用户名: 密码: 验证码:
洪灾风险综合分析与智能评价的理论与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是一个洪涝灾害频繁发生的国家,并且以其发生频率高、分布范围广、灾害程度重、经济损失大而成为最为严重的自然灾害,严重威胁人民生命财产安全和阻碍了社会经济可持续发展。因此,开展洪灾风险分析研究,确切分析洪灾发生的可能性及其可能造成的损失,对于科学、有效地防洪减灾具有重要意义。然而,洪水灾害系统是一个包括致灾因子、孕灾环境、承灾体和灾情的开放式复杂巨系统,具有高度非线性、时空动态性和复杂不确定性,系统中各种耦合问题日趋复杂并呈现由低维向高维的演化过程。毫无疑问,针对这一复杂系统的风险分析与风险管理,无论是采用经典的控制理论,还是采用传统的数学手段,都将遇到诸如信息不确定性、模型合理可靠性、数据资料不完备性、系统集成普适性等方面的困难,相关研究已呈现出“从低维线性到复杂高维非线性”、“从单尺度到多维时空尺度”、“从单情景到组合情景”、“从单变量到多重耦合变量”、“从确定性到不确定性”的发展趋势,迫切需要理论与方法体系的创新,亟待研究和发展新的理论与方法体系。本文基于复杂耦合的思想和复杂系统的集成方法,提出了多种复杂耦合评价模型并应用到不确定性洪灾风险综合分析与智能评价的研究中,旨在丰富和发展洪灾风险分析中的指标体系构建、综合权重推求、评价方法建立的技术路线,实现对复杂条件下洪灾风险识别、诊断、评价以及不完备信息条件下洪灾风险模糊评价,为洪水风险综合管理和防灾减灾紧急预案提供科学的决策支持。具体说来,本文的主要研究集中在洪水危险性识别、洪灾易损性诊断、洪灾风险综合评价、模糊风险评价和洪灾灾情智能评价等方面,取得了一些具有理论意义和实用价值的研究成果。本文的主要研究内容及创新成果如下:
     (1)针对洪水分类指标时空分布不均、交叉严重且综合权重不易计算等问题,采用灵敏度系数将主、客观权重综合为组合权重,提出了一种基于组合权重的模糊聚类迭代模型;同时,对基本差分进化算法进行改进提出了性能更优的自适应混沌差分进化算法(ACDE),全局搜索得到了组合权重模糊聚类迭代模型的最优的模糊聚类中心和灵敏度系数。实例研究表明提出的分类方法合理、可靠、稳健,既能有效处理洪水分类指标的不确定性和模糊性,又综合考虑了评价指标的主客观权重,在无评价标准情况的排序、评价和决策问题中具有良好的推广应用价值。
     (2)针对洪灾易损评价指标体系的不相容性和不确定性,以多属性决策的理论与方法为基础,将理想解法和灰色关联法相结合并进行有效改进,对研究区域在发生洪水时可能造成的损失程度进行动态综合评价。研究表明,提出的改进灰色理想解法,思路清晰、结果合理、应用灵活,从位置和形状相似性上综合描述了样本与理想解的接近程度,能充分利用知识信息,更好地挖掘数据的内在规律,提高了洪灾易损性评价的科学性,在多指标综合评价方面具有较好的应用前景。
     (3)依据灾害系统理论,针对洪水灾害形成、发展、致灾过程不确定性对洪灾风险的影响,结合水文气象、社会经济、自然环境等数据统计资料以及相应的法规、案例,构建了了荆江分洪区洪灾风险综合评价指标体系及其等级评价标准,并运用梯形模糊数和层次分析法相结合的方法(TrFN-AHP)确定评价指标权重。同时,针对复杂洪灾系统中随机、模糊、灰色等各种不确定性,以洪灾风险管理广义熵智能分析为理论框架,提出了基于最大熵原理和属性区间识别理论的洪灾风险综合评价模型(AIRM-POME),最大程度地消除洪灾风险分析中的各种不确定性,由置信度准则和特征值公式判定各评价单元的洪灾危险等级和易损等级,并根据自然灾害风险的定义及其定量表达式给出风险等级。实例研究表明评价结果可信度高,是一种洪灾风险分析的新方法,可推广应用到其他自然灾害的风险分析中。
     (4)传统概率计算方法在实际应用中会遭遇“小样本”的不完备信息问题,存在不精确和不确定的理论瓶颈。为有效处理洪灾风险的不确定性和不完备性,在以“信息分配”和“信息扩散”为核心的模糊信息优化处理技术的基础上,应用改进的内集-外集模型得到了洪灾可能性-概率风险值,既阐明了在现有不完备条件下超越概率估算不确定、不精确、不唯一的客观事实,也为风险评价中的模糊信息识别、容纳、处理与计算提供了一条新思路;在此基础上,计算了区间风险估计值,得到了与软直方图基本一致的结果,并引入模糊集截集技术推求得到了不同截集水平下的冒险风险值、保守风险值和最大可能风险值,体现了风险评价结果的不同层次结构,可为决策者提供多层次、多值化的风险信息。
     (5)针对洪灾灾情评估指标与灾情等级之间的复杂非线性关系,引入支持向量回归建模方法并结合ACDE进行参数优选,同时将集对分析理论、三角模糊数、随机模拟技术进行结合,将离散的整数型灾情等级评价推广到连续型、区间型灾情等级综合评价,解析了灾害评估指标体系与实际灾情的正相关映射规律,克服了传统评价方法合理构造评价指标集与评价等级之间函数关系的困难,攻克了评估结果易出现振荡性误差的技术瓶颈,突破了洪灾灾情等级高精度、高分辨率动态综合评价的理论障碍,丰富和发展了多级模糊条件下洪水灾情综合评价的理论与方法体系。
Flood disasters are among the most frequent and devastating types of disasters over theworld. Worldwide statistics indicate that continuously increasing flood damages and lossesof human lives remain at high levels.Therefore, it is necessary to analyze flood risk toensure healthy and sustainable economic development, and flood risk assessment hasbecome worldwide one of the hot issues in the field of natural science and technology.And the flood disaster system is an open complex giant System with highly nonlinear,dynamic and complex uncertainties, including the disaster-inducing factors,disaster-breeding environment, hazards-bearing bodies and flood disaster loss, and theproblmes in the system become increasingly complex and coupled problems fromlow-dimensional to high-dimensional. Undoubtedly, according to risk analysis and riskmanagement of this complex system, regardless the classical control theory or traditionalmathematical methods, we would likely encounter much trouble, such as whetherinformation is uncertainty, whether the models are reasonable and reliable, whether thedata is complete and the integrated system is universal. Moreover, development trend ofrelated research has rendering out "from low dimension linear to complex high dimensionnonlinear","from single scale to multidimensional spatio-temporal scale","from singlestories to combination stories","from single variable to multiple coupled variable" and"from certainty to uncertainty", so urgent need is to propose and develop new theories andmethodologies. Based on coupling complicated idea and complex system integrationapproach, a variety of complex coupling evaluation model were proposed in this articleand then applied to the study of flood risk comprehensive analysis and intelligentevaluation under uncertainty. The aim of this article is to enrich and develop technicalroute of the establishment of flood risk analysis index system, determination of integratedweight and establishment of evaluation methods, then to reach the realization of flood riskidentification, diagnostics, evaluation, and incomplete information under complexconditions as well as fuzzy risk analysis under incomplete condition, hence to providescientific decision support for flood risk management and disaster prevention andmitigation integrated emergency plans. Specifically, the main research focus of thisarcticle are flood hazard identification, flood vulnerability diagnosis, flood riskcomprehensive assessment, flood risk fuzzy analysis and flood disaster intelligentevaluation, and the main research contents and innovations are as follows:
     (1) For the flood classification indices are uneven distribution, cross-serious and theircomprehensive weight are hard to calculate and so on, the sensitivity coefficient was usedto combine the subjective and objective weights into integrated weights, then fuzzy clustering iterative model with integrated weights was proposed for flood classfication.Then adaptive chaotic differential evolution algorithm (ACDE) was proposed for globalsearch of the optimal fuzzy clustering center and sensitivity coefficient in the combinedweight fuzzy clustering iterative model. Case study shows that the proposed classificationmethod is reasonable, reliable, robust, which can effectively deal with flood classificationindexes under uncertainty and ambiguity, and has good application value in sorting,evaluation and decision-making problems with no evaluation criteria.
     (2) For there are incompatibilities and uncertainties in the flood vulnerabilityassessment index system, based on multi-attribute decision making theory and method, wecombine and improve the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS) and Grey Correlation method (GC) into IGC-TOPSIS for dynamiccomprehensive evaluation of disaster loss caused by flooding. Research shows thatIGC-TOPSIS is reasonable and flexible, and it is able to describe the closeness from theposition and shape of the similarity to the ideal solution and make full use of knowledgeand information, to better tap the inherent data law, thus to improve the scientific of floodvulnerability assessment, and have has good application prospects in multi-indexcomprehensive evaluation.
     (3) Based on disaster system theory and taking consideration into flood formation,development and process on flood risk, as well as combined with hydrometeorological,socio-economic and natural environment statistics data and corresponding regulations andcases, the flood risk evaluation index system of flood diversion district as well as itsevaluation standards were established. Then the analytic hierarchy process combined withtrapezoidal fuzzy numbers (TrFN-AHP) was employed to determine the weights forevaluation indices. Meanwhile, considering the stochastic, fuzzy, gray and otheruncertainties in flood disaster risk system and based on the intelligent analysis ofgeneralized entropy theoretical framework, we proposed the flood risk comprehensiveassessment model using the princple of maximum entropy and attribute intervalrecognition theory (AIRM-POME), to maximize the elimination of flood risk analysis in avariety of uncertainties, and the confidence criterion and eigenvalues equation are adoptedto determine the flood hazard and flood vulnerability grades. Finally, according to thedefinition and quantification expressions of risk, we obtain the flood risk grades for eachunit. Case study shows the proposed method has high reliability evaluation result, and it isa new method for flood risk comprehensive analysis and can be extended to other naturaldisasters risk analysis.
     (4) Traditional probability calculation method will encounter "small sample" incomplete information in practical applications, and there exists imprecise and uncertaintheories bottleneck. In order to effectively deal with the uncertainty and incompleteness offlood risk, based on "information distribution" and "information diffusion" as the core ofthe fuzzy information optimization processing technology, we employ the improvedinterior-outer-set model (IIOSM) to obtain the possibility-probability distribution (PPD)risk results, which could not only clarify the objective facts of existing incompleteexceedance probability estimation under uncertainty and imprecision, but also provide anew idea for risk assessment to identify, accommodate, process and compute the fuzzyinformation. on this basis, the interval risk estimates were calculated, which wasconsistent the results by soft histogram. And furthermore, by combining PPD with fuzzyset cut technique, we got the conrresponding venture risk, conservative risk and maximumpossibility risk values under different levels, thus can provide decision makers withmulti-level, multi-valued risk information.
     (5) Considering the complex nonlinear relationship between flood disaster assessmentindices and disaster grades, we adopt the support vector machine combined with ACDEfor parameter optimization for flood disaster evaluation, and then set pair analysis theory,triangular fuzzy number, stochastic simulation technique are combined, thus to extend thediscrete integer disaster grade to continuous and interval disaster grade. With the twomethods above, we are able to analysis the related mapping rules between disasterevaluation model and actual disaster, overcome the difficulty of the traditional evaluationmethods in establishing functional relationship between assessment indices and grades,overcome the technical bottleneck of calculating assessment results with oscillatorydeviation, break the theoretical obstaclesthe of flood disaster grade high-precision andhigh-resolution dynamic comprehensive evaluation, as well as enrich and develop thetheory and method of flood disaster loss comprehensive assessment under multi-levelfuzzy conditons.
引文
[1] International Federation of Red Cross and Red Crescent Societies. World disasterreport. Oxford: Oxford University Press,1998.
    [2] D.E. Alexander. Natural disasters. Kluwer Academic Publishers,2002.
    [3]冯平,崔广涛,钟昀.城市洪涝灾害直接经济损失的评估与预测.水利学报,2001,(8):64-68.
    [4] Zhang Jiquan, Zhou Chenghu, Xu Kaiqin et al. Flood disaster monitoring andevaluation in China. Environ Hazards,2002,4:33-43
    [5]毛德华.洪灾综合风险分析的理论方法与应用研究.北京:中国水利水电出版社,2009.
    [6]李琼.洪水灾害风险分析与评价方法的研究及改进.华中科技大学博士学位论文,2007.
    [7]王栋,潘少明,吴吉春,等.洪水风险分析的研究进展与展望.自然灾害学报,2006,15(1):103-109.
    [8]付湘,王丽萍,边玮.洪水风险管理与保险.北京:科学出版社,2008.
    [9]魏一鸣,范英,金菊良.洪水灾害风险分析的系统理论.管理科学学报,2001,4(2):7-11,44.
    [10]陈进,黄薇,程卫帅.风险分析在水利工程中的应用.武汉:长江出版社,2006.
    [11] David Vose. Risk analysis: a quantitative guide. John Wiley&Sons, Ltd, England,2008.
    [12]魏一鸣,金菊良,杨存建,等.洪水灾害风险管理理论.北京:科学出版社,2002.
    [13]陈玥.基于灰色系统理论和云模型的反精确洪水灾害分析.华中科技大学博士学位论文,2010.
    [14]黄大鹏,刘闯,彭顺风.洪灾风险评价与区划研究进展.地球科学进展,2007,26(4):11-22.
    [15] United Nations Department of Humanitarian Affairs (UNDHA). Mitigating NaturalDisasters: Phenomena, Effects and Options: A Manual for Policy Makers andPlanners. New York: United Nations,1991:1-164.
    [16]李继清.洪灾综合风险管理理论方法与应用研究.武汉大学博士学位论文,2004.
    [17]周建中.国家重点基础研究发展计划项目课题“坝堤溃决风险分析理论与评估方法”课题任务书.国家科技部,2007.
    [18]李松仕.几种频率分布线型对我国洪水资料实用性研究.水文,1984,4(1):1-7.
    [19]叶守泽,夏军.水文科学研究的世纪回眸与展望.水科学进展,2002,13(1):93-104.
    [20]金光炎.两种新的水文频率分布模型: Pareto分布和Logistic分布.水文,2005,25(1):29-33,45.
    [21]宋松柏,康艳,荆萍.水文频率曲线参数优化估计研究.西北农林科技大学学报(自然科学版),2008,36(4):193-198.
    [22]许月萍,任立新,黄艳,等.水文极值计算及其不确定性.应用基础与工程科学学报,2009,17(2):172-178.
    [23]刘力,周建中,杨俊杰,等.粒子群优化适线法在水文频率分析中的应用.水文,2009,29(2):21-23.
    [24]张明,张建云,金菊良,等.基于最大熵分布的洪灾受灾率频率分析方法.四川大学学报(工程科学版),2009,41(5):65-69.
    [25]张明,周润娟,金菊良.水文频率分析的未确知数随机模拟模型.水力发电学报,2012,31(5):14-18.
    [26] L.S. Esteves. Consequences to flood management of using different probabilitydistributions to estimate extreme rainfall. Journal of Environmental Management,2013,115:98-105.
    [27] Favre A.C., Adlouni S.E., Perrault L., et al. Multivariate hydrological frequencyanalysis using copulas. Water Resources Research,2004,40(11):1-12.
    [28]熊立华,郭生练,肖义,等. Copula联结函数在多变量水文频率分析中的应用.武汉大学学报(工程科学版),2005,38(6):16-19.
    [29]郭生练,闫宝伟,肖义,等. Copula函数在多变量水文分析计算中的应用及研究进展.水文,2008,28(3):1-7.
    [30]冯平,毛慧慧,王勇.多变量情况下的水文频率分析方法及其应用.水利学报,2009,40(1):33-37.
    [31]何耀耀.基于混沌进化的水库调度和洪灾评估理论与方法.华中科技大学博士学位论文,2010.
    [32]闵赛.洪险度及其灾害学意义.灾害学,1996,11(2):80-85.
    [33]周晓阳,张勇传.洪水分类的预测及优化调度.水科学进展,1997,8(2):123-129.
    [34] Lu Hongjun, Chen Yinchuan. The grey clustering method of the evaluation of floodseverity. Proceedings of International Symposium on Floods and Droughts.Nanjing: Hohai University Press,1999:24-29.
    [35]王顺久,张欣莉,候玉,等.洪水灾情投影寻踪评估模型.水文,2002,22(4):1-4.
    [36]董前进,王先甲,艾学山,等.基于投影寻踪和粒子群优化算法的洪水分类研究.水文,2007,27(4):10-14.
    [37]孙倩,段春青,邱林,等.基于熵权的模糊聚类模型在洪水分类中的应用.华北水利水电学院学报,2007,28(5):4-6.
    [38]王卓,倪长健.投影寻踪动态聚类模型研究及其在洪灾评定中的应用.四川师范大学学报(自然科学版),2008,31(5):635-638.
    [39]倪长健,王顺久,王杰.最优曲线投影动态聚类指标及在洪水分类中的应用——以南京站洪水为例.灾害学,2011,26(2):1-4.
    [40]王本德,张静.考虑暴雨成因的大伙房水库洪水分类研究.水文,2008,28(1):15-20.
    [41]汪丽娜,陈晓宏,李粤安,等.投影寻踪和人工鱼群算法的洪水分类人民长江,2008,39(24):34-37.
    [42]汪丽娜,陈晓宏,李粤安,等.混合蛙跳算法和投影寻踪模型的洪水分类研究.水电能源科学,2009,27(2):62-64.
    [43]汪丽娜,陈晓宏,李粤安,等.基于人工鱼群算法和模糊C-均值聚类的洪水分类方法.水利学报,2009,40(6):743-748,755.
    [44]刘玉邦,梁川.基于PCP-C耦合模型的流域洪水分类研究.水文,2010,30(1):18-22.
    [45]刘玉邦,梁川.基于核函数变换的NLPCC分析在洪水分类中的应用.武汉理工大学学报(交通科学与工程版),2011,35(1):59-62.
    [46]刘玉邦,梁川.基于天气成因和主成分投影分析的暴雨洪水分级研究.水利学报,2011,42(1):98-104.
    [47]徐冬梅,陈守煜,邱林.基于可变模糊集理论的洪水分类研究,水电能源科学,2011,29(1):23-25.
    [48] He Yaoyao, Zhou Jianzhong, Kou Pangao, Lu Ning, Zou Qiang. A fuzzy clusteringiterative model using chaotic differential evolution algorithm for evaluating flooddisaster, Expert Systems with Applications,2011,38,10060-10065.
    [49]张艳平,周惠成.基于暴雨洪水相似性分析的洪水分类研究.水电能源科学,2012,30(9):50-54.
    [50]谢云霞,王文圣,曾尚春.基于分形模糊集对分析方法的洪水分类.水电能源科学,2012,30(11):31-34.
    [51]吴成国,王义民,唐言明,等.基于集对分析的洪水危险性评价可变模糊识别模型.西北农林科技大学学报(自然科学版),2012,40(1):221-226.
    [52] Liao Li, Jianzhong Zhou, Qiang Zou. Weighted fuzzy kernel-clustering algorithmwith adaptive differential evolution and its application on flood classification.Natural Hazards,2013. DOI:10.1007/s11069-013-0707-x.
    [53] Federal Emergency Management Agency. Guidelines and specifications for floodhazardmapping partners. USA: Federal Emergency Management Agency,2003.
    [54] McEwen L J. Extreme rainfall and its implication for flood frequency: a case studyof the middle River Tweed basin, Scotland. Transactions of the Institute of BritishGeogaphers,1989,14(3):287-298.
    [55] Masatoshi Shidawara. Flood hazard map distribution. Urban Water,1999,1:125-129.
    [56]张行南,罗健,陈雷,等.中国洪水灾害危险程度区划.水利学报,2000,31(3):1-7.
    [57]何报寅,张海林,张穗,等.基于GIS的湖北省洪水灾害危险性评价.自然灾害学报,2002,11(4):84-89.
    [58]周洪建,王静爱,岳耀杰,等.基于河网水系变化的水灾危险性评价——以永定河流域京津段为例.自然灾害学报,2006,15(5):45-49.
    [59]周惠成,张丹.可变模糊集理论在旱涝灾害评价中的应用研究.农业工程学报,2009,25(9):56-61.
    [60]焦俊超,马安青,李福建.基于GIS的崂山区洪水危险等级模糊评判研究.水土保持通报,2010,30(5):161-164.
    [61]李谢辉,王磊.河南省洪灾风险危险性区划研究.人民黄河,2013,35(1):10-13.
    [62]毛德华,王立辉.湖南城市洪涝易损性诊断与评估.长江流域资源与环境,2002,(11)1:89-93.
    [63]高吉喜,潘英姿,柳海鹰,等.区域洪水灾害易损性评价.环境科学研究,2004,17(6):30-34.
    [64]朱聪,秦蓓蕾,王文圣,等.城市洪涝易损性分类与诊断研究.云南地理环境研究,2005,17(2):15-18.
    [65]刘兰芳,何曙光.洪水灾害易损性模糊综合评价——以湖南省衡阳市为例.衡阳师范学院学报,2006,27(3):123-128.
    [66]安永林,彭立敏,张运良,等.小城镇灾害易损性可拓评估的原理和应用.安全与环境学报,2007,7(6):123-126.
    [67]王威,田杰,苏经宇,等.基于贝叶斯随机评价方法的小城镇灾害易损性分析.防灾减灾工程学报,2010,30(5):524-527.
    [68]宋岩,王彬,李宁,等.基于集对分析理论的小城镇灾害易损性的评价方法.河南科学,2012,30(5):661-664.
    [69]吴开亚,金菊良,潘争伟.基于三角模糊数截集的联系数模型在城市洪灾影响等级评价中的应用.水利学报,2010,41(6):711-719.
    [70]谢云霞,王文圣.城市洪涝易损性评价的分形模糊集对评价模型.深圳大学学报理工版,2012,29(1):12-17.
    [71]王绍玉,刘佳.城市洪水灾害易损性多属性动态评价.水科学进展,2012,23(3):334-340.
    [72] Christina Elizabeth Fatti, Zarina Patel. Perceptions and responses to urban floodrisk: Implications for climate governance in the South. Applied Geography,2013,36:13-22.
    [73] Kyung-Soo Jun, Eun-Sung Chung, Young-Gyu Kim, et al. A fuzzy multi-criteriaapproach to flood risk vulnerability in South Korea by considering climate changeimpacts. Expert Systems with Applications,2013,40(4):1003-1013.
    [74]葛鹏,岳贤平.洪涝灾害承灾体易损性的时空变异——以南京市为例.灾害学,2013,28(1):107-111.
    [75]周成虎,万庆,黄诗峰,等.基于GIS的洪水灾害风险区划研究.地理学报,2000,55(1):15-24.
    [76]陈华丽,陈刚,丁国平.基于GIS的区域洪水灾害风险评价.人民长江,2003,34(6):49-51.
    [77]刘家福,李京,刘荆,等.基于GIS/AHP集成的洪水灾害综合风险评价——以淮河流域为例.自然灾害学报,2008,17(6):110-114.
    [78]刘国庆,徐刚,刘颖.基于GIS的区域洪水灾害风险评价方法研究.安徽农业科学,2009,37(22):10562-10564.
    [79]付湘,王丽萍,纪昌明.极值统计学在洪灾风险评价中的应用.水利学报,2001,(7):8-12.
    [80]杜鹃,何飞,史培军.湘江流域洪水灾害综合风险评价.自然灾害学报,2006,15(6):38-44.
    [81]周爱霞,张行南,夏达忠.洪灾风险度量方法研究.水利学报,2007,(S1):490-494.
    [82]李绍飞,余萍,孙书洪.基于神经网络的蓄滞洪区洪灾风险模糊综合评价.中国农村水利水电,2008,(6):60-64.
    [83]李绍飞,冯平,孙书洪.突变理论在蓄滞洪区洪灾风险评价中的应用.自然灾害学报,2010,19(3):132-138.
    [84]李绍飞,余萍,孙书洪,等.区域洪灾易损性评价与区划的熵权模糊物元模型.自然灾害学报,2010,19(6):124-131.
    [85] Jiang Weiguo, Deng Lei, Chen Luyao et al. Risk assessment and validation of flooddisaster based on fuzzy mathematics. Progress in Natural Science,2009(19),1419-1425.
    [86]王文圣,金菊良,李跃清.基于集对分析的自然灾害风险度综合评价研究.四川大学学报(工程科学版),2009,41(6):6-12.
    [87]赖成光,王兆礼,宋海娟.基于BP神经网络的北江流域洪灾风险评价.水电能源科学,2011,29(3):57-59,161.
    [88]田玉刚,杜渊会,贾东华,等.基于数据场和云模型的洪水灾害风险等级评估.中国安全科学学报,2011,21(8):158-163.
    [89]田玉刚,覃东华,杜渊会,等.基于数据场与阈值法的水灾风险等级评估方法.人民长江,2011,42(19):11-14.
    [90] Yamei Wang, Zhongwu Li, Zhenghong Tang, Guangming Zeng. A GIS-BasedSpatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting LakeRegion, Hunan, Central Chin. Water Resour Manage,2011,25:3465-3484.
    [91] F.L.M. Diermanse, C.P.M. Geerse. Correlation models in flood risk analysis.Reliability Engineering&System Safety,2012,105:64-72.
    [92] Ashraf Mohamed Elmoustafa. Weighted normalized risk factor for floods riskassessment. Ain Shams Engineering Journal,2012,3(4):327-332.
    [93] Young-Oh Kim, Seung Beom Seo, Ock-Jae Jang. Flood risk assessment usingregional regression analysis. Natural Hazards,2012,63(2):1203-1217.
    [94] Xiang Fu, Tao Tao, Hui Wang, et al. Risk assessment of lake flooding consideringpropagation of uncertainty from rainfall: case study. Journal of HydrologicEngineering.2012. DOI:10.1061/(ASCE)HE.1943-5584.0000700.
    [95]李帅杰,李昌志,程晓陶.区域洪灾风险评价方法初探——以浙江省为例.水利水电技术,2012,43(3):82-87.
    [96]邹强,周建中,周超,等.基于可变模糊集理论的洪水灾害风险分析.农业工程学报,2012,28(5):126-132.
    [97] Qiang Zou, Jianzhong Zhou, et al. Comprehensive flood risk assessment based onset pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch Environ Res RiskAssess,2013,27(2):525-546.
    [98]邹强,周建中,周超,等.基于最大熵原理和属性区间识别理论的洪水灾害风险分析.水科学进展,2012,23(3):323-334.
    [99] Zhonghui Ji, Ning Li, Wei Xie, et al. Comprehensive assessment of flood risk usingthe classification and regression tree method. Stochastic Stoch Environ Res RiskAssess,2013. DOI:10.1007/s00477-013-0716-z.
    [100]王艳艳,韩松,喻朝庆,等.太湖流域未来洪水风险及土地风险管理减灾效益评估.水利学报,2013,44(3):327-335.
    [101]杨小玲.多属性决策分析及其在洪灾风险评价中的应用研究.华中科技大学博士学位论文,2012.
    [102] Xiaoling Yang, Jiehua Ding, Hui Hou. Application of a triangular fuzzy AHPapproach for flood risk evaluation and response measures analysis. Natural hazards,2013. DOI:10.1007/s11069-013-0642-x.
    [103] Huang Chongfu. Fuzzy risk assessment of urban natural hazards. Fuzzy Sets andSystems1996,83:271-282.
    [104] Huang Chongfu. Principle of information diffusion. Fuzzy Sets and Systems,1997,91(1),69-90.
    [105]黄崇福.自然灾害风险分析.北京:北京师范大学出版社,2001.
    [106]黄崇福.自然灾害风险评价理论与实践.北京:科学出版社.2005.
    [107]黄崇福.自然灾害风险分析与管理.北京:科学出版社,2012.
    [108]冯利华.基于信息扩散理论的洪水风险分析.信息与控制,2002,31(2):164-165,170.
    [109]雷晓云,何春梅.基于信息扩散理论的洪水风险评估模型的研究及应用——以阿克苏河流域新大河暴雨融雪型洪水为例.水文,2004,24(4):5-8.
    [110]刘亚彬,刘黎明,许迪,等.基于信息扩散理论的中国粮食主产区水旱灾害风险评估,农业工程学报,2010,26(8):1-7.
    [111] Huang Chongfu. A demonstration of reliability of the interior-outer-set model.International Journal of General Systems,2004,33(2-3),205-222.
    [112]陈志芬,黄崇福,张俊香.基于扩散函数的内集-外集模型.模糊系统与数学,2006,20(1):42-48.
    [113] Iman Karimi, Eyke Hüllermeier. Risk assessment system of natural hazards: A newapproach based on fuzzy probability. Fuzzy Sets and Systems,2007,158(9):987-999.
    [114] Feng LH, Luo GY. Analysis on fuzzy risk of landfall typhoon in Zhejiang provinceof China. Mathematics and Computers in Simulation,2009,79(10),3258-3266.
    [115] Feng LH, Hong WH, Wan Z. The application of fuzzy risk in researching flooddisasters. Natural Hazards,2010,53(3),413-423.
    [116] Feng LH, Luo GY. Application of possibility-probability distribution in assessingwater resource risk in Yiwu city. Water Resources,2011,38(3),409-416.
    [117] Huang Chongfu, Da Ruan. Fuzzy Risks and an Updating Algorithm with NewObservations. Risk analysis,2008,28(3):681-694.
    [118]张俊香,黄崇福.四川地震灾害致灾因子风险分析.热带地理,2009,29(3):280-284.
    [119]刘合香,徐庆娟.基于r维正态扩散的区域热带气旋灾害模糊风险分析.数学的实践与认识,2011,41(3):150-159.
    [120]刘家福,占文风,梁雨华,等. P-Ⅲ型分布与信息扩散理论的风险估算模型比较研究.北京师范大学学报(自然科学版),2011,47(3):300-303.
    [121] Qiang Zou, Jianzhong Zhou, et al. Fuzzy risk analysis of flood disasters based ondiffused-interior-outer-set model. Expert Systems with Applications,2012,39(6):6213-6220.
    [122] Qiang Zou, Jianzhong Zhou, et al. The practical research on flood risk analysisbased on IIOSM and fuzzy α-cut technique. Applied Mathematical Modelling,2012,36(7):3271-3282.
    [123] Qiong Li, Jianzhong Zhou, et al. Research on Flood Risk Analysis and EvaluationMethod Based on Variable Fuzzy Sets and Information Diffusion, Safety Science,2012,50(5):1275-1283.
    [124]王丽萍,付湘.洪灾风险及经济分析.武汉:武汉水利电力大学出版社,1999.
    [125] SACE. Business Depth-Damage Analysis Procedures, U.S. Army Corps ofEngineers, Engineering Institute for Water Resources, Research Reports85-R-5,1985.
    [126]陈秀万.洪水灾害损失评估系统――遥感和GIS技术应用研究.中国水利水电出版社,1999.
    [127] KGS Group. Red River Basin Stage-damage Curves Update and Preparation ofFlood Damage Maps. Final Report, Intermational Joint Comission,2000.
    [128]付湘,纪昌明.洪灾损失评估指标的研究.水科学进展,2000,11(4):432-435.
    [129]王艳艳,陆吉康,陈浩.洪灾损失评估技术的应用.水利水电技术,2002,33(10):30-33.
    [130] USACE. Economic Guidance Memorandum (EGM)04~01,Generic Depth-DamageRelationships,U.S.Army Corps of Engineers Memorandum, CECW-PG10,Washington, DC,2003.
    [131]翟宜峰,殷峻暹.基于GIS/RS的洪水灾害评估模型.人民黄河.2003,4(25):6-14.
    [132] Joy Sanyal, X.X. Lu. Remote sensing and GIS-based flood vulnerabilityassessment of human settlements: a case study of Gangetic West Bengal, India.Hydrological Processes,2005,19(18):3699-3716.
    [133]付湘,谈广鸣,纪昌明.洪灾直接损失评估的不确定性研究.水电能源科学,2008,26(3):35-38.
    [134]仇蕾,王慧敏,马树建.极端洪水灾害损失评估方法及应用.水科学进展,2009,20(6):869-875.
    [135] J.Q. Xia, R.A. Falconer, B.L. Lin, et al. Numerical assessment of flood hazard riskto people and vehicles in flash floods. Environmental Modelling&Software,2011,26(8):987-998.
    [136]贾艾晨,王营,杨茜.农田洪灾淹没损失评估模型研究.水利与建筑工程学报,2011,9(6):15-18.
    [137] Tian Xie, Jianzhong Zhou, Lixiang Song, et al. Dynamic evaluation andimplementation of flood loss based on GIS grid data. Communications inComputer and Information Science,2011,228:558-565.
    [138]谢田.基于GIS的荆江分蓄洪区洪灾损失动态评估及系统实现.华中科技大学硕士学位论文,2011.
    [139]董姝娜,姜鎏鹏,张继权,等.基于“3S”技术的村镇住宅洪灾脆弱性曲线研究.灾害学,2012,27(2):34-38,42.
    [140] Okmyung Bin, Craig E. Landry. Changes in implicit flood risk premiums:Empirical evidence from the housing market.Journal of Environmental Economics,2013,65(3):361-376.
    [141] J.J. Yu, X.S. Qin, O. Larsen. Joint Monte Carlo and possibilistic simulation forflood damage assessment. Stoch Environ Res Risk Assess,2013,27(3):725-735.
    [142]万金红,张葆蔚,谭徐明.洪涝灾情评估标准关键技术问题的探讨.灾害学,2012,27(4):55-59.
    [143]赵阿兴,马宗晋.自然灾害损失评估指标体系的研究.自然灾害学报,1993,2(3):1-7.
    [144]李祚泳,邓新民.自然灾害的物元分析灾情评估模型初探.自然灾害学报,1994,3(2):28-33.
    [145]赵黎明,王康,邱佩华.灾害综合评估研究.系统工程理论与实践,1997,17(3):63-69.
    [146]金菊良,张欣莉,丁晶.评估洪水灾情等级的投影寻踪模型.系统工程理论与实践,2002,22(2):140-144.
    [147]于雪峰,陈守煜.模糊聚类迭代模型在洪水灾害度划分中应用.大连理工大学学报,2005,45(1):128-131.
    [148]张弛,宋绪美,李伟.可变模糊评价法在洪涝灾情评价中的应用.自然灾害学报,2008,17(5):34-39.
    [149] Deng W.P., Zhou J.Z., Yang X.L., et al. A Real-time Evaluation Method Based onCloud Model for Flood Disaster.2009International Conference on EnvironmentalScience and Information Application Technology, ESIAT,2009,3:136-139.
    [150]田俊峰,吴丽.洪水灾情SVM评估模型.水文,2009,29(1):66-68.
    [151] Huang Z.W., Zhou J.Z., Song L.X., et.al. Flood disaster loss comprehensiveevaluation model based on optimization support vector machine. Expert Systemswith Applications,2010,37:3810-3814.
    [152]卢有麟,周建中,宋利祥,等.基于CCPSO及投影寻踪模型的洪灾评估方法及其仿真应用,系统仿真学报,2010,22(2):383-387,39.
    [153]刘力,周建中,杨莉,张勇传.基于熵权的灰色聚类在洪灾评估中的应用.自然灾害学报.2010,19(8):213-218.
    [154]何耀耀,周建中,罗志猛,等.基于混沌DE算法和PP多项式函数的洪灾评估.人民长江,2010,41(3):92-95.
    [155]徐冬梅,陈守煜,邱林.洪水灾害损失的可变模糊评价方法.自然灾害学报,2010,19(4):158-162.
    [156]李宁,翟亚欣,王威,王延辉.基于贝叶斯随机评价方法的洪水灾情等级评价.北京联合大学学报(自然科学版),2011,25(3):70-73.
    [157]郭小东,李宁,苏经宇.基于集对分析理论的洪水灾情综合评估方法.中国安全生产科学技术,2011,7(10):51-55.
    [158]黎育红,陈玥.基于灰云白化权函数的洪水灾害综合等级评估.自然灾害学报,2013,22(1):108-114.
    [159]郭瑜.水资源与防洪系统工程模糊集理论的应用研究.大连理工大学博士学位论文,2006.
    [160]陈守煜.复杂水资源系统优化模糊识别理论与应用.长春:吉林大学出版社,2002.
    [161]陈守煜.水资源与防洪系统可变模糊及理论与方法.大连:大连理工大学,2005.
    [162]李亚伟.水资源系统模糊决策、评价与预测方法及应用.大连理工大学博士学位论文,2005.
    [163]邹强,周建中,杨小玲,等.属性区间识别模型在溃坝后果综合评价中的应用.四川大学学报:工程科学版,2011,43(2):45-50.
    [164]李英海,周建中,张勇传,等.水库防洪优化调度风险决策模型及应用.水力发电,2009,35(4):19-21,37.
    [165]刘冀,王本德.基于组合权重的模糊可变模型及在防洪风险评价中应用.大连理工大学学报,2009,49(2):272-275.
    [166]王本德,于义彬,刘金禄,等.水库洪水调度系统的模糊循环迭代模型及应用.水科学进展,2004,15(2):233-237.
    [167] Storn R, Price K. Differential Evolution: A simple and efficient adaptive schemefor global optimization over continuous spaces. University of California, Berkeley:ICSI,1995.
    [168] Yasmin H Said. On Genetic Algorithms and their Applications. Data Mining andData Visualization,2005,24:359-390.
    [169] Kennedy J and Ebethart RC.Partiele Swarm OPtimization.IEEE InternationalConference Neural Networks,1995,1942-1948
    [170]李兵,蒋慰孙.混沌优化方法及其应用.控制理论与应用,1997(4):613-615.
    [171] Eusuff M M, Lansey K E. Optimization of water distribution network design usingthe shuffled frog leaping algorithm. J of Water Resources Planning andManagement,2003,129(3):210-225.
    [172]吴亮红,王耀南,周少武,等.采用非固定多段映射罚函数的非线性约束优化差分进化算法.系统工程理论与实践,2007,(3):28-133,160.
    [173]卢有麟,周建中,李英海,覃晖.基于混沌搜索的自适应差分进化算法.计算机工程与应用,2008,44(10):31-33,39.
    [174]覃晖,周建中,肖舸,等梯级水电站多目标发电优化调度.水科学进展,2010,21(3):377-384.
    [175] Youlin Lu, Jianzhong Zhou, Hui Qin, et al. An adaptive chaotic differentialevolution for the short-term hydrothermal generation scheduling problem. EnergyConversion and Management,2010,51:1481–149.
    [176] Liu Bo, Wang Ling, Jin Yihui, et.al Improved particle swarm optimizationcombined with chaos. Chaos Solitons&Fractals,2005,25(5):1261-1271.
    [177]卢有麟,周建中,李英海,等.混沌差分文化算法及其仿真应用研究.系统仿真学报,2009,21(16):5107-5111.
    [178] Kaelo P, Ali M. A numerical study of some modified differential evolutionalgorithms. European Journal of Operational Research,2006,169:1176-1184.
    [179] Y.Y. He, J.Z. Zhou, X.Q. Xiang, et al. Comparison of different chaotic maps inparticle swarm optimization algorithm for long term cascaded hydroelectric systemscheduling.Chaos Solitons and Fractals,2009,42(5),3169-3176.
    [180]刘代勇,梁忠民,赵卫民,等.客观赋权法在干旱综合评估中的应用研究.水电能源科学,2011,29(6):8-10,92.
    [181]杨皓翔,梁川,侯小波.改进的TOPSIS模型在地下水水质评价中的应用.南水北调与水利科技,2012,10(5):51-55.
    [182]孙晓东,焦玥,胡劲松.基于灰色关联度和理想解法的决策方法研究.中国管理科学,2005,13(4):63-68.
    [183]翟国静.灰色关联度分析在水资源工程环境影响评价中的应用.水利学报,1997,(1):68-72,77.
    [184]杜俊慧,魏法杰.基于灰色理想解法的模糊多属性决策方法研究.中北大学学报(自然科学版),2008,29(6):510-514.
    [185]隋礼辉.基于TOPSIS法与灰色关联度的分布式电源投资效益分析.水电能源科学,2012,30(7):194-196,184.
    [186]赵萌,邱菀华,刘北上.基于相对熵的多属性决策排序方法.控制与决策,2010,25(7):1098-1100,1104.
    [187]刘树林,邱菀华.多属性决策的TOPSIS夹角度量评价法.系统工程理论与实践,1996(7):12-17.
    [188]华小义,谭景信.基于“垂面”距离的TOPSIS法——正交投影法.系统工程理论与实践,2004,(1):114-119.
    [189]黄强,屈吉鸿,王义民,等.熵权和正交投影改进的TOPSIS法优选水库特征水位研究.水力发电学报,2009,28(1):35-40.
    [190]孔峰,刘鸿雁.对多属性决策问题中夹角度量法的质疑.数学的实践与认知,2009,39(2):130-134.
    [191]东亚斌,段志善.灰色关联度分辨系数的一种新的确定方法.西安建筑科技大学学报(自然科学版),2008,40(4):589-592.
    [192]张启义,周先华,王文涛.基于改进灰色关联分析法的工程防护效能评估方法.解放军理工大学学报(自然科学版),2007,8(3):283-287.
    [193]刘锋,魏光辉.基于灰色关联的水利工程方案模糊优选.水力发电学报,2012,3(1):10-14,26.
    [194]刘光萍,杜萍,王琨.分形理论在湖泊富营养化评价中的应用.江西农业大学学报,2005,27(6):925-929.
    [195]王威,田杰,马东辉,等.基于分形维数权重的泥石流危险度评价.山地学报,2011,29(6):747-752.
    [196]杨红卫,王超,田志伟,等.南京地区洪水管理对策研究.江苏水利,2012,(4):17-19.
    [197]蒋卫国,李京,陈云浩,等.区域洪水灾害风险评估体系: I:原理与方法.自然灾害学报,2008,17(6):53-59.
    [198]张礼兵,金菊良,程吉林,等.基于非线性测度函数的改进属性识别模型在水质综合评价中的应用.水科学进展,2008,19(3):422-427.
    [199]金菊良,王银堂,魏一鸣,等.洪水灾害风险管理广义熵智能分析的理论框架.水科学进展,2009,20(6):894-900.
    [200]李爱花,刘恒,耿雷华,等.水利工程风险分析研究现状综述.水科学进展,2009,20(3):453-459.
    [201]程乾生.属性识别理论模型及其应用.北京大学学报(自然科学版),1997,33(1):12-20.
    [202]李群,宁利.属性区间识别理论模型研究及其应用.数学的实践与认识,2002,32(1):50-54.
    [203] E.T.Jaynes. Information theory and statistical mechanics. Phys.Rev.,1957(106):620-630.
    [204] E.T.Jaynes, Information theory and statistical mechanics. Phys.Rev.,1957(108):171-190.
    [205]周晓蔚,王丽萍,张验科.基于最大熵的河流水质恢复能力模糊评价模型.中国农村水利水电,2008,(1):23-25.
    [206] H.M. Adel, T. Madjid. An extension of the Electre I method for groupdecision-making under a fuzzy environment. Omega,2011,39,373-386.
    [207] S.M. Chen. New methods for subjective mental workload assessment and fuzzyrisk nalysis. Cybernet Syst,1996,27(5),449-472.
    [208] Buckley JJ. Fuzzy hierarchical analysis. Fuzzy Set Syst,1985,17:233-247.
    [209] Azadeh A, Osanloo M, Ataei M. A new approach to mining method selection basedon modifying the Nicholas technique. Appl Soft Comput,2010,10:1040-1061.
    [210]刘雨华.江苏省沿江开发综合评价研究.南京:南京信息工程大学,2006.
    [211] Saaty TL. The analytic hierarchy process. McGraw-Hill, New York,1980.
    [212]殷瑞兰,沈泰.浅论长江中游洪灾高危险性.水科学进展,2004,15(6):745-751.
    [213]周建中.国家重点基础研究发展计划(973计划)项目课题“坝堤溃决风险分析理论与评估方法”结题验收总结报告.国家科技部,2011.
    [214]倪晋仁,等著.江河泥沙灾害形成机理及其防治.北京:科学出版社,2008.
    [215]宋利祥,周建中,王光谦,等.溃坝水流数值计算的非结构有限体积模型.水科学进展,2011,22(3):373-381.
    [216]黄崇福,陈志芬.基于内集——外集模型的自然灾害软风险区划图研究.科学技术与工程,2005,5(13):925-927.
    [217]黄崇福, Claudio Moraga,陈志芬.内集-外集模型的一个简便算法.自然灾害学报,2004,13(4):15-20.
    [218] Tian Zong, Improvement on interior-outer-set model for estimating fuzzyprobability, in: Proceedings of2004Annual Meeting of the North American FuzzyInformation Processing Society, Banff, Canada2004, pp.578–583.
    [219]冯艳娥.中国洪涝灾害风险区划研究——基于内集-外集模型下的分析.南开大学硕士学位论文,2005.
    [220] Liu,B.,Liu,Y.K. Expected value of fuzzy variable and fuzzy expected value models.IEEE Transactions on Fuzzy Systems,2002,10(4),445-450.
    [221] Q. Shen, R.Q. Zhao. Risk assessment of serious crime with fuzzy random theory,Inform. Sci.2010,180,4401-4411.
    [222]黄崇福,张俊香,陈志芬,等.自然灾害风险区划图的一个潜在发展方向,自然灾害学报,2004,13(2):9-15.
    [223]张俊香,黄崇福.自然灾害软风险区划图模式研究.自然灾害学报,2005,14(6):20-25.
    [224] C.F. Huang, Demonstration of benefit of information distribution for probabilityestimation, Signal Processing,2000,80:1037-1048.
    [225] Vapnik V N. The Nature of Statistical Learning Theory(First Edition). NY:Springer-Verlag,1995.
    [226] Chen S T, Yu P S. Pruning of support vector networks on flood forecasting. Journalof Hydrology,2007,347(1-2):67-78.
    [227]郭俊,周建中,张勇传,等.基于改进支持向量机回归的日径流预测模型,水力发电,2010,36(3):12-15.
    [228]农吉夫.主成分分析与支持向量机相结合的区域降水预测应用.数学的实践与认识,2011,42(22):91-96.
    [229]黄明聪,解建仓,阮本清,等.基于支持向量机的水资源短缺风险评价模型及应用.水利学报,2007,38(3):255-259.
    [230]汪嘉杨,王文圣,李祚泳,等.基于TS-SVM模型的水安全评价.水资源保护,2010,26(2):1-4,9.
    [231]李正最,谢悦波.洞庭湖富营养化支持向量机评价模型研究.人民长江,2010,41(10):75-78.
    [232]金菊良,丁晶.水资源系统工程.成都:四川科学技术出版社,2002.
    [233]赵克勤.集对分析对不确定性的描述和处理.信息与控制,1995,35(2):162-163.
    [234]赵克勤.集对分析及其初步应用.杭州:浙江科技出版社,2000.
    [235]王文圣,金菊良,丁晶等.水资源系统评价新方法——集对评价法.中国科学E辑:技术科学,2009,39(9):1529-1534.
    [236] Su MR, Yang ZF, Chen B. Set pair analysis for urban ecosystem health assessment.Commun Nonlinear Sci Numer Simul,2009,14:1773-1780.
    [237] Su SL, Chen X, Stephen DD et al. Integrative fuzzy set pair model for landecological security assessment: a case study of Xiaolangdi Reservoir Region, China.Stoch Environ Res Risk Assess,2010,24:639-647.
    [238]金菊良,吴开亚,李如忠.水环境风险评价的随机模拟与三角模糊数耦合模型.水利学报,2008,39(11):1257-1261,1266.
    [239]汪哲荪,金菊良,魏一鸣,等.三角模糊数随机模拟的防洪工程联系数风险评价模型.水利学报,2010,41(10):1173-1178.
    [240]吴开亚,金菊良,潘争伟.基于三角模糊数截集的联系数模型在城市涝灾影响等级评价中的应用.水利学报,2010,41(6):711-719.
    [241]汪明武,陈光怡,金菊良.基于多元联系数-三角模糊数随机模拟的围岩稳定性风险评价.岩土工程学报,2011,33(4):643-647.
    [242] Wang Mingwu, Chen Guangyi. A Novel Coupling Model for Risk Analysis ofSwell and Shrinkage of Expansive Soils. Computers and Mathematics withApplications,2011,62(7):2854-2861.
    [243]王文圣,金菊良,李跃清,等.水文水资源随机模拟技术.成都:四川大学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700