, Martikainen PJ.2002. Carbon dioxide and methane dynamics and annual'carbon balance intundra wetland in NE Europe, Russia. Global Biogeochemical Cycles,16(4):GB001930. doi:10.1029/2002GB001930.
    Heikkinen JEP, Virtanen T, Huttunen JT, Elsakov V, Martikainen PJ.2004. Carbon balance in East European tundra. Global Biogeochemical Cycles,18:GB1023. doi:10.1029/2003GB002054.
    Heyer J, Berger U, Kuzin I L, Yakovlev ON.2002. Methane emissions from different ecosystem structures of the subarctic tundra in Western Siberia during midsummer and during the thawing period. Tellus Series B,54:231-249.
    Hicklenton PR, Oechel WC.1976. Physiological aspects of ecology of dicranum fuscescens in Subarctic.1. Acclimation and Acclimation Potential of CO2 Exchange in relation to habitat, light, and temperature. Canadian Journal of Botany-Revue Canadienne De Botanique,54: 1104-1119.
    Hisdal V.1998. Svalbard nature and history. Norsk Polarinstitutt, Oslo.
    Housman DC, Naumburg E, Huxman TE, Charlet TN, Nowak RS, Smith SD.2006. (Increases in desert shrub productivity under elevated carbon dioxide vary with water availability. Ecosystems,9:374-385. doi:10.1007/s10021-005-0124-4.
    Huiskes A, Boschker H, Lud D, Moerdijk-Poortvliet T.2006. Stable Isotope Ratios as a Tool for Assessing Changes in Carbon and Nutrient Sources in Antarctic Terrestrial Ecosystems. Plant Ecology,182(1):79-86.
    Humphreys ER, Lafleur PM.2011. Does earlier snowmelt lead to greater CO2 sequestration in two low Arctic tundra ecosystems? Geophysical Research Letters,38:L09703
    Hutchinson GL, Mosier AR.1981. Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci. Soc. Am. J.,45:311-316.
    Huttunen JT, Nykanen H, Turunen J, Martikainen PJ.2003. Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia. Atmos. Environ., 37:147-151.
    Hutsch BW.2001. Methane oxidation in non-flooded soils as affected by crop production-invited paper. European Journal of Agronomy,14:237-260. doi:10.1016/S1161-0301(01)00110-1
    Hutley LB, Leuning R, Beringer J, Cleugh HA.2005. The utility of the eddy covariance techniques as a tool in carbon accounting:tropical savanna as a case study. Australian Journal of Botany,53:663-675. doi:10.1071/BT04147
    Hyvonen R, Agren GI, Linder S, Persson T, Cotrufo F, Ekblad A, Freeman M, Grelle A, Janssens LA, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, van Oijen M, Wallin G.2007. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems:a literature review. New Phytologist, 173:463-480. doi:10.1111/j.1469-8137.2007.01967.x
    IAEA.1992. Manual on measurements of methane and nitrous oxide emissions from agriculture. IAEA-TECHDOC-674.91 p. International Atomic Energy Agency (IAEA), Vienna, Austria.INE.2007. Cambios estructurales en la agricultura chilena.
    Inubushi K, Barahona M A, Yamakawa K. Effects of salts and moisture content on N2O emission and nitrogen dynamics in yellow soil and Andosol in model experiments. Biology and Fertility of Soils.1999,29,401-407. doi:10.1007/s003740050571
    IPCC (2001) Technical summary. In 'Climate change 2001:The scientific basis. Contribution of Working Group I of the Intergovernmental Panel on Climate Change'. (Eds J T Houghton, Y Ding, DJ Griggs, M Noguer, P J van der Linden, X Dai, K Maskell, C A Johnson) (Cambridge University Press:Cambridge, UK)
    IPCC (2007), Climate Change 2007:The Physical Science Basis. Cambridge University Press, Cambridge, UK and New York, USA.
    Ishizawa M, Nakazawa T, Higuchi KA.2002. Multi-box model study of the role of the biospheric metabolism in the recent decline of δ18O in atmospheric CO2. Tellus B,54:307-324.
    Jang I, Lee S, Hong JH, Kang H.2006. Methane oxidation rates in forest soils and their controlling variables:a review and a case study in Korea. Ecological Research,21:849-854. doi:10.1007/s11284-006-0041-9.
    Jarrell KF, Kalmokoff ML.1988. Nutritional requirements of the methanogenic archeabacteria. Canadian Journal of Microbiology,34:557-576.
    Jensen LS, Mueller T, Tate KR, Ross DJ, Magid J, Nielsen NE.1996. Soil surface CO2 flux as an index of soil respiration in situ:A comparison of two chamber methods[J]. Soil Biol. Biochem,28 (10/11):1297-1306.
    Jia N, Sun LG, He X, You KH, Zhou X, Long NY.2012. Distributions and impact factors of antimony in top soils and moss in Ny-Alesund, Arctic. Environmental Pollution,171:72-77.
    Jiao Z, Hou A, Shi Y, Huang G, Wang Y, Chen X.2006. Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community. Communications in Soil Science and Plant Analysis,37:1889-1903. doi: 10.1080/00103620600767124.
    Kaufman DS, Schneider DP, McKay NP, Ammann CM., Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM., Arctic Lakes 2k Project Members.2009. Recent warming reverses long-term Arctic cooling. Science,325(5945):1236-1239.
    Kawaguchi H, Yoda K.1986. Carbon cycling changes during degeneration of a deciduous broadleaf forest after clear cutting I. Changes in organic matter and carbon storage. Jpn J Ecol,35:551-563.
    Kato T, Hirota M, Tang YH, et al.2005. Strong temperature dependence and no moss photosynthesis in winter CO2 flux for a Kobresia meadow on the Qinghai-Tibetan plateau. Soil Biology and Biochemistry,37:1966-1969.
    Keeney DR, Nelson DW.1982. Nitrogen-inorganic forms, in Methods of Soil Analysis, edited by A. L. Page, pp.643-698, Am. Soc. of Agron., Madison, Wis.
    Keeney DR, Fillery IR, Marx GP.1979. Effect of temperature on the gaseous nitrogen products of denitrification in a silt loam soil. Soil Science Society of America Journal,43:1124-1128.
    Keeling CD.1961. The concentration and isotopic abundances of carbon dioxide in rural and marine areas. Geochimica et Cosmochimica Acta.,24:3277-298.
    Keeling RF, Piper SC, Heiman M.1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature,381:218-221.
    Keeling CD, Carter AF, Mook WG.1984. Seasonal, latitudinal, and secular variations in the abundance and isotopic ratios of atmospheric CO2 2. Results from oceanographic cruises in the tropical Pacific Ocean. Journal of Geophysical Research,89:4615-4628.
    Keeling CD, Mook WG, Tans PP.1979. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature,277:121-123.
    Keppler F, Hamilton JTG, Brass M, Rockmann T.2006. Methane emissions from terrestrial plants under aerobic conditions. Nature,439:187-191. doi:10.1038/nature04420
    Kettunen R, Saarnio S, Martikainen PJ.2007. Can a mixed stand of N2-fixing and non-fixing plants restrict N2O emissions with increasing CO2concentration? Soil Biology & Biochemistry,39:2538-2546. doi:10.1016/j.soilbio.2007.04.023.
    Khalil MI, Baggs EM.2005. CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biology & Biochemistry,37:1785-1794. doi: 10.1016/j.soilbio.2005.02.012.
    Khmelenina VN, Kalyuzhnaya MG, Starostina NG, Suzina NE, Trotsenko YA.1997. Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva soda lakes. Current Microbiology,35:257-261. doi:10.1007/s002849900249.
    Kiese R, Hewett B, Graham A, Butterbach-Bahl K.2003. Seasonal variability of N2O emissions and CH4 uptake by tropical rainforest soils of Queensland, Australia. Global Biogeochemical Cycles,17:1043.doi:10.1029/2002GB002014
    Kieft TL, soroker E, firestone MK.1987. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology and Biochemistry,19(2):119-126.
    King GM, Adamsen APS.1992. Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas rubra. Applied and Environmental Microbiology,58:2758-2763.
    King GM, Schnell S.1994a. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature,370:282-284. doi: I0.1038/370282a0.
    King GM, Schnell S.1994b. Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations. Applied and Environmental Microbiology,60:3508-3513.
    King JS, Hanson PJ, Bernhardt E, DeAngelis P, Norby RJ, Prequitzer KS, Isebrands JG. 2004. A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Global Change Biology,10:1027-1042.doi: 10.1111/j.1529-8817.2003.00789.x.
    Kirschbaum MUF, Bruhn D, Etheridge DM, Evans JR, Farquhar GD, Gifford RM, Paul KI, Winters AJ.2006. A comment on the quantitative significance of aerobic methane release by plants. Functional Plant Biology,33:521-530. doi:10.1071/FP06051.
    Klemedtsson L, Svensson BH, Rosswall T.1988. Relationships between soil-moisturecontent and nitrous-oxide production during nitrification and denitrification. Biol. Fert. Soils,6:106-111.
    Klemedtsson L, von Arnold K, Weslien P, and Gundersen P.2005. Soil C/N ratio as a scalar parameter to predict nitrous oxide emissions. Global Change Biol.,11:1142-1147.
    Korner C.2006. Plant CO2 responses:an issue of definition, time and resource supply. The New Phytologist,172:393-411. doi:10.1111/j.1469-8137.2006.01886.x.
    Koponen HT, Martikainen PJ.2004. Soil water content and freezing temperature affect freeze-thaw related N2O production in organic soil. Nutrient Cycling in Agroecosystems, 69:213-219.
    Kreuzwieser J, Buchholz J, Rennenberg H.2003. Emission of methane and nitrous oxide by Australian mangrove ecosystems. Plant Biology,5:423-431. doi:10.1055/s-2003-42712.
    Kruger M, Frenzel P, Conrad R 2001. Microbial processes influencing methane emission from rice fields. Global Change Biology,7:49-63. doi:10.1046/j.1365-2486.2001.00395.x
    Krupa SV.2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation:a review, Environ. Pollut.,124:179-221.
    Kurganova I N, Teepe R, de Gerenyu.2004. The dynamics of N2O emission from arableand forest soil sunder alternating freeze-thaw conditions. Eurasian Soil Science,37:1219-1228.
    Kwon HJ, Oechel WC, Romme CZ, Hastings SJ.2006. Effects of climate variability on carbon sequestration among adjacent wet sedge tundra and moist tussock tundra ecosystems. J. Geophys. Res., 111:G03014, doi:10.1029/2005JG000036.
    Lafleur PM, Humphreys ER.2007. Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada. Global Change Biol.,14:740-756.
    Laine J, Silvola J, Tolonen K, Alm J, Nykanen H, Vasander H, Sallantaus T, Savolainen I, Sinisalo J, Martikainen PJ.1996. Effect of water-level drawdown on global climatic warming: northern peatlands. Ambio,25:179-184.
    Lai DYF.2009. Methane dynamics in northern peatlands:A review. Pedosphere,19:409-421.
    Lamarque JF, Kiehl JT, Brasseur GP, Butler T, Cameron-Smith P, Collins WD, Collins WJ, Granier C, Hauglustaine D, Hess PG, Holland EA, Horowitz L, Lawrence MG, McKenna D, Merilees P, Prather MJ, Rasch PJ, Rotman D, Shindell D, Thornton P.2005. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach:analysis of nitrogen deposition. Journal of Geophysical Research,110:D19303. doi: 10.1029/2005JD005825.
    Lal R.2006. Soil carbon sequestration in Latin America.p.49-64. In Lal, R. et al. (eds.) Carbon sequestration in soils of Latin America. The Haworth Press, Binghamton, New York, USA.
    Larsen K S, Jonasson S, Michelsen A.2002. Repeated freeze-thaw cycles and their effects on biological processes in two arctic ecosystem types[J]. Applied Soil Ecology,21(3):187-195.
    Lee XH, Griffis TJ, Baker JM, Billmark KA, Kim K, Welp LR.2009. Canopy-scale kinetic fractionation of atmospheric carbon dioxide and water vapor isotopes. Global Biogeochemical Cycles,23:GB1002.
    Legrand M, Ducroz F, Wagenbach D, Mulvaney R, Hall J.1998. Ammonium in coastal Antarctic aerosol and snow:Role of polar ocean and penguin emissions. J. Geophys. Res.-Atmos., 103:11043-11056.
    Le Mer J, Roger P.2001. Production, oxidation, emission and consumption of methane by soils:a review. European Journal of Soil Biology,37:25-50. doi:10.1016/S1164-5563(01)01067-6.
    Letey J, Valoras N, Hadas A, Focht DD.1980. Effect of air-filled porosity, nitrate concentration, and time on the ratio of N2O/N2 evolution during denitrification. Journal of Environmental Quality,9:227-231.
    Li HB, Han XZ, Wang F, et al.2007. Impact of soil management on organic carbon content and aggregate stability[J]. Communications in Soil Science and Plant Analysis,38(13-14): 1673-1690.
    Lieberman RL, Kondapalli KC, Shrestha DB, Hakemian AS, Smith SM, Telser J, Kuzelka J, Gupta R, Borovik AS, Lippard SJ, Hoffman BM, Rosenzweig AC, Stemmler TL.2006. Characterization of the particulate methane monooxygenase metal centers in multiple redox states by X-ray absorption spectroscopy. Inorganic Chemistry,45:8372-8381. doi: 10.1021/ic060739v.
    Lindeboom HJ.1984. The nitrogen pathway in a penguin rookery. Ecology,65:269-277.
    Linn DM, Doran JW.1984. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal,48: 1267-1272.
    Livesley SJ, Butterbach-Bahl K, Kiese R, Weston CJ, Arndt SK.2007. Nitrous oxide and methane emissions under land-use change from grazed pasture to Eucalyptus globulus and Pinus radiata plantations in Australia. Non-C02 greenhouse gas fluxes in Australian-New Zealand landscapes:Research Forum,15-16 May 2007, Melbourne, Australia.
    Livingston GP, Hutchinson GL. Enclosure-based measurement of trace gases:applications and sources of error. In:Matson PA, Harriss RC(Eds), Biogenic Trace gases:Mwasuring Emission from Soil and Water. Blackwell, Science, Cambridge,1995:14-50.
    Lloyd C.2001. The measurement and modelling of the carbon dioxide exchange at a high Arctic site in Svalbard. Global Change Biol.,7:405-426.
    Longinelli A, Colombo T, Giovanelli G, et al.2001. Atmospheric CO2 concentrations a δ13C measurements along a hemispheric course (1998/99, Italy to Antarctica). Earth Planetary Science Letters 191,167-172.
    Longinelli A, Giglio F, Langone L, Lenaz R, Ori C, Selmo E.2007. Atmospheric CO2 concentrations and C values across the Antarctic Circumpolar Current between New Zealand and Antarctica. Tellus 59B,130-137.
    Longinelli A, Langone L, Ori C, Selmol E.2011. Atmospheric CO2 concentrations and 813C over western and eastern Mediterranean basins during summer 2007. Atmospheric Environment 45:5514-5522.
    Longinelli A, Langone L, Ori C, Selmol E, Sgavetti M.2013. Atmospheric CO2 concentrations and δ13C values during 2011-2012 voyage:Mediterranean, Atlantic Ocean, southern Indian Ocean and New Zealand to Antarctica. Atmospheric Environment, doi: 10.1016/j.atmosenv.2013.05.063.
    Longinelli A, Lenaz R, Ori C, Langone L, Selmo E, Giglio F.2010. Decadal changes in atmospheric CO2 concentration and 813C over two seas and two oceans:Italy to New Zealand. Atmospheric Environment,44:4303-4311.
    Longinelli A, Lenaz R, Ori C, Selmo E.2005. Concentrations and δ13C values of atmospheric CO2 from oceanic atmosphere through time:polluted and non polluted areas. Tellus,57B: 385-390.
    Low AP, Stark JM, Dudley LM.1997. Effects of soil osmotic potential on nitrification, ammonification, N-assimilation, and nitrous oxide production. Soil Science,162:16-27. doi: 10.1097/00010694-199701000-00004
    Lowe DC, Brenninkmeijer CAM, Tyler SC, Dlugkencky EJ.1991. Determination of the isotopic composition of atmospheric methane and its application in the Antarctic. Journal of Geophysical Research-Atmospheres,96(D8):15455-15467.
    Lowe DC, Brenninkmeijer CAM., Brailsford GW, Lassey KR, Gomez AJ, Nisbet EG 1994. Concentration and 13C records of atmospheric methane in New Zealand and Antarctica: Evidence for changes in methane sources. Journal of Geophysical Research,99(D8): 16913-16925.
    Lu Y, Wassmann R, Neue HU, Huang C.1999. Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Biogeochemistry,47:203-218.
    Ludwig B, Wolf I, Teepe R.2004. Contribution of nitrification and denitrification to the emission of N2O in a freeze-thaw event in an agricultural soil. Journal of Plant Nutritionand Soil Science,167:678-684.
    Ludwig B, Teepe R, de Gerenyu VL, Flessa H.2006. CO2 and N2O emissions from gleyic soils in the Russian tundra and a German forest during freeze-thaw periods-a microcosm study. Soil Biology & Biochemistry,38:3516-3519. doi:10.1016/j.soilbio.2006.06.006
    Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Granwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA.2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology,13:2509-2537. doi: 10.1111/j.1365-2486.2007.01439.x
    Ma WK, Schautz A, FisSBack LE, Bedard-Haughn A, Farrell RE, Siciliano SD.2007. Assessing the potential of ammonia oxidizing bacteria to produce nitrous oxide in soils of a high arctic lowland ecosystem on Devon Island, Canada. Soil Biol. Biochem.,39:2001-2013.
    Macdonald JA. Fowler D, Hargreaves KJ, Skiba U, Leith ID, Murray MB.1998. Methane emission rates from another wetland:response to temperature, water table and transport. Atmospheric Environment,32:3219-3227.
    MacDonald JA, Skiba U, Sheppard LJ, Hargreaves KJ, Smith KA, Fowler D.1996. Soil environmental variables affecting the flux of methane from a range of forest, moorland and agricultural soils. Biogeochemistry,34:113-132. doi:10.1007/BF00000898.
    Macdonald J A, Fowler D, Hargreaves KJ, et al.1998. Methane emission rates from a northern wetland:response to temperature, water table and transport[J]. Atmos. Environ.,32(19): 3219-3227.
    Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J.2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature,447:849-850. doi: 10.1038/nature05847.
    Maljanen M, Liikanen A, Silvola J, Martikainen PJ.2003. Nitrous oxide emissions from boreal organic soil under different land use. Soil Biol. Biochem.,35:689-700.
    Maljanen M, Sigurdsson BD, Gujmundsson J,Oskarsson H, Huttunen JT, Martikainen PJ.2010. Greenhouse gas balances of managed peatlands in the Nordic countries -present knowledge and gaps. Biogeosciences,7:2711-2738.
    Maljanen M, Hytonen J, Makiranta P, Alm J, Minkkinen K, Laine J, Martikainen PJ.2007. Greenhouse gas emissions from cultivated and abandoned organic croplands in Finland. Boreal Environ. Res.,12:133-140.
    Maljanen M, Martikainen PJ, Aaltonen H, Silvola J.2002. Short-term variation in fluxes of carbon dioxide, nitrous oxide and methane in cultivated and forested organic boreal soils. Soil Biol. Biochem.,34:577-584.
    Marani L, Alvala PC.2007. Methane emissions from lakes and floodplains in Pantanal, Brazil. Atmospheric Environment,41:1627-1633. doi:10.1016/j.atmosenv.2006.10.046.
    Martikainen PJ, Nykanen H, Crill P, Silvola J.1993. Effect of a lowered water-table on nitrous oxide fluxes from northern peatlands. Nature,366:51-53.
    Marushchak ME, Pitkamaki A, Koponen H, Biasi C, Seppala M, Martikainen PJ.2011. Hot spots for nitrous oxide emissions found in different types of permafrost peatlands, Global Change Biol.,17:2601-2614.
    Matthias AD, Artiola JF, Musil SA.1993. Preliminary study of N2O flux over irritated bermudagrass in a desert environment. Agricultural and Forest Meteorology,64:29-45.
    Matzner E, Borken W.2008. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review. European Journal of Soil Science,59:274-284.
    Menyailo OV, Stepanov AL, Umarov MM.1997. The transformation of nitrous oxide by denitrifying bacteria in Solonchaks. Pochvovedenie,213-215.
    Meyer CP, Galbally IE, Wang YP, Weeks IA, Tolhurst KG, Tomkins IB.1997. The enhanced emission of greenhouse gases from soil following prescribed burning in a southern eucalyptus forest. pp.1-66. Final Report to the National Greenhouse Gas Inventory Committee, CSIRO, Division of Atmospheric Research, Aspendale, Victoria, Australia.
    Metzl N, Tilbrook B, Poisson A.1999. The annual fCO2 cycle and the air-sea CO2 flux in the sub-Antarctic Ocean. Tellus,51B:849-861.
    McGuire AD, Anderson LG, Christensen TR, et al.2009. Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs,79(4):523-555.
    McFadden JP, EugsterW, Chapin Ⅲ FS.2003. A regional study of the controls on water vapor and CO2 exchange in arctic tundra. Ecology,84:2762-2776.
    McLain JET, Kepler TB, Ahmann DM.2002. Below ground factors mediating changes in methane consumption in a forest soil under elevated CO2. Global Biogeochemical Cycles,16:1050. doi:10.1029/2001GB001439.
    Michaelis L, Menton ML.1913. Die kinetik der invertin wirkung. Biochemische Zeitschrift. 49:334-336.
    Mikan CJ, Schimel JP, Doyle AP.2002. Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology & Biochemistry,34:1785-1795.
    Mikkela C, Sundh I, Svensson BH, et al.1995. Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire. Biogeochemistry,28:93-114.
    Mikkela C, Sundh I, Svensson B, Nilsson M.1995. Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire. Biogeochemistry,28:93-114.
    Mikan CJ, Schimel JP, Doyle AP.2002. Temperature controls of microbial respiration in arctic tundra and soils a bove and below freezing. Soil Biology and Biochemistry,34:1785-1795.
    Millard P, Sommerkorn M, Greler GA.2007. Environmental change and carbon limitation in trees: a biochemical, ecophysiological and ecosystem appraisal. New Phytologist,175:11-28. doi: 10.1111/j.1469-8137.2007.02079.x
    Minami K, Fukushi S.1983. Effects of phosphate and calcium carbonate application on emission of nitrous oxide from soils under aerobic conditions. Soil Science and Plant Nutrition,29: 517-524.
    Misselbrook TH, Webb J, Chadwick DR, Ellis S, Pain BF.2001. Gaseous emissions from outdoor concrete yards used by livestock. Atmos. Environ.,35:5331-5338.
    Mizutani H, Kabaya Y, Wada E.1985. Ammonia volatilization and high 15N/14N ratio in a penguin rookery in Antarctica. Geochem. J.,19:323-327.
    Morrissey LA, Livingston GP.1992. Methane emissions from Alaska Arctic tundra:an assessment of local spatial variability. Journal of Geophysical Research,97:16661-16670.
    Mook WG, Koopmans M, Carter AF, Keeling CD.1983. Seasonal, latitudinal, and secular variations in the abundance and isotopic-ratios of atmospheric carbon-dioxide.1. results from land stations. Journal of Geophysical Research,88:915-933.
    Morrissey LA, Livingston GP.1992. Methane emissions from Alaska arctic tundra:an assessment of local spatial variability. J. Geophys. Res.,97(D15):16661-16670.
    Morishita T, Sakata T, Takahashi M, Ishizuka S, Mizoguchi T, Inagaki Y, Terazawa K, Sawata S, Igarashi M, Yasuda H, Koyama Y, Suzuki Y, Toyota N, Muro M, Kinjo M, Yamamoto H, Ashiya D, Kanazawa Y, Hashimoto T, Umata H.2007. Methane uptake and nitrous oxide emission in Japanese forest soils and their relationship to soil and vegetation types. Soil Science and Plant Nutrition,53:678-691. doi:10.1111/j.1747-0765.2007.00181.x
    Moriizumi J, Nagamine K, Iida T, Ikebe Y.1998. Carbon isotopic analysis of atmospheric methane in urban and suburban areas:Fossil and non-fossil methane from local sources. Atmospheric Environment,32(17):2947-2955.
    Mosier AR, Heinemeyer O.1985. Current methods used to estimate N2O and N2 emissions from field soils. Golterman H I. Denitrification in the Nitrogen Cycle. New York:Plenum Press.
    Mosier A, Wassmann R, Verchot L, King J, Palm C.2004. Methane and nitrogen oxide fluxes in tropical agricultural soils:sources, sinks and mechanisms. Environment, Development and Sustainability,6:11-49. doi:10.1023/B:ENVI.0000003627.43162.ae
    Mosier AR, Morgan JA, King JY, LeCain D, Milchunas DG 2002. Soil-atmosphere exchange of CH4, CO2, NOX, and N2O in the Colorado shortgrass steppe under elevated CO2. Plant and Soil,240:201-211. doi:10.1023/A:1015783801324.
    Mosier A, Schimel D, Valentine D, et al.1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands[J]. Nature,350:330-332.
    Miiller C, Sherlock RR,2004. Nitrous oxide emissions from temperate grassland ecosystems in the Northern and Southern Hemispheres. Global Biogeochemical Cycles,18:GB1045. DOI:10.1029/2003GB002175.
    Muller C, Kammann C, Ottow JCG, et al.2003. Nitrous oxide emission from frozen grassland soil and during thawing periods. Journal of Plant Nutrition and Soil Science,166(1):46-53
    Muller C, Martin M, Stevens RJ, Laughlin RJ, Kammann C, Ottow JCG, Jager HJ.2002. Processes leading to N2O emissions in grassland soil during freezing and thawing. Soil Biology & Biochemistry,34:1325-1331.
    Murakami T, Owa N, Kumazawa K.1987. The effects of soil conditions and nitrogen form on nitrous oxide evolution by denitrification. Soil Science and Plant Nutrition,33:35-42.
    Nakano T, Kuniyoshi S, Fukuda M.2000. Temporal variation in methane emission from tundra wetlands in a permafrost area, northeastern Siberia. Atmos. Environ.,34:1205-1213.
    Nanba K, King GM.2000. Response of atmospheric methane consumption by Maine forest soils to exogenous aluminum salts. Applied and Environmental Microbiology,66:3674-3679. doi: 10.1128/AEM.66.9.3674-3679.2000.
    Nay SM, Mattson KG, Bormann BT.1994. Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus[J]. Ecology,75:2460-2463.
    Neilsen CB, Groffman PM, Hamburg SP, et al.2001. Freezing effects on carbon and nitrogen cycling in northern hardwood forest soils[J]. Soil Science Society of America Journal,65: 1723-1730.
    Newton La Scala Junior, Eduardo de Sa'Mendonca, Juliana Vanir de Souza et al.2010. Spatial and temporal variability in soil CO2-C emissions and relation to soil temperature at King George Island, maritime Antarctica. Polar Science,4:479-487.
    Nowak RS, Ellsworth DS, Smith SD.2004. Functional responses of plants to elevated atmospheric CO2-do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist.162,253-280. doi:10.1111/j.1469-8137.2004.01033.x
    Nykanen H, Alm J, Lang K, Silvola J, Martikainen PJ.1995. Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. Journal of Biogeography,22: 351-357.
    Oberbauer SF, StarrG, Pop EW 1998. Effects of extended growing season and soil warming on carbon dioxide and methane exchange of tussoch tundra in Alaska. J. Geophys. Res., 103(D22):29075-29082.
    Oechel WC, Hastings SJ, Vourlitis G, et al.1993. Recent change of Arctic tundra ecosystems from a net carbon-dioxide sink to a source. Nature,361:520-523.
    Oechel WC, Vourlitis GL, Hastings SJ, et al.2000. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature,40:978-981.
    Oechel WC, VourlitisGL, Hastings SJ.1997. Cold season CO2 emissions from arctic soils. Global Biogeochem. Cycles,11:163-172.
    Oquist MG, Nilsson M, Sorensson F, et al.2004. Nitrous oxide production in a forest soil at low temperatures:Processes andenvironmental controls. FEMS Microbiology Ecology, 49:371-378.
    Oren R, Ellsworth DS, Johnsen KH, Nathan P, Ewers BE, Maler C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG.2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature,411:469-472. doi:10.1038/35078064 Ogawa M, Yoshida N.2005. Nitrous oxide emission from the burning of agricultural residue. Atmospheric Environment,39(19):3421-3429.
    Papen H, Butterbach-Bahl K.1999. A 3-year continuous recordof nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystemin Germany. I. N2O emission. Journal of Geophysical Research,104:18487-18503.
    Park S, Perez T, Boering KA, Trumbore SE, Gil J, Marquina S, Tyler SC.2011. Can N2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N2O production and consumption in tropical soils? Global Biogeochem. Cycles,25(1): GB1001.
    Park JR, Moon S, Ahn YM, Kim JY, Nam K.2005. Determination of environmental factors influencing methane oxidation in a sandy landfill cover soil. Environmental Technology, 26:93-102.
    Park S, Atlas EL, Boering KA.2004. Measurements of N2O isotopologues in the stratosphere: Influence of transport on the apparent enrichment factors and the isotopologue flux to the troposphere. Journal of Geophysical Research,109(D01305):doi:10.1029/2003 JD003731.
    Parmentier FJW, van Huissteden J, van der Molen MK, Schaepman-Strub G, Karsanaev SA, Maximov TC, Dolman AJ.2011. Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia, J. Geophys. Res.,116: G03016,doi:10.1029/2010JG001637.
    Pastor J, Post WM.1988. Response of nothern forest to CO2-induced climate change. Nature, 334(7):55-58.
    Pelletier FD, Prevost, G Laliberte, Van Bcchove E.1999. Seasonal response of denitrifiers to temperature in a Quebec cropped soil. Canadian Journal of Soil Science.79:551-556.
    Pepper DA, Eliasson PE, McMurtrie RE, Corbeels M, Agren GI, Stromgren M, Linder A.2007. Simulated mechanisms of soil N feedback on the forest CO2 response. Global Change Biology,13:1265-1281. doi:10.1111/j.1365-2486.2007.01342.x
    Philips OL, Halhi Y, Higuchi N.1998. Changes in carbon balance of tropical forests:Evidence from long-term plots. Science,282:439-442.
    Phillips FA, Leuning R, Baigenta R, Kelly KB, Denmead OT.2007. Nitrous oxide flux measurements from an intensively managed irrigated pasture using micrometeorological techniques. Agric. For. Meteorol.,143:92-105.
    Phillips RL, Whalen SC, Schlesinger WH.2001. Influence of atmospheric CO2 enrichment on methane consumption in a temperate forest soil. Global Change Biology,7:557-563. doi: 10.1046/j.1354-1013.2001.00432.x
    Phoenix GK, Hicks WK, Cinderby S, Kuylenstierna JCI, Stock WD, Dentener FJ, Giller KE, Austin AT, Lefroy RDB, Gimeno BS, Ashmore MR, Ineson P.2006. Atmospheric nitrogen deposition in world biodiversity hotspots:the need for a greater global perspective in assessing N deposition impacts. Global Change Biology,12:470-476. doi: 10.1111/j.1365-2486.2006.01104.x
    Pilegaard K, Skiba U, Ambus P, Beier C, Bruggemann N, Butterbach-Bahl K, Dick J, Dorsey J, Duyzer J, Gallagher M, Gasche R, Horvath L, Kitzler B, Leip A, Pihlatie MK, Rosenkranz P, Seufert G, Vesala T, Westrate H, Zechmeister-Boltenstern S.2006. Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O). Biogeosciences, 3:651-661.
    Poisson A, Metzl N, Brunet C, Schauer B, Bres B, Ruiz-Pino D, Louanchi F.1993. Variability of sources and sinks of CO2 in the Western Indian and Southern Oceans during the year 1991. Journal of Geophysical Research,98:22759-22778.
    Prather M, Derwent R, Ehhalt D, Fraser P, Sanhueza E, Zhou X.1995. Other trace gases and atmospheric chemistry. In:Houghton, et al. (Eds.), Climate Change 1994:RadiativeForcing of Climate Change. Cambridge University Press, Cambridge, UK, pp.73-126.
    Price SJ, Sherlock RR, Kelliher FM, Mc Seveny TM, Tate KR, Condron LM.2003. Pristine New Zealand forest soil is a strong methane sink. Global Change Biology,10:16-26. doi: 10.1046/j.1529-8817.2003.00710x
    Price SJ, Kelliher FM, Sherlock RR, Tate KR, Condron LM.2004. Environmental and chemical factors regulating methane oxidation in a New Zealand forest soil. Australian Journal of Soil Research,42:767-776. doi:10.1071/SR04026.
    Prieme A, Christensen S.2001. Natural perturbations, drying-wetting and freezing-thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils. Soil Biology and Biochemistry,33(15):2083-2091.
    Post WM, Pastor J, Zinke PJ, Stangenberger AG. 1985. Global patterns of soil nitrogen storage, Nature,317:613-616.
    Puget P, Chenu C, Balesdent J.1995. Total and young organic matter distributions in aggregates of silty cultivated soils[J]. European Journal of Soil Science,46(3):449-459.
    Park JH, Day TA, Strauss S, Ruhland CT.2007. Biogeochemical pools and fluxes of carbon and nitrogen in a maritime tundra near penguin colonies along the Antarctic Peninsula. Polar Biol., 30:199-207.
    Purvaja R, Ramesh R.2001. Natural and anthropogenic methane emission from coastal wetlands of South India. Environmental Management,27:547-557. doi:10.1007/s002670010169.
    Quay PD, King SL, Stutsman J. Wilbur DO, Steele LP. Fung I, Gammon RH, Brown TA, Farwell GW, Grootes PM, Schmidt FH.1991. Carbon isotopic composition of atmospheric CH4: Fossil and biomass burning source strengths. Global Biogeochem. Cycles,5(1):25-47.
    Quist MG, Nilsson M, Persson T, Weslien P, Klemedtsson L.2004. Nitrous oxide production in a forest soil at low temperatures-Processes and environmental controls. FEMS Microbiol. Ecol.,49:371-378.
    Raich JW, Schlesinger WH.1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Series B Chemical and Physical Meteorology, 44:81-99. doi:10.1034/j.1600-0889.1992.t01-1-00001.x.
    Raich JW, Tufekciogul A.2000. Vegetation and soil respiration:correlations and controls. Biogeochemistry,48(1):71-90.
    Rask H, Schoenau J, Anderson D.2002. Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biology & Biochemistry.34,435-443. doi: 10.1016/S0038-0717(01)00197-3.
    Rasogi M, Singh S, Pathak H. Emission of carbon dioxide from soil. Current Science,2002,82(5): 510-517.
    Rath AK, Ramakrishnan B, Sethunathan N.2002. Temperature dependence of methane production in tropical rice soils. Geomicrobiology Journal,19:581-592. doi: 10.1080/01490450290098595.
    Rattan L.2008. Carbon sequestration. Philosophical Transactions of the Royal Society,363: 815-830.
    Reay DS, Nedwell DB, McNamara N, Ineson P.2005. Effect of treespecies on methane and ammonium oxidation capacity in forest soils.Soil Biology & Biochemistry,37:719-730. doi: 10.1016/j.soilbio.2004.10.004
    Reay, D., C. Hewitt, and K. Smith.2007a. Nitrous oxide:Importance, sources and sinks, p. 201-206. In D. Reay et al. (eds.) Greenhouse gas sinks. CAB International, Wallingford, UK.
    Reay D, Smith K, Hewitt C.2007b. Methane:Importance, sources and sinks, p.143-151. In D. Reay et al. (eds.) Greenhouse gas sinks. CAB International, Wallingford, UK.
    Reay D, Grace J.2007. Carbon dioxide:Importance, sources and sinks, p.1-10. In D. Reay et al. (eds.) Greenhouse gas sinks. CAB International, Wallingford, UK.
    Regina K, Nykanen H, Silvola J, Martikainen PJ.1996. Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity. Biogeochemistry,35:401-418.
    Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440:922-925. doi:10.1038/nature04486
    Repo ME, Susiluoto S, Lind SE, et al.2009. Large N2O emissions from cryoturbated peat soil in tundra, Nat. Geosci.,2,189-192.
    Rhew RC, Teh YA, Abel T.2007. Methyl halide and methane fluxes in the northern Alaskan coastal tundra. J. Geophys. Res.,112:G02009, doi:10.1029/2006JG000314.
    Riddick SN, Dragosits U, Blackall TD, Daunt F, Wanless S, Sutton MA.2012. The global distribution of ammonia emissions from seabird colonies. Atmos Environ,5:319-327.
    Rodionow A, Flessa H, Kazansky O, Guggenberger G. 2006. Organic matter composition and potential trace gas production of permafrost soils in the foresttundra in northern Siberia.Geoderma,135:49-62. doi:10.1016/j.geoderma.2005.10.008.
    Roslev P, Iversen N, Henriksen K.1997. Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Applied and Environmental Microbiology,63:874-880.
    Rover M, Heinemeyer O, Kaiser EA.1998. Microbial induced nitrous oxide emissions from an arable soil during winter. Soil Biology and Biochemistry,30(14):1859-1865.
    Rusch H, Rennenberg H. Black alder (Alnus glutinosa (L.) Gaertn.) trees mediate methane and nitrous oxide emission from the soil to the atmosphere. Plant and Soil.1998,201,1-7. doi: 10.1023/A:1004331521059.
    Saari A, Smolander A, Martikainen PJ.2004. Methane consumption in a frequently nitrogen-fertilized and limed spruce forest soil after clear-cutting. Soil Use and Management, 20:65-73. doi:10.1079/SUM2004224.
    Sahrawat KL.2004. Terminal electron acceptors for controlling methane emissions from submerged rice soils. Communications in Soil Science and Plant Analysis,35:1401-1413. doi:10.1081/CSS-120037554
    Sanhueza E, Donoso L.2006. Methane emission from tropical savanna Trachypogon sp. grasses. Atmospheric Chemistry and Physics,6:5315-5319.
    Sass RL, Fisher FM, Ding A, Huang Y.1999. Exchange of methane from rice fields:national, regional, and global budgets. J. Geophys. Res.,104:26943-26951.
    Schnell S, King GM.1995. Stability of methane oxidation capacity to variations in methane and nutrient concentrations. FEMS Microbiology Ecology,17:285-294. doi: 10.1111/j.1574-6941.1995.tb00153.x
    Schnell S, King GM.1996. Responses of methanotrophic activity in soils and cultures to water stress. Applied and Environmental Microbiology,62:3203-3209.
    Schiller CL, Hastie DR.1994. Exchange of nitrous oxide within the Hudson Bay lowland, J. Geophys. Res.,99,1573-1588.
    Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE.2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra, Nature,459, 556-559.
    Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Romanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA.2008. Vulnerability of permafrost carbon to climate change:Implications for the global carbon cycle.Bioscience, 58:701-714.
    Schwerdtfeger W.1984. Weather and climate of Antarctic. Development in Atmospheric Science, 15:261.
    Sebacher DI, Harriss RC, Bartlett KB.1983. Methane flux across the air-water interface:air velocity effects. Tellus B,35:103-109.
    Seech AG, Beauchamp EG. 1988. Denitrification in soil aggregates of different sizes[J]. Soil Science Society of Amirica Journal,52:1616-1620
    Segers R.1998. Methane production and methane consumption:a review of processes underlying wetland methane fluxes. Biogeochemistry,41:23-51. doi:10.1023/A:1005929032764
    Segers R, Kengen SWM.1998. Methane production as a function of anaerobic carbon mineralization:a process model. Soil Biology & Biochemistry,30:1107-1117. doi: 10.1016/S0038-0717(97)00198-3
    Sharma S, Szele Z, Schilling R, et al.2006. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Applied and Environmental Microbiology,72:2148-2154.
    Shaver GR, Chapin FS.1991. Production biomass relationships and element cycling in contrasting arctic vegetation types. Ecological Monographs,61:1-31.
    Shaver GR, Johnson LC, Cades DH, et al.1998. Biomass and CO2 flux in wet sedge tundras: responses to nutrients, temperature, and light. Ecol. Monogr,68:75-97.
    Shur YL, Hinkel KM, Nelson FE.2005. The transient layer:Implicationsfor geocryology and climate-change science. Permafr. Periglac. Process.,16:5-17.
    Shur YL, Jorgenson MT.2007. Patterns of permafrost formation anddegradation in relation to climate and ecosystems. Permafr. Periglac. Process.,18:7-19.
    Sigrun H K, Lilian (?).2006. The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway [J]. Cetena,67(3):175-182.
    Siciliano SD, Ma WK, Ferguson S, Farrell RE.2009. Nitrifier dominance of Arctic soil nitrous oxide emissions arises due to fungal competition with denitrifiers for nitrate. Soil Biol. Biochem.,41:1104-1110.
    Singh SN, Kulshreshtha K, Agnibotri S.2000. Seasonal dynamics of methane emission from wetlands [J]. Chemosphere:Global Change Sci.,2:39-46.
    Sjogersten S, Wookey PA.2002. Spatio-temporal variability and environmental controls of methane fluxes at the forest-tundra ecotone in the Fennoscandian mountains. Global Change Biology.8:885-894. doi:10.1046/j.1365-2486.2002.00522.x
    Skogland T, Lomeland S, Goksoy RJ.1988. Respiratory burst after freezing and thawing of soil: Experiments with soil bacteria. Soil Biol. Biochem.,20:851-856.
    Smialek J, Bouchard V, Lippmann B, Quigley M, Granata T, Martin J, Brown L.2006. Effect of a woody (Salix nigra) and an herbaceous (Juncus effusus) macrophyte species on methane dynamics and denitrification. Wetlands,26:509-517. doi:10.1672/0277-5212(2006)26[509:EOAWSN]2.0.CO;2
    Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A,2003. Exchange of greenhouse gases between soil and atmosphere:interactions of soil physical factors and biological processes. European Journal of Soil Science,54:779-791. doi: 10.1046/j.1351-0754.2003.0567.x.
    Smith SV, Hollibaugh JT.1993. Coastal metabolism and the oceanic organic-carbon balance. Reviews of Geophysics,31(1):75-89.
    Smith WN.2004. Estmiates of the interannual variationsof N2O emissions from agricultural soils in Canada[J]. Nutrient Cycling in Agroecosystems,68(1):37-45.
    Soegaard H, Nordstroem C, Friborg T, Hansen BU, Christensen TR, Bay C.2000. Trace gas exchange in a high-arctic valley 3:Integrating and scaling CO2 fluxes from canopy to landscape using flux data, footprint modelling and remote sensing. Global Biogeochem. Cycles,14(3):725-744.
    Sommerfeld RA, Mosier AR, Musselman RC.1993. CO2, CH4, N2O flux through a Wyoming snowpack and implications for global budgets[J]. Nature,361:140-142.
    Sommerkorn M, Bolter M, Kappen L.1999. Carbon dioxide fluxes of soils and mosses in wet tundra of Taimyr Peninsula, Siberia:controlling factors and contribution to net system fluxes. Polar Research,18(2):253-260.
    Song CC, Xu XF, Tian HQ, Wang YY 2009. Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biol.,15:692-705.
    Soulides DA, Allison FE.1961. Effects of drying and freezing soil on carbon dioxide production, available mineral nutrients, aggregation and bacterial popul ation. Soil Sci.,91:291-298.
    Stevens CM, Rust FE.1982. The carbon isotopic composition of atmospheric methane. Journal of Geophysical Re search,87(C7):4879-4882.
    Steudler PA, Bowden RD, Melillo JM, Aber JD.1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature,341:314-316. doi:10.1038/341314a0
    Stitt M, Krapp A.1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell & Environment,22:583-621. doi: 10.1046/j.1365-3040.1999.00386.x
    Striegl RG, Mc Connaughey TA, Thorstenson DC, Weeks EP, Woodward JC.1992. Consumption of atmospheric methane by desert soils. Nature,357:145-147. doi:10.1038/357145a0
    Strom L, Christensen TR.2007. Below ground carbon turnover and greenhouse gas exchanges in a sub-arctic wetland. Soil Biol. Biochem.,39:1689-1698.
    Subke JA, Reichstein M, Tenhunen JD.2003. Explaining temporal variation in soil CO2 efflux in mature spruce forest in Southern Germany [J]. Science Biology & Biochemistry,35(11): 1467-1483.
    Sun LG, Zhu RB, Xie ZQ, Xing GX.2002. Emissions of nitrous oxide and methane from Antarctic Tundra:role of penguin dropping deposition. Atmospheric Environment,36:4977-4982. doi: 10.1016/S1352-2310(02)00340-0
    Sun LG, Liu XD, Yin XB, Zhu RB, et al.2004a. A 1,500-year record of Antarctic seal populations in response to climate change. Polar Biology,27(8):495-501.
    Sun LG, Xie ZQ, Zhao JL.2000. A 3000-year record of penguin population. Nature,407:858.
    Suyker AE, Verma SB, Clement RJ, Bill esbach DP.1996. Methane flux in a boreal fen: season-long measurement by eddy correlation. Journal Geophysical Research,101(D22): 28637-28647.
    Svensson BH.2000. Different temperature optima for methane formation when enrichments from acid peat are supplement with acetate or hydrogen. Applied Environmental Microbiology,48: 389-394.
    Swanston C, Homann PS, Caldwell BA, Myrold DD, Ganio L, Sollins P.2004. Long-term effects of elevated nitrogen on forest soil organic matter stability. Biogeochemistry,70:229-250. doi:10.1023/B:BIOG0000049341.37579.86
    Takakai F, Desyatkin AR, Lopez CML, Fedorov AN, Desyatkin RV, Hatano R.2008. CH4 and N2O emissions from a forest-alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia. J. Geophys. Res.,113:G02002, doi:10.1029/2007 JG000521.
    Tans PP, Berry JA, Keeling RF.1993. Oceanic 13C/12C observations:a new window on ocean CO2 uptake. Global Blogeochemical Cyscles,7:353-368.
    Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S.2009. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles,23: GB2023, doi:10.1029/2008GB003327.
    Teepe R, Ludwig B.2004. Variability of CO2 and N2O emissions during freeze-thaw cycles: results of model experiments on undisturbed forest-soil cores. Journal of Plant Nutrition and Soil Science,167:153-159
    Teepe R, Brumme R, Beese F.2001. Nitrous oxide emissions from soil during freezing and thawing periods. Soil Biology & Biochemistry,33 (9):1269-1275.
    Teh YA, Silver WL, Conrad ME.2005. Oxygen effects on methane production and oxidation in humid tropical forest soils. Global Change Biology,11:1283-1297. doi: 10.1111/j.1365-2486.2005.00983.x
    Templeton AS, Chu KH, Alvarez-Cohen L, Conrad ME.2006. Variable carbon isotope fractionation expressed by aerobic CH4-oxidizing bacteria. Geochimica et Cosmochimica Acta,70:1739-1752. doi:10.1016/j.gca.2005.12.002
    Tiedje JM.1994. Denitrifiers. In 'Methods of soil analysis, Part 2. Microbiological and biochemical properties'. (Eds RW Weaver, JS Angel, PS Bottomley)pp.245-267. (Soil Science Society of America:Madison, WI, USA)
    Torn MS, Harte J.1996. Methane consumption by montane soils:implications for positive and negative feedback with climatic change. Biogeochemistry,32:53-67. doi: 10.1007/BF00001532
    Treguer P, Pondaven P.2002. Preface:Climatic changes and the carbon cycle in the Southern Ocean:a step forward. Deep-sea Research II,49:1597-1600.
    Trolier M, White JWC, Tans PP, et al.1996. Monitoring the isotopic composition of atmospheric CO2:Measurements from the ZEP global air sampling network. Journal of Geophysical Research,101:25897-25916.
    Tsan-Chang Chang, Shang-Shyng Yanga.2003. Methane emission from wetlands in Taiwan [J]. Atmos. Environ.,37:4551-4558.
    Tyler SC, Crill PM, Brailsford GW.1994.13C/12C fractionation of methane during oxidation in a temperate forested soil. Geochimica et Cosmochimica Acta,58: 1625-1633.doi:10.1016/0016-7037(94)90564-9
    Uhlirova E, antrukova H, Davidov SP.2007. Quality and potential biodegradability of soil organic matter preserved in permafrost of Siberiantussock tundra. Soil Biol. Biochem.,39:1978-1989.
    Ullah S, Moore TR.2011. Biogeochemical controls on methane, nitrous oxide, and carbon dioxide fluxes from deciduous forest soils in eastern Canada, J. Geophys. Res.,116:G03010, doi:10.1029/2010JG001525.
    Van BE, Prevost D, Pelletier F.2000. Effects of freeze-thaw and soil structure on nitrous oxide produced in a clay soil[J]. Soil Science Society of America Journal,64(5):1638-1643.
    van Bochove E, Prevost D, Pelletier F.2000. Effects of freeze-thaw and soil structure on nitrous oxide produced in a clay soil. Soil Science Society of America Journal,64(5):1638-1643.
    van Bodegom PM, Stams AJM.1999. Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Chemosphere,39:167-182. doi: 10.1016/S0045-6535(99)00101-0
    van der Molen MK, van Huissteden J, ParmentierFJW, Petrescu AMR, Dolman AJ, Maximov TC, Kononov AV, Karsanaev SV, and Suzdalov DA.2007. The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia, Biogeosciences, 4(6),985-1003.
    Van Groenigen JW, Zwart KB, Harris D, van Kessel C.2005. Vertical gradients of δ15N and δ18O in soil atmospheric N2O-temporal dynamics in a sandy soil. Rapid Communications in Mass Spectrometry,19(10):1289-1295.
    van Huissteden J, Maximov TC, Dolman AJ.2005. High methane flux from an Arctic floodplain (Indigirka lowlands, eastern Siberia), Journal of Geophysical Research,110:G02002, doi:10.1029/2005JG000010.
    van Hulzen JB, Segers R, Van Bodegom PM, Leffelaar PA.1999. Temperature effects on soil methane production:an explanation for observed variability. Soil Biology& Biochemistry,31:1919-1929.doi:10.1016/S0038-0717(99)00109-1
    Vann CD, Megonigal JP.2003. Elevated CO2 and water depth regulation of methane emissions: Comparison of woody and non-woody wetland plant species. Biogeochemistry,63:117-134. doi:10.1023/A:1023397032331
    Veldkamp E, Weitz AM, Keller M.2001. Management effects on methane fluxes in humid tropical pasture soils. Soil Biology & Biochemistry,33:1493-1499. doi: 10.1016/S0038-0717(01)00060-8
    Veldkamp E, Purbopuspito J, Corre MD, Brumme R, Murdiyarso D.2008. Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia. J. Geophys. Res.,113, G02003. doi:10.1029/2007JG000522.
    Venterea RT, Rolston DE.2000. Mechanisms and kinetics of nitric and nitrous oxide production during nitrification in agricultural soil. Global Change Biology,6:303-316. doi: 10.1046/j.1365-2486.2000.00309.x.
    Von Fischer JC, Rhew RC, Ames GM, Fosdick BK, von Fischer PE.2010. Vegetation height and other controls of spatial variability in methane emissions from the Arctic coastal tundra at Barrow, Alaska. J. Geophys. Res.,115:G00I03,doi:10.1029/2009JG001283.
    Vourlitis GL, Oechel WC.1997. Landscape-scale CO2, H20 vapour and energy flux of moist-wet coastal tundra ecosystems over two growing seasons. J. Ecol.,85(5):575-590.
    Vourlitis GL, Oechel WC.1999. Eddy covariance measurements of CO2 and energy fluxes of an Alaskan tussock tundra ecosystem. Ecology,80:686-701.
    Wang Y, Amundson, Niu XF.2000. Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux. Global Biogeechemical Cycles,14(1):199-211.
    Wang Lianfeng, Cai Yanjiang, Xie Hongtu.2007. Relationship of soil physical and microbial properties with nitrous oxide emission under effects of freezing-thawing cycles, Chinese Journal of Applied Ecology,18(10):2361-2366.
    Wang LF, Cai ZC, Yang LF, et al.2005. Effect of disturbance and glucose addition on nitrous oxide and carbon dioxide emissions from a paddy soil[J]. Soil and Tillage Research,82(2): 185-194.
    Wang LF, Cai ZC, Yan H.2004. Nitrous oxide emission and reduction in a laboratory-incubated paddy soil response to pretreatment of water regime. Journal of Environmental Sciences-China,16(3):353-357.
    Wang Yang, Liu Jiangshuang, Qang Guoping et al.2007. Study on the effect of freezing ans thawing action to soil physical and chemical characteristics[J]. Geo-Information Science, 23(2):91-96.
    Wang Feng, Han Xiaozeng, Li Lianghao, et al.2009.The effect of freez ing and thawing processes on black soil aggregate stability[J]. Journal of Glaciology and Geocryology,31(5):890-900.
    Wagner-Riddle C, Thurtell GW, Kidd G K, t al.1997. Estimates of nitrous oxide emissions from agricultural fields over 28 months. Canadian Journal of Soil Science,77(2):135-144.
    Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ.2000.'Land use, land-use change, and forestry:a special report of the IPCC.'(Cambridge University Press: Cambridge, UK).
    Wei Lihong.2009. Review on the effects of freezing and thawing on the phycichemical and biological properties of soil [J].Journal of Anhui Agriculture,37(11):5054-5257.
    Weier KL, Gilliam JW.1986. Effect of acidity on denitrification and nitrous oxide evolution from Atlantic coastal-plain soils. Soil Science Society of America Journal.50,1202-1205.
    Welp LR, Keeling RF, Meijer HAJ, Bollenbacher AF, Piper SC, Yoshimura K, Francey RJ, Allison CE, Wahlen M.2011. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Nino. Nature,477:579-582.
    Werner C, Zheng XH, Tang J W, Xie BH, Liu CY, Kiese R, Butterbach-Bahl K.2006. N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant and Soil.289:335-353. doi:10.1007/s11104-006-9143-y.
    Werner C, Kiese R, Butterbach-Bahl K.2007. Soil-atmosphere exchange of N2O, CH4, and CO2 and controlling environmental factors for tropical rain forest sites in western Kenya, J. Geophys. Res.,112:DO3308, doi:10.1029/2006JD 007388.
    Westermann S, Wollschlager U, Boike J.2010. Monitoring of active layer dynamics at a permafrost site on Svalbard using multi-channel ground-penetrating radar. The Cryosphere, 4:475-487.
    Whalen SC.2000. Influence of N and non-N salts on atmospheric methane oxidation by upland boreal forest and tundra soils. Biology and Fertility of Soils,31:279-287. doi: 10.1007/s003740050657.
    Whalen SC.2005. Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science,22:73-94. doi:10.1089/ees.2005.22.73
    Whalen SC, Reeburgh WS.1994. A methane flux transect along the trans-Alaska pipeline haul road. Tellus.2B:237-249.
    Whalen SC, Reeburgh WS.1990. Consumption of atmospheric methane by tundra soils. Nature, 346:160-162.
    Whiting GJ, Chanton JP.1993a. Primary production control of methane emission from wetlands. Nature,364:794-795. doi:10.1038/364794a0
    Whiting GJ, Chanton JP.1993b. Methane production in contrasting wetland sites:response to organic-chemical components of peat and to sulfate reduction. Geomicrobiology Journal,8: 27-46.
    Williams M, Street LE, van Wijk MT, Shaver GR.2006. Identifying difference in carbon exchange among arctic ecosystem types. Ecosystems,9:288-304.
    Winther J, Godtliebsen F, Gerland S, Isachsen P.2002. Surface albedo in Ny-Alesund, Svalbard: variability and trends during 1981-1997, Global Planet. Change,32:127-139.
    Woods L.1985. Influence of soil organic matter concentration on carbon and nitrogen activity [J]. Soil Sci Soc Am J,50:1241-1245.
    Wrage N, Velthof GL, van Beusichem ML, Oenema O.2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry,33:1723-1732. doi: 10.1016/S0038-0717(01)00096-7
    Wrage N, Lauf J, del Prado A, Pinto M, Pietrzak S, Yamulki, S., Oenema O, Gebauer G.2004. Distinguishing sources of N2O in European grasslands by stable isotope analysis. Rapid Communications in Mass Spectrometry,18(11):1201-1207.
    Wuthrich CH, Moller I, Thannheiser D.1999. CO2-fluxes in different plant communities of a high-arctic tundra watershed (Western Spitsbergen). J. Vegetation Sci.,10:413-420.
    Xing GX, Zhu ZL.1997. Preliminary studies on N2O emission fluxes from upland soil and paddy soils in China, Nutr. Cycl. Agroecosyst,49:249-254.
    Yakir D, Sternberg LdaSL.2000. The use of stable isotopes to study ecosystem gas exchange. Oecologia,123:297-311.
    Yakir D.2011. The paper trail of the 13C of atmospheric CO2 since the industrial revolution period. Environmental Research Letters,6:1-4.
    Zimov SA, Schuur EAG., Chapin Ⅲ FS.2006. Permafrost and the global carbon budget. Science, 312:1612-1613.
    Zhu RB, Sun LG, Ding WX.2005. Nitrous oxide emissions from tundra soil and snowpack in the maritime Antarctic. Chemosphere,59:1667-1675.doi:10.1016/j.chemosphere.2004.10.033.
    Zhu RB, Sun LG.2005. Methane fluxes from tundra soils and snowpack in the maritime Antarctic. Chemosphere,59:1583-1593.
    Zhu RB, Glindeman D, Kong DM, et al.2007. Phosphine in the marine atmosphere along a hemispheric course from China to Antarctica. Atmospheric Environment,41(7):1567-1573.
    Zhu RB, Liu YS, Xu H, Ma J, Gong ZJ, Zhao SP.2008a. Methane emissions from three sea animal colonies in the maritime Antarctic:Atmos. Environ.,42:1197-1205.
    Zhu RB, Liu Y S, Ma E D, et al.2008. Nitrous oxide flux to the atmosphere from two coastal tundra wetlands in eastern Antarctica[J]. Atmospheric Environment,42(10):2437-2447.
    Zhu RB, Liu YSh, Xu H, Ma J, Zhao SP, Sun LG 2008. Nitrous oxide emissions from sea animal colonies in the m aritime Antarctic. Geophysical Research Letters, (35):L09807 doi:10.1029/2007GL032541.
    Zhu RB, Liu YS, Ma ED, Sun JJ, Xu H, Sun LG.2009. Greenhouse gas emissions from penguin guanos and ornithogenic soils in coastal Antarctica:Effects of freezing-thawing cycles. Atmospheric Environment,43:2336-2347.
    Zhu RB, Sun JJ, Liu YS, Gong ZJ, Sun LG 2011. Potential ammonia emissions from penguin guano, ornithogenic soils and seal colony soils in coastal Antarctica:effects of freezing-thawing cycles and selected environmental variables, Antarct. Sci.,23:78-92.
    Zhu RB, Chen QQ, Ding W, Xu H.2012. Impact of seabird activity on nitrous oxide and methane fluxes from High Arctic tundra in Svalbard, Norway. Journal of Geophysical Research,117: G04015.DOI:10.1029/2012JG002130.
    蔡祖聪,徐华,马静.2009.稻田生态系统CH4和N2O排放.中国科学技术大学出版社:58-68.
    曹亚澄,孙国庆,韩勇等.2008.大气浓度N20.CH4和CO2中氮、碳和氧的同位素比值的质谱测定.土壤学报,45(2):249-258.
    陈清清 朱仁斌 丁玮徐华.2012.海鸟活动对北极新奥尔松苔原—大气CO2交换的影响.极地研究.24(3):254-265.
    陈全胜,李凌浩,韩兴国,等.2004.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系[J].生态学报,24(4):345-351.
    邓海滨,陆龙骅,卞林根.2006.北极苔原新奥尔松地区的地表辐射特征.极地研究,18(4):254-264.
    邓海滨,陆龙骅,卞林根.2005.北极苔原Ny-Alesund地区短期气候特征.极地研究,17(1):32-44.
    董云社,章申,齐玉春等.2000.内蒙古典型草地CO2,N2O,CH4通量的同时观测及其日变化[J].科学通报,45(3):318-322.
    方精云,位梦华.1998.北极陆地生态系统的碳循环与全球温暖化.环境科学学报,18(2):113-121.
    高众勇,陈立奇,王伟强.2001.南大洋二氧化碳源汇分布及其海-气通量研究.极地研究,13(3):175—186.
    高众勇,陈立奇.2002.南大洋碳循环研究进展.世界科技研究与发展,24(4):41-48.
    耿远波,章申,董云社,等.2001.草原土壤的碳氮含量及其与温室气体通量的相关性.地理学报,56(1):44-53.
    顾帅,刘立新,王木林,等.2010.静态箱气象色谱法和通量观测的质控方法研究[J].气象,36(8):87-101.
    胡玉琼,王跃思,纪宝明,等.2003.内蒙古草原温室气体排放日变化规律研究[J].南京气象学院学报,26(1):29-37.
    姜珊,刘晓东,徐利强,孙立广.北极新奥尔松地区湖泊沉积物色素含量变化及环境意义.极地研究,2009,21(3):211-220
    黄国宏,李玉祥,陈冠雄,等.2001.环境因素对芦苇湿地CH4排放的影响[J].环境科学,22(1):1-5.
    姜珊,刘晓东,徐利强,孙立广.2009.北极新奥尔松地区湖泊沉积物色素含量变化及环境意义.极地研究,21(3):211-220
    贾庆宇,王宇,李丽光.2011.城市生态系统大气间的碳通量研究进展[J].生态环境学报,20(10):1569-1574.
    贾志军,宋长春.2006.湿地生态系统CO2净交换、水汽通量及二者关系浅析.生态与农村环境学报,22(2):75-79.
    郎漫,蔡祖聪.2008.百菌清对土壤氧化亚氮和二氧化碳排放的影响.应用生态学报,19(12): 2745-2750.
    林茂.2012.土壤温室气体通量测定方法的比较和评价[J].湖南农业科学,(9):22-46,50.
    李娜,陈建中,李宇飞.2010.湿地温室气体气相色谱分析及采样进样技术研究进展[J]..分析测试技术与仪器,16(4):213-217.
    李海防,夏汉平,熊燕梅,张杏锋.2007.土壤温室气体产生与排放影响因素研究进展.生态环境,16(6):1781-1788.
    李世朋,汪景宽.温室气体排放与土壤理化性质的关系研究进展.沈阳农业大学学报,2003,34(2):155-159.
    刘雅淑.南极苔原温室气体通量时空变化规律与产生机理研究.中国科学技术大学博士生论文,2011.
    马大卫,朱仁斌,孙建军,刘雅淑.2010.南极区鸟粪土中磷酸酶活性变化特征及其影响因素.极地研究,22(4):386-396.
    宋长春,阎百兴,王跃思,等.2003.三江平原沼泽湿地CO2和CH4通量及影响因子.科学通报,48(23):2473-2477.
    宋长春,王毅勇,王跃思,等.2005.季节性冻融期沼泽湿地CO2、CH4和N2O排放动态.环境科学,26(4):7-12.
    孙立广,朱仁斌,谢周清,赵俊琳,徐华.2001.南极法尔兹半岛植被土壤CH4通量特征.环境科学学报,21(3):296-300.
    孙立广,朱仁斌,谢周清,赵俊琳,邢光熹施书莲,杜丽娟.2001.南极菲尔德斯半岛植被土壤N20排放特征.环境科学,22(4):1-5.
    王大力.1999.大气CO2浓度升高对全球CH4排放的影响[J].科学通报,44(1):1-6.
    王娇月,宋长春,王宪伟,王丽丽.2011.冻融作用对土壤有机碳库及微生物的影响研究进展.33(2):442-452.
    王慧清,王云龙,杜金玲.2011.锡林河湿地土壤呼吸日变化及温度响应特征研究.安徽农业科学,39(14):8395-8397.
    王洋,刘景双,王国平,周旺明.2007.冻融作用与土壤理化效应的关系研究.地理与地理信息科学,23(2):91-97.
    徐仲均,郑循华,王跃思.2002.大气CO2增加对陆地生态系统微量气体地-气交换的影响.应用生态学报,13(10):1344-1348.
    徐文彬,刘维屏,刘广深.2002b.温度对旱田土壤N20排放的影响研究[J].土壤学报,39(1):1-7.
    杨杰东,徐世进.同位素与全球环境变化.北京:地质出版社.2007:2.
    袁林喜,龙楠烨,谢周清,等.2006.北极新奥尔松地区现代污染源及其指示植物研究.极地研究,18(1):9-20
    张远辉,王伟强,陈立奇.海洋二氧化碳的研究进展.地球科学进展,2000,15(5):560-565.
    郑泽梅,于贵瑞,孙晓敏,等.2008.涡度相关法和静态箱气相色谱法在生态系统呼吸观测中的比较[J].应用生态学报,19(2):290-298.
    邹建文,黄耀,郑循华,等.2004.基于静态暗箱法的陆地生态系统-大气净交换估算[J].科学通报,49(3):258-264.
    周广胜.全球碳循环(第一版)[M].北京:气象出版社,2003:162-189
    朱玫,田洪海,唐孝炎.1998.同位素方法在大气甲烷研究中的应用.环境与开发,13(2):1-6.
    朱仁斌,孔德明,孙立广等.2006.南极大气中磷化氢的首次监测.科学通报,51(18):2212-2215.
    朱仁斌,孙立广,谢周清,等.2001.南极菲尔德斯半岛植被微区CO2浓度的监测.环境科学,22(4):6-10.
    朱仁斌,孙立广,邢光熹,徐华.2001.南极苔原近地面CO2、CH4、N2O浓度和通量的相互关系.中国科学技术大学学报,31(5):611-617.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700