用户名: 密码: 验证码:
基于遥感和GIS的青藏高原牧区积雪动态监测与雪灾预警研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原地区不仅是我国三大积雪分布区之一,也是我国的主要牧区。由于该地区生产方式相对落后,经营粗放,基础设施极为薄弱,抵抗自然灾害的能力非常有限,从而导致冬春季大量的降雪经常引发区域性的灾害,严重制约着当地草地畜牧业的可持续发展。因此,利用遥感和GIS技术准确监测青藏高原牧区的积雪动态变化,深入开展雪灾预警及风险评价研究,对防灾减灾,维持草地畜牧业的可持续发展都具有极其重要的意义。
     本研究对2003~2010年青藏高原无云积雪制图算法、积雪覆盖率算法改进、雪深数据比较与反演、积雪对气候变化的响应、雪灾预警和风险评价进行了系统的研究。研究结果表明:
     1)本研究提出一种去云积雪图像合成算法,由此生成的青藏高原地区无云积雪分类图像(MA)在各种天气状况下积雪分类精度和总精度分别达到80.75%和97.52%。该图像不仅具有MODIS较高空间分辨率和AMSR-E不受天气状况影响的特点,而且可有效地提高积雪监测的时空分辨率。因此,MA积雪合成图像具有准确监测研究区内积雪覆盖范围的能力,这对深入研究雪灾频发地区的积雪动态变化,提供了有效可靠的数据支持。
     2)提出一种改进的积雪面积比例算法。与TM雪盖图相比,改进算法提取的雪盖面积标准误差由原来的0.35降低到0.22,平均绝对误差由0.25降到0.18,相关系数由0.74提高到0.85以上。
     3)加拿大气候中心发布的雪深数据在不同积雪深度条件下误差较高(RMSE达47.70cm),不适用于青藏高原地区积雪深度的监测。基于被动微波资料SSM/I和AMSR-E模拟的雪深不仅与台站实测数据之间的误差较小,而且与青藏高原地区积雪空间分布之间的一致性较好。
     4)2003~2010年青藏高原年平均温度、年降水量和积雪覆盖面积呈现出增加的趋势,年平均温度增加了0.72℃,年平均降水增加6.85mm,积雪覆盖面积增加5.75%。8年间永久积雪面积和雪深则呈现出减少的趋势,其中永久积雪面积以每年0.35%的速率在减少,8年共计减少2.80%;雪深减少约2.40%,雪水当量下降4.16%。
     5)8年间整个青藏高原地区有35.3%的区域积雪覆盖天数(SCD)和34.3%的区域雪水当量(SWE)呈现下降的趋势。温度和降水的空间分布对青藏高原地区SCD和SWE的空间分布具有明显的影响。SCD和SWE与年均温或年降水量存在空间相关关系的区域均在50%以上,在海拔6300m以下时相关系数均达到0.6以上。
     6)影响青藏高原牧区雪灾发生的关键因子有年雪灾概率、积雪覆盖天数、载畜力、日均温<-10。C的低温天数、草地掩埋指数、草地积雪覆盖率及畜均GDP。依据受灾程度及积雪对放牧牲畜采食影响情况,本项研究构建出一种牧区雪灾危害等级预警模型,制定出青藏高原地区雪灾预警分级标准,并提出一种基于格网单元的雪灾风险评价方法。根据青藏高原近3年(2008-2010年)积雪季(10-12月和翌年1-3月)各县(市)旬雪灾危害等级预警反演结果显示,雪灾危害等级预警模型总精度可达85.64%。
     7)在以上研究的基础上,从系统设计体系结构、数据库建设、系统功能模块设计等方面出发,设计并开发了基于ArcGIS Server和Flex技术的青藏高原牧区积雪监测与雪灾预警系统(http://snow.ecograss.com.cn/)。
Tibetan Plateau (TP) is not only one of the three major snowfall regions, but also an important pastoral area in China. However, because of the undeveloped agriculture infrastructure in the region, heavy snow in winter or spring often causes death of a large number of livestock due to cold weather and forage shortage. This has a great negative influence on the sustainable development of grassland animal husbandry. Therefore, it is extremely important to monitor snow dynamic variation for improving the ability of preventing disaster and maintaining the sustainable development of grassland animal husbandry in pastoral areas.
     In this study, snow cover mapping algorithm of cloud removal, algorithm improvement of fractional snow cover, comparison and inversion of snow depth, the response of snow to climate change, early warning of snow-caused disaster and risk assessment were analyzed systematically on TP from2003to2010. The results show that:
     1) This study presents an improved cloud removal algorithm to produce a daily cloud-free snow cover product (MA). The MA composite images not only have the advantages of AMSR-E (i.e., unaffected by weather conditions) and MODIS (i.e., relatively higher resolution), but also the high snow and overall accuracies (i.e.,80.75%and97.52%, respectively), much higher than those of existing daily snow cover products in all sky conditions. Therefore, MA has the ability to accurately monitor the daily snow cover dynamics in the study area, which is extremely important to study snow-caused disasters and offer snow-covered data.
     2) An improved algorithm of fractional snow cover is presented. Compared with the TM-based snow cover map, the standard error and the mean absolute error of the improved algorithm are reduced from0.35to0.22, and0.25to0.18, respectively. The correlation coefficient is increased from0.74to0.85.
     3) The snow depth product issued by the Canadian Meteorological Centre is not suitable to monitor snow depth because of higher errors (RMSE=47.70cm) on the different snow depth condition in the TP region. The snow depth data based on the SSM/I and AMSR-E products are able to accurately monitor daily snow depth in the study area.
     4) The mean annual temperature(MAT), mean annual precipitation(MAP) and snow cover area(SCA) during2003-2010in the TP region have increasing trend, in which the MAT, MAP and SCA increased0.72℃,6.85mm and5.75%, respectively. The annual permanent SCA and snow depth have decreasing trend, in which the annual permanent SCA decreased by the rate of0.35%, and2.80%totally from2003to2010; the average snow depth and snow water equivalant decreased about2.40%and4.16%.
     5) The snow-covered days(SCD) and snow water equivalent(SWE) have decreasing trend from2003to2010, and the decreasing areas take up35.3%and34.3%of the total area in the TP region respectively. It shows that spatial distribution of temperature and precipitation has correlation relationship with SCD and SWE. About50%of study area shows correlation relationship among SCD, SWE, mean annual temperature and mean annual precipitation. The correlation coefficient is up to0.6on the areas where the elevation is below6300m.
     6) There are seven crucial factors for early warning of snow disasters on TP. They are mean annual probability of snow disaster, SCD, livestock stocking rate, continual days of mean daily temperature blow-10℃, grassland burial index, rate of snow-covered grassland and per livestock GDP. Based on snow-caused disaster magnitude and snow influence on grazing of livestock, this study develops a model for early warning of snow disasters on county basis and proposes a method of risk assessment of snow disasters at500meter resolution for pastoral areas of TP. We choose411cases from2008to2010to validate the predicting results from the developed early warning model. An overall mean accuracy of85.64%is reached in classifying snow disaster and no disaster.
     7) On the basis of the existed studies, considering the system structure, data organization and system function design, a management information system for snow monitoring and early warning of snow disasters in the TP region is designed and developed by use of ArcGIS Server and Flex.
引文
[1]Aguado, E. Radiation balances of melting snow covers at an open site in the central Sierra Nevada.California[J]. Water Resources Research,1985,21:1649-1654.
    [2]Armstrong, R. L., Brodzik, M. J. Recent northern hemisphere snow extent:A comparison of data derived from visible and microwave satellite sensors[J]. Geophysical Research Letters, 2001,28(19):3673-3676.
    [3]Armstong, R. L., Brodzik, M. J. Hemispheric-scale comparison and evaluation of passive microwave snow algorithms[J]. Annals of Glaciology,2002,34:38-44.
    [4]Barton, J. S., Hall, D. K., Riggs, G. A. Remote sensing of fractional snow cover using Moderate Resolution Imaging Spectroradiometer (MODIS) data[C]. Proceedings of the 57th Eastern Snow Conference, Syracuse, NY,2001:171-183.
    [5]Bamett, T. P., Dumenil, L., Schlese, U., Roeckner, E. The effect of eurasian snow cover on global climate[J]. Science,1988,239:504-507.
    [6]Bates, D., Lindstmm, M., Wahba, G. Gcvpack-routines for generalized cross validation[J]. Communications in Statistics B-Simulation and Computation,1987,16:263-297.
    [7]Bavay, M., Grunewald, T., Lehning, M. Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland[J]. Advances in Water Resources,2013,55, 4-16.
    [8]Blanford, H. F. On the connection of the Himalaya snowfall with dry winds and seasons of drought in India[J]. Proceedings of the Royal Society,1884,37:3-22.
    [9]Brasnett, B. A global analysis of snow depth for numerical weather prediction[J]. Journal of Applied Meteorology.1999,38,726-740.
    [10]Brown, R. C., Derksen, L., Wang L. Assessment of spring snow cover duration variability over northern Canada from satellite datasets[J]. Remote Sensing of Environment,2007, 111(2-3):367-381.
    [11]Chang, A. T. C., Foster, J. L., Hall, D. K. Nimbus-7 SMMR Derived Global Snow Cover Parameters [J]. Annals of Glaciology,1987,9:39-44.
    [12]Che, T., Li, X., Jin, R. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology,2008,49:145-154.
    [13]Cohen, J. Snow cover and climate[J]. Weather,1994,49:151-156.
    [14]Cohen, J., Rind, D. The effect of snow cover on the climate[J]. Journal of Climate,1991,4: 689-706.
    [15]Dash, S. K., Singh, G P., Shekhar, M. S. Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia[J]. Climate Dynamics,2005, 24(1):1-10.
    [16]Derksen, C. The contribution of AMSR-E 18.7 and 10.7 GHz measurements to improved boreal forest snow water equivalent retrievals[J]. Remote Sensing of Environment,2008, 112(5):2701-2710.
    [17]Dery, S. J., Brown, R. D. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback[J]. Geophysical Research Letters.2007, 34(22):1621-1632
    [18]Dobreva, Ⅰ. D., Klein, A. G. Fractional snow cover mapping through artificial neural network analysis of MODIS surface reflectance[J]. Remote Sensing of Environment,2011,115: 3355-3366.
    [19]Falarz, M. Long-term variability in reconstructed and observed snow cover over the last 100 winter seasons in Cracow and Zakopane (southern Poland)[J]. Climate Research,2002, 19(3):247-256.
    [20]Freedman, D., Pisani, R., Purves, R. Statistics[M]. Norton & Company, New York,1998.
    [21]Gafurov, A., Bardossy, A. Cloud removal methodology from MODIS snow cover product[J]. Hydrology and Earth System Sciences,2009,13:1361.
    [22]Gao, Y., Xie, H., Lu, N., Yao, T., Liang, T. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements[J]. Journal of Hydrology,2010a,385:23-35.
    [23]Gao, Y., Xie, H., Yao, T., & Xue, C. Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA[J]. Remote Sensing of Environment,2010b,114:1662-1675.
    [24]Gao, Y, Lu, N., & Yao, T. Evaluation of a cloud-gap-filled MODIS daily snow cover product over the Pacific Northwest USA[J]. Journal of Hydrology,2011,404:157-165.
    [25]Groisman, P. Y, Easterling, D. R. Variability and trends of precippiation and snowfall over the United States and Canada[J]. Journal of Climate.1994a,7:184-205
    [26]Groisman, Y. P., Knight, R.W., Karl, T. R. Contemporary changes of the hydrological cycle over the contiguous United States:Trends derived from in situ observations[J]. Journal of Hydrometeorology,2004,5(1):64-85.
    [27]Groisman, P. Y., Thomas R. K., Richard W. K., Georgiy L. S. Changes of snow cover, temperature, and radiative heat balance over the northern hemisphere[J]. Journal of Climate, 1994b,7:1633-1656.
    [28]Gutzler, D. S., Rosen, R. D. Interannual variability of wintertime snow cover across the northern hemisphere[J], Journal of Climate,1992,5:1441-1448.
    [29]Hahn, D. G., Shukla, J. An apparent relationship between Eurasian snow cover and Indian monsoon rainfall[J]. Journal of the Atmospheric Sciences,1976,33(12):2461-2462.
    [30]Hall, D. K., Chang, A. T. C., Foster, J. L. Detection of the Depth_hoar Layer in the Snow_pack of the Arctic Coastal Plain of Alaska, U.S.A, Using Satellite Data[J]. Journal of Glaciology,1986,32(110):87-94.
    [31]Hall, D. K., Riggs, G. A. Accuracy assessment of the MODIS snow products[J]. Hydrological Processes,2007,21,1534-1547.
    [32]Hall, D. K., Riggs, G. A., Foster, J. L., Kumar, S. V. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product[J]. Remote Sensing of Environment,2010, 114,496-503.
    [33]Hall, D. K., Foster, J. L., DiGirolamo, N. E., Riggs, G. A. Snow cover, snowmelt timing and stream power in the wind river range[J]. Wyoming. Geomorphology,2012,137,87-93.
    [34]Hall, D. K., Riggs, G. A., Salomonson, V. V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data[J]. Remote Sensing of Environment,1995,54,127-140.
    [35]Hall, D.K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., Bayr, K. J. MODIS snow-cover products[J]. Remote Sensing of Environment,2002,83:181-194.
    [36]Hendrikx, J., Owens, I., Carran, W., Carran, A. Avalanche activity in an extreme maritime climate:The application of classification trees for forecasting[J]. Cold Regions Science and Technology,2005,43:104-116.
    [37]Hijmans, R. J., Cameron, S. E., Parra, J. L. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology,2005,25:1965-1978.
    [38]Hirashima, H., Nishimura, K., Yamaguchi, S., Sato, A., Lehning, M. Avalanche forecasting in a heavy snowfall area using the snowpack model [J]. Cold Regions Science and Technology, 51,2008,191-203.
    [39]Huang, X., Xie, H., Liang, T., & Yi, D. Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau[J]. International Journal of Remote Sensing,2011,32,5177-5196.
    [40]Humchinson, M. F. ANUSPLIN version 4.36 user guide[M]. Canberra:The Australian National University, Centre for Resource and Environmental Studies,2006:7-8.
    [41]IPCC. Climate change 2007:Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[C]. Geneva, Switzerland,2007.
    [42]Jones, A. S. T., Jamieson, B. Meteorological forecasting variables associated with skier-triggered dry slab avalanches[J]. Cold Regions Science and Technology,2001, 33:223-236.
    [43]Klein, A. G, Barnett, A. C. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000-2001 snow year[J]. Remote Sensing of Environment,2003, 86:162-176.
    [44]Leathers, D. J., Andrew W. E., David A. R. Characteristics of temperature depressions associated with snow cover across the northeast United States[J]. Journal of Applied Meteorology and Climatology,1995,34:381-390.
    [45]Kaufman, Y. J., Kleidman, R. G., Hall, D. K. Remote sensing of subpixel snow cover using 0.66 and 2.1μm channels[J]. Geophysical Research Letters,2002,29(16):1781.
    [46]Liang, T. G., Liu, X. Y., Wu, C. X., Guo, Z. G., Huang, X. D. An evaluation approach for snow disasters in the pastoral areas of Northern Xinjiang, PR China[J], New Zealand Journal of Agricultural Research,2007,50,369-380.
    [47]Liang, T.G., Huang, X.D., Wu, C.X., Liu, X.Y., Li, W.L., Guo, Z.G., Ren, J.Z. An application of MODIS data to snow cover monitoring in a pastoral area:A case study in Northern Xinjiang, China[J]. Remote Sensing of Environment,2008a,112,1514-1526.
    [48]Liang, T., Zhang, X., Xie, H., Wu, C., Feng, Q., Huang, X., Chen, Q. Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements[J]. Remote Sensing of Environment,2008b,112:3750-3761.
    [49]Liu, X., Yanai, M. Influence of Eurasian spring snow cover on Asian summer rainfall[J]. International Journal of Climatology,2002,22(9):1075-1089.
    [50]Matson M. NOAA satellite sonw cover data. Palaeogeography and Palaeoecology[J].1991, 13(12-13):1921-1933.
    [51]Nakai, S., Sato, T., Sato, A., Hirashima, H., Nemoto, M., Motoyoshi, H., Iwamoto, K., Misumi, R., Kamiishi, I., Kobayashi, T., Kosugi, K., Yamaguchi, S., Abe, O., Ishizaka, M. A Snow Disaster Forecasting System (SDFS) constructed from field observations and laboratory experiments[J]. Cold Regions Science and Technology,2012,70(0):53-61.
    [52]Nakamura, M., Shindo, N. Effects of snow cover on the social and foraging behavior of the great tit parus major[J]. Ecological Research,2001,16:301-308.
    [53]Norman, C. G., Alan, N. B. Global Identification of Snow-cover Using SSM/I Measurements[J]. IEEE Transaction on Geo-science and Remote Sensing,1996, 34(1):237-249.
    [54]Painter, T. H., Dozier, J., Roberts, D. A. Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data[J]. Remote Sensing of Environment,2003,85(1):64-77.
    [55]Painter, T. H., Roberts, D. A., Green, R. O. The effect of grain size on spectral mixure analysis of snow-covered area from AVIRIS[J]. Remote Sensing of Environment,1998, 65:320-332.
    [56]Paudel, K. P., Andersen, P. Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology[J]. Remote Sensing of Environment,2011,115:1234-1246.
    [57]Price, D. T., McKenney, D. W., Papadopol, P. High resolution future scenario climate data for North America[C]. Vancouver:American Meteorological Society Annual Meetings,2004.
    [58]Pulliainen, J. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations[J]. Remote Sensing of Environment,2006,101:257-269.
    [59]Qian, Y. F., Zheng, Y. Q., Zhang, Y. Responses of China's summer monsoon climate to snow anomaly over the Tibetan Plateau[J]. International Journal of Climatology,2003, 23(6):593-613.
    [60]Qin, D., Liu, S., Li, P. Snow cover distribution, variability, and response to climate change in western China[J]. Journal of Climate,2006,19,1820-1833.
    [61]Robinson, D. A., Dewey, K. F., Heim, R. R. Global snow cover monitoring:an updata[J]. Bulletin of the American Meteorological Society,1993,74:1689-1669.
    [62]Rodriguez, E., Morris, C., Belz, E. A Global Assessment of the (SRTM) Performance[J]. Photogrammetric Engineering and Remote Sensing,2006,72,249-260.
    [63]Romanov, P., Gutman, G., Csiszar, I. Satellite-derived snow cover maps for north america: Accuracy assessment[J], Advances in Space Research,2002,30:2455-2460.
    [64]Rosenthal, W., Dozier, J. Automated mapping of montane snow cover at sub-pixel resolution from the Landsat Thematic Mapper[J]. Water Resources Research,1996,32(1):115-130.
    [65]Salomoson, V. V., Appel I. Estimating fractional snow cover from MODIS using the normalized difference snow index[J]. Remote Sensing of Environment,2004,89:351-360.
    [66]Spencer, R. W., Goodman, H. M., Hood, R. E. Precipitation retrieval over land and oceanwiththe SSM/I:Identification and characteristics of the scattering signal [J]. Journal of Atmospheric and Oceanic Technology,1989,6:254-273.
    [67]Stanley, Q. K., Huey, T. W. A multispectral study of the St. Louis area under snowcovered conditions using NOAA-7 AVHRR data[J]. Remote Sensing of Environment,1987, 22(2):159-172.
    [68]Stow, D. A., Hope, A., McGuire, D., Verbyla, D., Gamon, J., Huemmrich, F., Houston, S., Racine, C., Sturm, M., Tape, K., Hinzman, L., Yoshikawa, K., Tweedie, C., Noyle, B., Silapaswan, C., Douglas, D., Griffith, B., Jia, G, Epstein, H., Walker, D., Daeschner, S., Petersen, A., Zhou, L., Myneni, R. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems[J]. Remote Sensing of Environment,2004,89,281-308.
    [69]Stowe, L. L., McClain, E. P., Carey, R., Pellegrino, P., Gutman, G G, Davis, P., Long, C., Hart, S. Global distribution of cloud cover derived from noaa/avhrr operational satellite data[J]. Advances in Space Research,1991,11:51-54.
    [70]Tachiiri, K., Shinoda, M., Klinkenberg, B., Morinaga, Y. Assessing Mongolian snow disaster risk using livestock and satellite data[J]. Journal of Arid Environments,2008, 72(12):2251-2263.
    [71]Tominaga, Y, Mochida, A., Okaze, T., Sato, T., Nemoto, M., Motoyoshi, H., Nakai, S., Tsutsumi, T., Otsuki, M., Uamatsu, T., Yoshino, H., Development of a system for predicting snow distribution in built-up environments:Combining a mesoscale meteorological model and a CFD model[J]. Journal of Wind Engineering and Industrial Aerodynamics,2011, 99(4):460-468.
    [72]Wang, W., Liang, T., Huang, X., Feng, Q., Xie, H., Liu, X., Chen, M., Wang, X. Early warning of snow-caused disasters in pastoral areas on the Tibetan Plateau[J]. Natural Hazards and Earth System Sciences,2013,13:1411-1425.
    [73]Wang, X., Xie, H. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua[J]. Journal of Hydrology,2009, 371:192-200
    [74]Williamson, R. A., Hertzfeld, H. R., Cordes, J., Logsdon, J.M. The socioeconomic benefits of earth science and applications research:reducing the risks and costs of natural disasters in the USA[J]. Space Policy,2002,18(l):57-65.
    [75]Ye, H., Ellison, M. Changes in transitional snowfall season length in northern Eurasia[J]. Geophysical Research Letters,2003,30(5):1252.
    [76]Zwiers, F. W. Simulation of the Asian summer monsoon with the CCC GCM-1[J]. Journal of Climate,1993,6(3):469-486.
    [77]柏延臣,冯学智.积雪遥感动态研究的现状及展望[J].遥感技术与应用,1997,12(2):59-65.
    [78]曹梅盛,李培基, Robinson, D. A.中国西部积雪SSMR微波遥感的评价与初步应用[J].环境遥感,1993,8(3):260-269.
    [79]曹梅盛,李培基.中国西部积雪微波遥感监测[J].山地研究,1994,12(4):230-234.
    [80]曹云刚,刘闻.一种简化的MODIS亚像元积雪信息提取方法[J].冰川冻土,2006,28(4):562-567.
    [81]曹云刚,杨秀春,徐斌.MODIS在青藏高原大范围积雪制图中的应用及存在的问题[J].科技导报,2007,25(21):51-54.
    [82]车涛,李新.利用被动微波遥感数据反演我国积雪深度及其精度评价[J].遥感技术与应 用,2004a,19(5):301-306.
    [83]车涛,李新,高峰.青藏高原积雪深度和雪水当量的被动微波遥感反演[J].冰川冻土,2004b,26(3):363-368.
    [84]车涛,戴礼云.中国雪深长时间序列数据集(1978-012).寒区旱区科学数据中心,2011.doi:10.3972/westdc.001.2014.db
    [85]陈烈庭,阎志新.青藏高原冬春积雪对大气环流和我国南方汛期降水的影响[C].中长期水文气象预报文集(1).北京:水利电力出版社,1978:185-194.
    [86]陈全功.青海省玉树藏族自治州的雪灾及其防御对策[J].草业科学,1996,13(6):60-63.
    [87]除多,拉巴卓玛,拉巴,普布次仁.珠峰地区积雪变化与气候变化的关系[J].高原气象,2011,03:576-582.
    [88]陈乾金,高波,李维京.青藏高原冬季积雪异常和长江中下游主汛期早涝及其环流关系的研究[J].气象学报,2000,58(5):582-895.
    [89]高峰,李新,Armstrong R L被动微波遥感在青藏高原积雪业务监测中的初步应用[J].遥感技术与应用,2003,18(6):360-363.
    [90]高荣,韦志刚,董文杰.青藏高原冬春积雪和季节冻土年际变化[J].冰川冻土,2004,26(2):153-159.
    [91]甘肃发展年鉴编委员.甘肃发展年鉴2010[M].北京:中国统计出版社,2010.
    [92]国家质量监督检验检疫总局,中国国家标准管理委员会.中华人民共和国国家标准《牧区雪灾等级》(GB/T20482-2006). 北京.中国标准出版社,2006.
    [93]郝璐,王静爱,满苏尔,杨春燕.中国雪灾时空变化及畜牧业脆弱性分析[J].自然灾害学报,2002,(04):42-48.
    [94]郝晓华,王建,李弘毅MODIS雪盖制图中NDSI阈值的检验一以祁连山中部山区为例[J].冰川冻土,2008,30(10):132-138.
    [95]黄晓东,梁天刚.牧区雪灾遥感监测方法的研究[J].草业科学,2005,22(12):10-16.
    [96]黄晓东,张学通,梁天刚.北疆牧区MODIS积雪产品MOD10A1和MOD10A2的精度分析与评价[J].冰川冻土,2007,29(5):721-729.
    [97]李海红,李锡福,张海珍,肖宏斌.中国牧区雪灾等级指标研究[J].青海气象,2006.(01):24-27+38.
    [98]李培基.高亚洲积雪监测[J].冰川冻土,1996,18:105-114.
    [99]李培基.我国牧区雪灾监测预报研究亟待加强[J].冰川冻土,1996,18(4):374-375.
    [100]李培基.中国西部积雪变化特征[J].地理学报,1998,48(6):505-515.
    [101]李晓静,刘玉洁,朱小祥.利用SSM/I数据判识我国及周边地区雪盖[J].应用气象学报,2007,18(1):12-20.
    [102]刘兴元,梁天刚,郭正刚.雪灾对草地畜牧业影响的评价模型及方法研究[J].西北植物学报,2004,24(1):94-99.
    [103]刘兴元,梁天刚,郭正刚,张学通.北疆牧区雪灾预警与风险评估方法[J].应用生态学报,,2008,(01):133-138.
    [104]鲁安新,冯学智,曾群柱,王丽红.西藏那曲牧区雪灾因子主成分分析[J].冰川冻土,1997,(02):86-91.
    [105]卢咸池,罗勇.青藏高原冬春季雪盖对东亚夏季大气环流影响的数值试验[J].应用气象学报,1994,5(4):385-393.
    [106]鲁安新,冯学智,曾群柱.地理信息系统在牧区雪灾研究中的应用[J].灾害学,1996, 11(1):25-29.
    [107]彭明军,李宗华.WebGIS实现技术及发展研究[J].测绘信息与工程,2001,01:41-44.
    [108]青海省统计局.青海统计年鉴2010[M].北京:中国统计出版社,2010.
    [109]四川省统计局.四川统计年鉴2009[M].北京:中国统计出版社,2009.
    [110]施建成.MODIS亚像元积雪覆盖反演算法研究[J].第四纪研究,2012,32(1):6-15.
    [111]石英,高学杰,吴佳.全球变暖对中国区域积雪变化影响的数值模拟[J].冰川冻土,2010,32(2):215-222.
    [112]王澄海,王芝兰,崔洋.40余年来中国地区季节性积雪的空间分布及年际变化特征[J].冰川冻土,2009,31(2):301-310.
    [113]王德利,程志茹.放牧家畜的采食行为理论研究[J].现代草业科学进展,2002,132-134.
    [114]王建.卫星遥感雪盖制图方法与对比分析[J].遥感技术与应用,1999,14(4):29-36.
    [115]王雪璐,王玮,冯琦胜,吕志邦,梁天刚.基于MODIS数据的青海省积雪覆盖范围监测算法探索[J].草业学报,2012,04:293-299.
    [116]王澄海,王芝兰,崔洋.40余年来中国地区季节性积雪的空间分布及年际变化特征[J].冰川冻土,2009,31(2):301-310.
    [117]西藏自治区统计局.西藏统计年鉴2010[M].北京:中国统计出版社,2010.
    [118]新疆维吾尔自治区统计局.新疆统计年鉴2010[M].北京:中国统计出版社,2010.
    [119]尹东,王长根. 中国北方牧区牧草气候资源评价模型[J].自然资源学报,2002,(04):494-498.
    [120]雍世鹏,仝川,雍伟义.内蒙古锡林郭勒草原雪盖与植被覆盖重叠关系的遥感分析[J].冰川冻土,1994,1(3):238-224.
    [121]于灵雪,张树文,卜坤,杨久春,颜凤芹,常丽萍.雪数据集研究综述[J].地理科学,2013,07:878-883.
    [122]张店发,张祥华.中国北方草原雪灾的致灾机制探讨[J].自然灾害学报,2002,11(2):80-84.
    [123]张国胜,伏洋,颜亮东,刘宝康,石德军,杨力军.三江源地区雪灾风险预警指标体系及风险管理研究[J].草业科学,2009,(05):144-150.
    [124]张学通,黄晓东,梁天刚,陈全功.新疆北部地区MODIS积雪遥感数据MOD10Al的精度分析[J].草业学报,2008,17(2):110-117.
    [125]张镱锂,李炳元,郑度.论青藏高原范围与面积[J].地理研究,2002,21(1):1-10.
    [126]中国气象局.中国气象统计年鉴2009M.北京:气象出版社,2010.
    [127]周秉荣,李凤霞,申双和,宋理明,李红梅.青海高原雪灾预警模型与GIS空间分析技术应用[J].应用气象学报,2007,(03):373-379.
    [128]周秉荣,申双和,李凤霞.青海高原牧区雪灾逐级判识模型[J].中国农业气象,2006,(03):210-214+218.
    [129]周陆生,汪青春,李海红,张海玲,李江英.青藏高原东部牧区大-暴雪过程雪灾灾情实时预评估方法的研究[J].自然灾害学报,2001,(02):58-65.
    [130]周强,王世新,周艺,王丽涛.MODIS亚像元积雪覆盖率提取方法[J].中国科学院研究生院学报,2009,26(3):383-388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700