用户名: 密码: 验证码:
基于3S技术的奔子栏水源地库区库岸地质灾害易发性评价及灾害风险性区划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,我国疆域面积可达960×104km2,居世界第三位,可谓幅员辽阔,受印度洋板块和欧亚大陆板块运动的影响,致使我国地质构造和地形地貌条件极为复杂,近70%的国土面积被山地所覆盖,地质灾害频发,是世界上遭受地质灾害威胁最为严重的国家之一,西南山区地处我国第二与第三阶梯的过渡带上,构造活动强烈,受地质灾害的影响尤为严重。据中华人民共和国地质环境监测院发布的《全国地质灾害通报》显示,我国地质灾害主要有滑坡、泥石流、崩塌和地面沉降等多种类型。因地质灾害的发生,每年都会造成数千人员伤亡和失踪,经济损失数以亿计。滑坡灾害乃为我国最常发的地质灾害类型,分布范围广泛,每年发生次数可达数万甚至数十万起,严重的威胁了我国人民的生命财产安全。5.12汶川大地震之后我国西南地区滑坡灾害发生频率更高。大型水电站或引水工程库区内发生滑坡灾害会对坝址安全、库区正常发挥功能及人民的生命财产造成严重危害。论文基于3S技术,对奔子栏水源地库区库岸滑坡易发性和区划滑坡风险性进行了评价及区划研究。
     论文以2010年水利部公益性行业科研专项经费项目(《西南大型水库库岸滑坡灾害影响与对策研究》)和国家自然基金“快速隆升典型河段复杂结构岩体灾变与水库工程活动互馈机理研究”为依托,以拟建的奔子栏水源地库区内发育的滑坡灾害体为研究对像,以SPOT5遥感图像为数据源进行了奔子栏水源地库区滑坡灾害的解译,并结合野外现场调查,对库区内滑坡灾害发育的地质背景和库岸稳定性进行了分析。首先,基于现场地质调查、遥感解译和室内分析,对库区滑坡灾害分布、库岸稳定性、滑坡成因机制及分类进行了研究;其次,选取了15个库岸滑坡易发性评价指标,利用组合赋权原理确定各评价指标的最终权重值,最后基于未确知测度理论对库岸滑坡易发性进行了评价及分段;最后,选取9个滑坡灾害危险性评价指标,基于模糊证据权模型和综合危险性指数模型对区域滑坡危险性进行了评价及区划,选取5个滑坡灾害易损性评价指标,基于行政村为基本评价单元对滑坡灾害进行了易损性评价及区划,在此基础上进而对库区进行了滑坡灾害风险性评价及区划研究。
     论文共分六章,第1章为绪论,介绍了选题依据和研究意义,总结了滑坡灾害易发性、风险性的国内外现状,并介绍了论文的主要内容和技术路线以及论文的创新点。第2章从奔子栏水源地水库工程概况、地形地貌特征、气象水文特征、地层岩性特征、地质构造特征及地震活动特征六个方面详细介绍了奔子栏水源地库区内滑坡地质灾害的发育背景。第3章介绍了滑坡灾害遥感解译的方法、步骤及解译内容,分析了库区岸段稳定性、滑坡空间分布特征、成因机制及所属分类。第4章分析了岸坡结构类型及与滑坡发育的规律,选取了15个评价指标对库岸滑坡易发性进行了定量评价及分段。第5章详细论述了区域滑坡灾害危险性评价指标和易损性评价指标的选取原则及依据,基于ArcGIS操作平台完成了各评价指标的提取,采用非线性数学方法或模型对库区内滑坡灾害危险性、易损性及风险性进行了评估及区划研究。第6章为结论与展望,对全文的研究成果进行了总结,提出了研究方法和结果的不足之处,对未来的研究方向进行了展望。
In recently years, the geological disasters occurred frequently due to globalenvironmental deterioration. The study of geological disasters susceptibility, hazard,vulnerability or harmful and risk is the focal point and difficulty in the disasterprevention and mitigation process, and attracts many researcher’s concern andattention. China is a country characterized by vast territory, extensive mountainranges, special geological structure and topography features, which can provide agood geological environment for breeding geological disasters. Therefore, China,specifically the southwest that locates a transition zone between the first step and thesecond step, is one of countries seriously affected by geological disasters in theworld. Landslide is a kind of common geological disaster occurred in China.Landslide characterized by widely distributing and frequently occurring bringsserious threat to people lives and property. As we all know, landslide disasters thatlocated in large scale hydropower project reservoir area once occurred will seriouslythe dam site safety, reservoir function properly, and people's lives and property.Therefore, susceptibility and risk assessment research not only have great academicsignificance value, but also can provide scientific data for local government to makedisaster prevention and mitigation measures, having great practical value.
     In this paper, the3S technology was introduced into landslide study. Based onthe3S technology, laboratory analysis and geological survey in the field, we analyzed the bank stability, spatial distribution and early stability of landslides.Three dimensional digital model of landslide was established based on the SPOT5remote sensing imag. Under the help of rock type and rock attitude data, obtainedfrom field geological survey in the special geological point, a method is proposed toanalyze landslide formation mechanism in the areas where there are less drillingdata.
     Landslide characteristics, river bank structure, lithology, topography, geologicalstructure, and predisposing factors are taken into consided to analyze the majorfactors that effect bank landslide susceptibility. At last, fifteen major factors wereselected to establish evaluation index system. Combination weighting theory wasused to assign each evaluation index with a rationl weight. And then, bank landslidesusceptibility assessment model was established based on the unascertained measureand credible degree recognition criteria theory. In this study, four bank landslidesusceptibility classes were constructed: very light, light, moderate, and very high.And the reservoir area bank was mapped with different landslide susceptibility level.According to the assessment results, ten bank segments were classified as havingvery light susceptibility prone to landslide, thirteen segments as light, sixteensegments as moderate, and two moderate as high susceptibility prone to landslide,respectively. And, three, thirteen and eight landslides distribute in light, moderateand high susceptibility bank segments, respectively.
     In this paper, nine major factors that related with lithology, topography, faults,rver system and predisposing factors are selected to evaluate landslide hazard andmake hazard map. Based on the ArcGIS platform, the major factors and evidencelayers are extracted. And then, the fuzzy weights of evidence model and thecomprehensive hazrd index model are respectively utilized to evaluate landslidehazard and make landslide hazard map. The result shows that the very high and highhazard areas mainly distribute in Jinsha and Dingqu river both sides. The populationdensity, building density, road density, residents' per capita annual income and arableland density are extracted as landslide vulnerability assessment index. Village isdetermined as the basic evaluation unit. Integrated vulnerability index model is utilized to evaluate landslide vulnerability. The final result shows that the very highand high vulnerability area accounting for7.62%of the total area, and mainlydistribute in the village with high degree of people activity. On the basis of landslidehazard and vulnerability assessment, landslide risk analyzing and risk map is made.The result shows that, the very high and high risk area accounting for19.70%of thetotal area, and mainly distribute in the areas with relatively developed economy andrelative concentration of population. Moderate and low risk area accounting for80.30%of the total area, and mainly distribute in those areas with relatively sparsepopulation, relatively few economic activity and relatively low building density.
引文
[1]Ilanloo M. A comparative study of fuzzy logic approach for landslide susceptibility mappingusing GIS: An experience of Karaj dam basin in Iran[J]. Procedia Social and BehavioralSciences,2011,19:668–676.
    [2]He SW, Pan P, Dai L, et al. Application of kernel-based Fisher discriminant analysis to maplandslide susceptibility in the Qinggan River delta, Three Gorges, China[J]. Geomorphology,2012,171-172:30-41.
    [3]薛东剑. RS与GIS在区域地质灾害风险评价中的应用-以青川、平武县为例[D].成都:成都理工大学博士论文,2010.
    [4]刘希林,唐川,陈明,等.泥石流危险范围的模型预测法[J].自然灾害学报,1993,2(3):67-73.
    [5] Akgun A, Kmcal C, Pradhan B. Application of remote sensing data and GIS for landslide riskassessment as an environmental threat to Izmir city(west Turkey)[J]. Environ Monit Assess,2012,184:5453-5470.
    [6]Yao X, Tham LG, Dai FC. Landslide susceptibility mapping based on Support VectorMachine:A case study on natural slopes of Hong Kong,China[J]. Geomorphology,2008,101:572-582.
    [7]Hasekiog ullari G.D, Ercanoglu M. A new approach to use AHP in landslide susceptibilitymapping: a case study at Yenice (Karabuk,NW Turkey)[J]. Natural Hazards,2012,63:1157-1179.
    [8]Mondal S, Maiti R. Landslide Susceptibility Analysis of Shiv-Khola Watershed, Darjiling: ARemote Sensing&GIS Based Analytical Hierarchy Process (AHP). Journal of the IndianSociety of Remote Sensing,2012,40(3):483-496.
    [9]段永侯.中国西部地质灾害现状、趋势和对策[J].经济研究参考,2000,58(2):12-18.
    [10]李天斌,陈明东,王兰生.滑坡实时跟踪预报[M].成都:成都科技大学出版社,1999.
    [11]钟立勋.中国重大地质灾害实例分析[J].中国地质灾害与防治学报,1999,10(3):1-10.
    [12]周福军.日冕水电站库区滑坡稳定性早期智能判别及危害模糊综合预测研究[D].长春:吉林大学博士论文,2013.
    [13]蒋承菘.中国地质灾害的现状与防治工作[J].中国地质,2000,(4):3-5.
    [14]殷跃平.中国地质灾害减灾回顾与展望[J].国土资源科技管理,2001,18(3):26-29.
    [15]徐邦栋.滑坡分析与防治[M].北京:中国铁道出版社,2001.
    [16]张梁,张业成.地质灾害灾情评估理论与实践[M].北京:地质出版社,2005.
    [17]晏同珍,杨顺安,方云.滑坡学[M].北京:中国地质大学出版社,2000.
    [18]Terzaghi,K. Mechanism of landslide[J]. Application of Geology to Engineering Practice,New York,1950:83-123.
    [19]郑颖人,陈祖煌,王恭先,等.边坡与滑坡工程治理[M].北京:人民交通出版社,2007.
    [20]孔志岗.潜在的斜坡地质灾害研究[D].昆明:昆明理工大学硕士学位论文,2007.
    [21]方舟.基于GIS的北川地区地震滑坡空间分布特征分析及敏感性评价[D].北京:首都师范大学硕士学位论文,2012.
    [22]邱海军.区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究——以宁强县为例[D].西安:西北大学博士学位论文,2012.
    [23]尹志华.基于RS和GIS技术对区域滑坡进行高效快速敏感性评价模型的研究——以北川县为例[D].成都:成都理工大学硕士学位论文,2011.
    [24]Dobrovolny E. Landslide susceptibility in and near Anchorage as interpreted fromtopographic and geologic maps[J]. The great Alaska earthquake of,1964:735-745.
    [25]Brabb EE, EH Pampeyan. Landslide susceptibility in San Mateo County. California:1972-US Geological Survey.
    [26]Newman E B, Paradis A R, Brabb E E. Feasibility and cost of using a computer to preparelandslide susceptibility maps of the San Francisco Bay region, California[J].GeologicalSurvey Bulletin,1977,1443:27.
    [27]Keefer D K, Wieczorek G F, Harp E L, et al. Preliminary assessment of seismically inducedlandslide susceptibility[J]. Progress on seismic zonation in the San Francisco Bay region:US Geological Survey Circular,1979,807:49-60.
    [28]Govi M, Sorzana P F. Landslide susceptibility as a function of critical rainfall amount inPiedmont Basin (North-Western Italy)[J]. Studia Geomorphologica Carpatho-Balcanica,1980,14:43-61.
    [29]DeGraff J V, Romesburg C. Regional landslide susceptibility assessment for wildlandmanagement: a matrix approach[M].Eevs Faculity Publications,1980.
    [30]Aniya M. Landslide-susceptibility mapping in the Amahata river basin, Japan[J]. Annals ofthe Association of American Geographers,1985,75(1):102-114.
    [31]Bui DT, Pradhan B, Lofman O, rt al. Landslide susceptibility assessment in the Hoa Binhprovince of Vietnam: A comparison of the Levenberg-Marquardt and Bayesian regularizedneural networks[J]. Geomorphology,2012,171-172:21-29.
    [32]Fernandez CI, Del Castillo TF, EI Hamdouni R, et al. Verification of landslide suscepitibiltymapping: A case study[J]. Earth Surface Processes And Landforms,1999,24(6):537-544.
    [33]Saro Lee, Joo-Hyung Ryu, Moung-Jin Lee, et al. Use of an artificial neural network foranalysis of the susceptibility to landslides at Boun, Korea[J]. Environmental Geology,2003,44:820-833.
    [34]Lulseged Ayalew, Hiromitsu Yamagishi. The application of GIS-based logistic regression forlandslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan[J].Geomorphology,2005,65(1-2),:15-31.
    [35]Giswajeet Pradhan, Saro Lee. Landslide susceptibility assessment and factor effectanalysis:backpropagation artificial neural networks and their comparison with frequencyratio and bivariate logistic regression modeling[J]. Environmental Modelling&Software,2010,25:747-759.
    [36]He-Chun Quan, Byung-Gul Lee. GIS-Based Landslide Susceptibility Mapping UsingAnalytic Hierarchy Process and Artificial Neural Network in Jeju (Korea)[J]. KSCE Journalof Civil Engineering,2012,16(7):1258-1266.
    [37]Yao X, Tham LG, Dai FC. Landslide susceptibility mapping based on Support VectorMachine: A case study on natural slopes of Hong Kong, China[J]. Geomorphology,2008,101:572-582.
    [38]Renee Schicker, Vicki Moon. Comparison of bivariate and multivariate statistical approachesin landslide susceptibility mapping at a regional scale[J]. Geomorphology,2012,161-162:40-57.
    [39]狄君靖.云南山地地质灾害宏观控制因素分析[J].水文地质工程地质,1991,18(5):41-43.
    [40]惠振德,李晓玲,孙虎.陕南地区滑坡发育特征与敏感性分析[J].陕西师范大学学报(自然科学版),1996,24(1):96-101.
    [41]姚智.黔西北崩塌滑坡的发育分别规律[J].贵州地质,1998,15(2):166-175.
    [42]倪恒,刘佑荣,龙治国.正交设计在滑坡敏感性分析中的应用[J].岩石力学与工程学报,2002,21(7):989-992.
    [43]兰恒星,伍法权,周成虎,等.基于GIS的云南小江流域滑坡因子敏感性分析[J].岩石力学与工程学报,2002,21(10):1500-1506.
    [44]王文俊,向喜琼,黄润秋,等.区域崩塌滑坡的易发性评价——以四川省珙县为例[J].中国地质灾害与防治学报,2003,14(2):31-38.
    [45]张丽君,江思宏.区域性滑坡敏感性评价的数据驱动权重模型及应用[J].水文地质工程地质,2004,6:33-36.
    [46]白世彪,王建,闾国年,等.基于GIS和双变量分析模型的三峡库区滑坡灾害易发性制图[J].山地学报,2007,25(1):85-92.
    [47]胡金,李波,杨艳锋.GIS在云南鲁甸县地质灾害易发性分区中的应用[J].灾害学,2008,23(1):73-75.
    [48]许冲,戴福初,姚鑫,等.GIS支持下基于层次分析法的汶川地震区滑坡易发性评价[J].岩石力学与工程学报,2009,28(曾2):3978-3989.
    [49]张朝洪,缪根全,徐曙林.嘉陵江流域北碚段基于GIS平台的地质灾害易发性评价[J].地质灾害与环境保护,2009,20(3):45-49.
    [50]靳世雄,陈永波,杨宗佶.基于贡献率法的滑坡易发性评价——以雅安雨城区为例[J].安徽农业科学,2008,36(32):14233-14234.
    [51]许冲,戴福初,姚鑫,等.基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价[J].工程地质学报,2010,18(1):15-26.
    [52]陈伟,许强,陈棠茵.基于ArcGIS的区域滑坡易发性区划评价[J].工程地质计算机应用,2010,2:29-31.
    [53]孟庆华,孙炜锋,王涛.陕西凤县滑坡易发性评价研究[J].地质调查与研究,2013,36(2):136-145.
    [54]陈燕平.基于GIS的贵州省滑坡地质灾害易发性多模型综合评价[D].长沙:中南大学硕士学位论文,2010.
    [55]冯策,刘瑞,苟长江.基于Logistic回归模型的芦山震后滑坡易发性评价[J].成都理工大学学报(自然科学版),2013,40(3):282-287.
    [56]肖娴.滑坡地质灾害风险评价[D].成都:成都理工大学硕士学位论文,2013.
    [57]皇甫行丰,李坷凌,古维善.河南红旗渠沿线地质灾害易发性评价[J].中国地质灾害与防治学报,2004,15(3):29-33.
    [58]白世彪,闾国年,盛业华,等.基于GIS的长江三峡库区滑坡影响因子分析[J].山地学报,2005,23(1):63-70.
    [59]石菊松,徐瑞春,石玲,等.基于RS和GIS技术的清江隔河岩库区滑坡易发性评价与制图[J].地学前缘,2007,14(6):119-128.
    [60]薛传东.滇西红层区地质灾害易发性评价研究[D].昆明:昆明理工大学硕士学位论文,2007.
    [61]胡德勇,赵文吉,李小娟,等.不完备样本条件下基于支持向量机回归模型的滑坡易发性评价[J].地理研究,2008,27(4):755-762.
    [62]吴益平.基于粗集——神经网络的区域滑坡灾害易发性预测研究[D].北京:中国地质大学硕士学位论文,2010.
    [63]张军,刘祖强,张正禄,等.基于神经网络和模糊评判的滑坡敏感性分析[J].测绘科学,2012,37(5):59-62.
    [64]He Sanwei, Pan Peng, Dai Lan, et al. Application of kernel-based Fisher discriminantanalysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China.Geomorphology,2012,171-172:30-41.
    [65]邵维懿,赵翠薇.改进AHP和TOPSIS法在滑坡灾害易发性评价中的应用——以贵州毕节地区为例[J].重庆师范大学学报(自然科学版),2013,30(3):40-46.
    [66]武雪玲,任福,牛瑞卿,等.斜坡单元支持下的滑坡易发性评价支持向量机模型[J].武汉大学学报·信息科学版,2013,38(12):1499-1503.
    [67]候凯.陕西省宝鸡市贾村镇泥石流风险评价[D].北京:中国地质大学(北京)硕士学位论文,2010.
    [68]Dha U N. Internationally agreed glossary of basic terms related to disaster management[J].UN DHA (United Nations Department of Humanitarian Affairs), Geneva,1992.
    [69]刘希林.泥石流风险评价中若干问题的探讨[J].山地学报,2000,18(4):341-345.
    [70]青春炳,苟兴华.灾害评价、风险评价和灾情评价[J].大自然探索,1991,10(2):65-701.
    [71]Fell R. Landslide risk assessment and acceptable risk[J].Canadian Geotechnical Journal,1994,31:261-2721.
    [72]Mejia-Navarro M, Wohl EE, Oaks SD. Geological hazards, vulnerability, and riskassessment using GIS model for Glenwood Springs, Colorado[J]. Geomorphology,1994,10:331-3541.
    [73]Hearn GJ. Landslide and erosion hazard mapping at Ok Tedi copper mine, Papua NewGuinea[J].Quar terly Journal of Engineering Geology,1995,28:47-60.
    [74]彭荣亮.万县市地质灾害风险评价[J].中国地质,1996,(6):17-191.
    [75]徐黎明.基于突变理论的乌东德水电站近坝区泥石流风险性评价研究与防治研究[D].长春:吉林大学博士学位论文,2013.
    [76]Blaikie P, Cannon T, et al.Risk, Natural hazards, peoples vulnerability and disasters [M].London,1994.
    [77]Shook G. An assessment of disaster risk and its management in Thailand[J]. Disasters,1997,21(1):77-881.
    [78]邱海军.区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究——以宁强县为例[D].西安:西北大学博士学位论文,2012.
    [79]Aleotti P, Chowdhury R. Landslide hazard assessment: summary review and newperspectives[J].Bulletin of Engineering Geology and the Environment,1999,58(1):21-44.
    [80]Dai FC, Lee CF, Ngai YY. Landslide risk assessment and management: an overview[J].Engineering geology,2002,64(1):65-87.
    [81]Fell R, Ho KK S, Lacasse S, et al. State of the Art Paper1-A framework for landslide riskassessment and management[C].Proceedings of the International Conference on LandslideRisk Management, Vancouver, Canada.2005,31.
    [82]石菊松.基于遥感和地理信息系统的滑坡风险性评估关键技术研究[D].北京:中国地质科学院博士学位论文,2008.
    [83]Hutchinson J N. Landslide hazard assessment, keynote paper[C].Landslides, Proceedings ofthe6th International Symposium on Landslides, edited by Bell D, Balkema Rotterdam.1805,1841:1995.
    [84]Leroi E.Landslide hazard–Risk maps at different scales: objectives, tools and evelopments.In: Proc VII Int Symp Landslides, Trondheim,1996,1:35–52
    [85]Brugner W, Valdinucci A.Schema di cartografia tematica relativa alla stabilità dei terreni edesempio della sua applicazione nel territorio di Alpago (Prov di Belluno). Boll Serv Geold’It,1972,93:189–194
    [86]Humbert M.Risk mapping of areas exposed to movements of soil and sub-soil: French“Zermos” maps Bull of Int Assoc of Eng Geol,1977,16:80–82
    [87]Antoine P.Rèflexions sur la cartographie ZERMOS etbilan des expériences en cours. BRGMBull, Sect III,1977,1–2:9–20
    [88]殷坤龙,柳源.滑坡灾害区划系统研究[J].中国地质灾害与防治学报,2000,11(4):28-32.
    [89]Stevenson P C. An empirical method for the evaluation of relative landslip risk[J]. Bulletinof the International Association of Engineering Geology-Bulletin de l'AssociationInternationale de Géologie de l'Ingénieur,1977,16(1):69-72.
    [90]Alberto Carrara. Multivariate Models for Landslide Hazard Evaluation[J]. Journal of theInternational Association for Mathematical Geology,1983,15(3):403-426.
    [91]Brabb EE. Innovative approaches to landslide hazard and risk mapping[M].1984.
    [92]Anbalagan R. Landslide hazard evaluation and zonation mapping in mountainous terrain [J].Engineering geology,1992,32(4):269-277.
    [93]Catenacci V. Geological and geoenvironmental failure from the post-war to1990, Italy[C].Servizio Geologico Nazionale–Memorie Descrittive della Carta Geologica d’Italia,1992, pp301.
    [94]Hearn GJ.Landslide and erosion hazard mapping at Ok Tedi copper mine, Papua NewGuinea[J]. Quarterly Journal of Engineering Geology,1995,28:47–60.
    [95]Carrara A. Multivariate methods for landslide hazard evaluation[J]. Mathematical Geol,1983,15:403–426.
    [96]Aleotti P, Baldelli P, Polloni G, et al. Keynote paper: Different approaches to landslidehazard assessment[C]. Proc. of the Second Conf Environ Management (ICEM-2),Wollongong (Australia)10–13Feb.1998,1:3–10
    [97]Soeters R, Van Westen CJ.Slope instability recognition, analysis and zonation[C]. In: TurnerAK, Schuster RL(eds) Landslides, investigation and mitigation. Transportation ResearchBoard, National Research Council, Special Report247, National Academy Press,Washington, USA,1996,pp129–177
    [98]Gokceoglu C, Aksoy H.Landslide susceptibility mapping of the slopes in the residual soils ofthe Mengen Region (Turkey) by deterministic stability analyses and image processingtechnique. Engineering Geology,1996,44:147–161.
    [99]Baldelli P, Aleotti P, Polloni G. Landsliding-susceptibility numerical mapping at the MessinaStrait crossing site, Italy. In: Proc VII Int Symp on Landslides, Trondheim,1996,1:153–158.
    [100]Ohlmacher GC, Davis JC. Using multiple logistic regression and GIS technology to predictlandslide hazard in northeast Kansas, USA[J]. Engineering Geology,2003,69(3):331-343.
    [101]Lee S, Pradhan B. Landslide hazard mapping at Selangor, Malaysia using frequency ratioand logistic regression models[J]. Landslides,2007,4(1):33-41.
    [102]Pradhan B. Remote sensing and GIS-based landslide hazard analysis and cross-validationusing multivariate logistic regression model on three test areas in Malaysia[J]. Advances inSpace Research,2010,45(10):1244-1256.
    [103]Carrara A, Cardinali M, Detti R, et al. GIS techniques and statistical models in evaluatinglandslide hazard[J]. Earth surface processes and landforms,1991,16(5):427-445.
    [104]Guzzetti F, Carrara A, Cardinali M, et al. Landslide hazard evaluation: a review of currenttechniques and their application in a multi-scale study, Central Italy[J]. Geomorphology,1999,31(1):181-216.
    [105]Robin Fell. Landslide risk assessment and acceptable risk[J]. Canadian GeotechnicalJournal,1994,31(2):261-272.
    [106]Anbalagan R, Singh B. Landslide hazard and risk assessment mapping of mountainousterrains—a case study from Kumaun Himalaya, India[J]. Engineering Geology,1996,43(4):237-246.
    [107]F Leone, J.P Aste, E Leroi.Vulnerability assessment of elements exposed to mass-moving:working toward a better risk perception K Senneset (Ed.), Landslides, Balkema, Rotterdam,1996, pp.263–269.
    [108]Dai FC, Lee CF, Ngai YY. Landslide risk assessment and management: an overview[J].Engineering geology,2002,64(1):65-87.
    [109]Chung JF, Fabbri AG. Validation of spatial prediction models for landslide hazard mapping[J]. Natural Hazards,2003,30(3):451-472.
    [110]Lee S, Choi J, Min K. Probabilistic landslide hazard mapping using GIS and remotesensing data at Boun, Korea[J]. International Journal of Remote Sensing,2004,25(11):2037-2052.
    [111]Pradhan B, Lee S. Delineation of landslide hazard areas on Penang Island, Malaysia, byusing frequency ratio, logistic regression, and artificial neural network models[J].Environmental Earth Sciences,2010,60(5):1037-1054.
    [112]王礼先.关于荒溪分类[J].北京林学院学报,1992.
    [113]刘希林.泥石流危险度判定的研究[J].灾害学,1988,(03):10-15.
    [114]乔建平,赵宇.滑坡危险度区划研究评述[J].山地学报,2001,19(2):157-160.
    [115]Raymond MR,朱兴昌.森林能减少滑坡危险[J].水土保持科技情报,1986,3:12-16.
    [116]乔建平.应用统计方法航片判译茅台地区滑坡[C].自然边坡稳定性分析暨华蓥山形变体形变趋势研讨会,1991.
    [117]刘红星,孙广仁,徐国文,等.青海省东部地区崩塌、滑坡、泥石流灾害危险程度分析[J].高原地震,1992,4(1):36-40.
    [118]Kuang-Jung Tsai,田春生.台湾高雄市万寿山地区潜在滑坡调查及其稳定性分析[J].地质科学译丛,1992,9(曾):34-37.
    [119]乔建平,张小刚,林立相.长江上游滑坡危险度区划[J].水土保持学报,1994,8(1):39-44.
    [120]唐川,周钜,朱静.云南崩塌滑坡危险度分区的模糊综合分析法[J].水土保持学报,1994,8(4):48-54.
    [121]刘丽,王士革.云南昭通滑坡泥石流危险度模糊综合评判[J].山地研究,1995,13(4):261-266.
    [122]刘丽,王士革.滑坡、泥石流区域危险度二级模糊综合评判初探[J].自然灾害学报,1996,5(3):51-59.
    [123]柴贺军,黄润秋,刘汉超.滑坡堵江危险度的分析与评价[J].中国地质灾害与防治学报,1997,8(4):1-7.
    [124]张业成,胡景江,张春山.中国地质灾害危险性分析与灾变区划[J].海洋地质与第四纪地质,1995,15(3):55-67.
    [125]钟荫乾.黄蜡石滑坡综合信息预报方法研究[J].中国地质灾害与防治学报,1995,6(4):68-74.
    [126]金晓媚,刘金韬.重庆市崩塌和滑坡的危险性评价[J].灾害学,1999,14(1):76-79.
    [127]樊晓一,乔建平,陈永波.层次分析法在典型滑坡危险度评价中的应用[J].自然灾害学报,2004,13(1):72-76.
    [128]樊晓一,乔建平.滑坡危险度评价的地形判别法[J].山地学报,2004,22(6):730-734.
    [129]唐川,朱静.澜沧江中下游滑坡泥石流分布规律与危险区划[J].地理学报,1999,54(曾):84-91.
    [130]李志斌,郑成德.滑坡、泥石流危险度评判的灰色模式识别理论与模型[J].系统工程理论与实践,2000,5:128-132.
    [131]张春山,张业成,马寅生.黄河上游地区崩塌、滑坡、泥石流地质灾害区域危险性评价[J].地质力学学报,2003,9(2):143-153.
    [132]杨宗佶,乔建平.基于商权的典型滑坡危险度评价[J].自然灾害学报,2009,18(4):31-36.
    [133]张华杰,袁国斌,墙芳镯,等.滑坡预测与风险评价专家系统[J].地学前缘,1996,3(1~2):105-109.
    [134]杨选民.露天矿滑坡风险评价有关问题探讨[J].煤矿环境保护,1998,12(1):47-49.
    [135]殷坤龙,柳源.滑坡灾害区划系统研究[J].中国地质灾害与防治学报,2000,11(4):28-32.
    [136]汪敏,刘东燕.滑坡灾害分析分析中的易损性及破坏损失评价研究[J].工程勘察,2001,3:7-11.
    [137]殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究[J].地学前缘,2001,8(2):279-283.
    [138]王治华,吕杰堂.从卫星图像上认识西藏易贡滑坡[J].遥感学报,2001,5(4):312-316.
    [139]彭满华,张海顺,唐祥达.滑坡地质灾害风险分析方法[J].岩土工程技术,2001,4:235-240.
    [140]朱良峰,殷坤龙,张梁,等.地质灾害风险分析与GIS技术应用研究[J].地理学与国土研究,2002,18(4):10-13.
    [141]赵建华,杨树锋,陈汉林,等.浙江庆元地区滑坡灾害的多要素评价[J].高校地质学报,2002,8(4):460-465.
    [142]毕华兴,中北理,阿部和时.GIS技术支持下的滑坡空间预测与危险等级划分[J].自然灾害学报,2004,13(3):50-57.
    [143]李端有,王志旺.滑坡危险度区划研究初探[J].长江科学院院报,2005,22(4):41-44.
    [144]王志旺,廖勇龙,李端有.基于逻辑回归法的滑坡危险度区划研究[J].地下空间与工程学报,2006,2(8):1451-1454.
    [145]王志旺,李端有,王湘桂.证据权法在滑坡危险度区划研究中的应用[J].岩土工程学报,2007,29(8):1268-1273.
    [146]白世彪,王建,闾国年,等.基于GIS和双变量分析模型的三峡库区滑坡灾害易发性制图[J].山地学报,2007,25(1):85-92.
    [147]谭丽霞.GIS支持下基于支持向量机的滑坡灾害危险性评价研究[D].长沙:中南大学硕士学位论文,2008.
    [148]杨可明,郭海会,浅小丽,等.结合信息熵改进的证据权法与滑坡危险度区划[J].地理与地理信息科学,2013,29(3):104-108.
    [149]Lan H X, Zhou C H, Wang L J, et al. Landslide hazard spatial analysis and prediction usingGIS in the Xiaojiang watershed, Yunnan, China[J]. Engineering geology,2004,76(1):109-128.
    [150]吴益平,唐辉明,葛修润.BP模型在区域滑坡灾害风险预测中的应用[J].岩土力学,2005.26(9):1409-1413.
    [151]李发斌,崔鹏,周爱霞.RS和GIS在滑坡泥石流防灾减灾中的应用[J].灾害学,2004,19(4):18-24.
    [152]王志旺,李端有.RS和GIS在滑坡研究中的应用[J].长江科学院院报,2005,22(6):63-66.
    [153]金江军,潘懋,李铁锋.区域滑坡灾害风险评价方法研究[J].山地学报,2007,25(2):197-201.
    [154]王萌,乔建平,吴彩燕.基于GIS和本底因素贡献权重模型的区域滑坡危险性评价——以重庆万州为例[J].地质通报,2008,27(11):1802-1809.
    [155]陶舒.汶川地震滑坡遥感信息提取及灾害危险性评价[D].北京:首都师范大学硕士学位论文,2009.
    [156]毛伟,如黑艳.基于GIS和AHP的金平子滑坡危险性评价研究[J].地球与环境,2011,39(3):399-404.
    [157]郎文霞.基于GIS的地震滑坡灾害危险性评价研究[D].太原:太原理工大学硕士学位论文,2012.
    [158]吴森,张占成,周光红,等.基于贡献率模型的汶川县滑坡灾害的易损性评价[J].三峡大学学报(自然科学版),2013,35(3):69-74.
    [159]张勇.基于GIS技术的滑坡灾害风险评价模型研究[D].南京:南京工业大学硕士学位论文,2004.
    [160]谭春.基于3S技术的岩桑树水电站近坝区滑坡敏感性评价[D].长春:吉林大学博士学位论文,2013.
    [161]王宏刚.基于ArcGIS的日冕水电站滑坡敏感性分析[C].长春:吉林大学硕士学位论文,2013.
    [162]中华人民共和国国土资源部.中华人民共和国地质矿产行业标准滑坡防治工程勘查规范[S].2006.
    [163]中国地质调查局.中国地质调查局地质调查技术标准滑坡崩塌泥石流灾害详细调查规范[S].2007,12.
    [164]常士骠,张苏民主编.工程地质手册(第四版)[M].北京:中国建筑工业出版社,2007.
    [165]中华人民共和国建设部.中华人民共和国国家标准水力发电工程地质勘察规范[S].2006,11.
    [166]刘广润,晏鄂川,练操.论滑坡分类[J].工程地质学报,2002,10(4):339-342.
    [167]孙玉科,姚宝魁.我国岩质边坡变形破坏的主要地质模式[J].岩石力学与工程学报,1983,
    [168]晏同珍.滑坡发生机理[A],全国首届工程地质学术会议论文选集,1979.(1):190–197.
    [169]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1994,184-231.
    [170]许兆军,肖妮娜,刘志尧,等.基于易发程度指数法的桂阳县地质灾害易发性分区研究[J].长春工程学院学报,2012,13(3):54-59.
    [171]霍斐斐.陕西省永寿县地质灾害发育特征及易发性评价研究[D].西安:西北大学硕士学位论文,2012.
    [172]王光远.未确知性信息及其数学处理[J].哈尔滨建筑工程学院学报,1990,23(41):52.
    [173]刘开第,吴和琴,庞彦军,等.不确定性信息数学处理及应用[M].北京:科学出版社,1999.
    [174]宫凤强,李夕兵,董陇军,等.基于未确知测度理论的采空区危险性评价研究[J].岩石力学与工程学报,2008,27(2):321-330.
    [175]唐海,万文,刘金海.基于未确知测度理论的地下洞室岩体质量评价[J].岩土力学,2011,38(4):1181-1185.
    [176]邱海军.区域滑坡崩塌地质灾害特征分析及其易发性和危险性评价研究——以宁强县为例[D].西安:西北大学博士学位论文,2012.
    [177]何淑军.陕西宝鸡市渭滨区地质灾害风险评估研究[D].中国地质科学院博士学位论文,2009.
    [178]乔建平.滑坡风险区划理论与实践[M].成都:四川大学出版社,2010.
    [179]王志旺,李端有,王湘桂.证据权法在滑坡危险度区划研究中的应用[J].岩土工程学报,2007,29(8):1268-1273.
    [180]Hasekiog ullari G.D, Ercanoglu M. A new approach to use AHP in landslide susceptibilitymapping: a case study at Yenice (Karabuk, NW Turkey). Natural Hazards,2012,63(1):1157-1179.
    [181]薛东剑,何政委,陶舒,等.5.12震后区域地质灾害危险性评价研究——以青川、平武县为例[J].地球科学进展,2011,26(3):311-318.
    [182]王丽丽,刘君,王国新.滑坡危险性等级区划方法研究[J].防灾减灾工程学报,2013,33(6):663-670.
    [183]牛瑞卿,彭令,叶润清,等.基于粗糙集的支持向量机滑坡易发性评价[J].吉林大学学报(地球科学版),2012,42(2):430-439.
    [184]黄润秋.基于GIS的人工神经网络模型在地质灾害危险性区划中的应用[J].国地质灾害与防治学报,2000,11(3):23-27
    [185]刘应辉.汶川地震区都汶公路沿线崩塌滑坡灾害特征与评价[D].兰州:兰州大学硕士学位论文,2007.
    [186]Ghimire M. Geo-hydrological hazard and risk zonation of Banganga watershed using GISand remote sensing. J Nepal Geol Soc,2001,23:99-110.
    [187]周启明,刘学军.数字地形分析[M].北京:科学技术出版社,2008.
    [188]刘新华,杨勤科,汤国安.中国地形起伏度的提取及在水土流失定量评价中的应用[J].水土保持通报,2001,21(1):57-62.
    [189]涂汉明,刘振东.中国地势起伏度最佳统计单元的求证[J].湖北大学学报,1990,12(3):266–271.
    [190]王岩,刘少峰.基于DEM的青海贵德地区地形起伏度的研究[J].地质通报,2008,27(12):2117-2121.
    [191]Bui DT, Pradhan B, Lofman O, et al. Landslide susceptibility assessment in the Hoa Binhprovince of Vietnam: A comparison of the Levenberg–Marquardt and Bayesianregularized neural networks. Geomorphology,2012,171-172:21-29.
    [192]Kayastha P, Dhital MR, Smedt FD. Landslide susceptibility mapping using the weight ofevidence method in the Tinau watershed, Nepal. Natural Hazards,2012,63:479-498.
    [193]Van Den Eeckhaut M, Vanwalleghem T, Poesen J, et al. Prediction of landslidesusceptibility using rare events logistic regression: a case-study in the Flemish Ardennes(Belgium). Geomorphology,2006,76:392–410.
    [194]张玉成,杨光华,张玉兴.滑坡的发生与降雨关系的研究[J].灾害学,2007,22(1):82-85.
    [195]乔建平,蒲晓虹,王萌,等.大地震诱发滑坡的分布特点及危险性区划研究[J].灾害学,2009,24(2):25-29.
    [196]Van Westen CJ, Castellanos E, Kuriakose SL.Spatial data for landslide susceptibility,hazard and vulnerability assessment: an overview. Eng Geol,2008,102:112–131.
    [197]宋立胜.历史地震与滑坡灾害[J].山西地震,1994,2:55-57.
    [198]Agterberg FP. A Modified weights-of-evidence method for regional mineral Resourceestimation[J]. NaturalResources Research,2011,20(2):95-101.
    [199]谢洪斌,杨雪,谭德军,等.模糊证据权方法在地震滑坡危险度区划中的应用[J].中国安全科学学报,2011,21(8):164-170.
    [200]金贵,王占岐,胡学东,等.基于模糊证据权模型的青藏高原区土地适宜性评价[J].农业工程学报,2013,29(18):241-250.
    [201]Agterberg FP,Borham-Carter GF, Cheng QM,et al.Weights of evidence modeling andweighted logistic regression for mineral potential mapping[J].Computers in Geology,1993,21:13-32.
    [202]李丹.云南省新平县戛洒地区滑坡风险评估研究[D].昆明:昆明理工大学硕士学位论文,2012.
    [203]何意平.基于ArcGIS的温州市滑坡灾害风险性评价[C].西安:长安大学硕士学位论文,2008.
    [204]刘希林,莫多闻,王小丹.区域泥石流易损性评价[J].中国地质灾害与防治学报,2001,12(2):7-12.
    [205]唐川,朱大奎.基于GIS技术的泥石流风险评价研究[J].地理科学,2002,22(3):300-304.
    [206]何淑军.陕西宝鸡市渭滨区地质灾害风险评估研究[D].中国地质科学院,2009.
    [207]何意平.基于ArcGIS的温州市滑坡灾害风险性评价[D].长安大学,2008.
    [208]刘鑫.单体滑坡风险评价方法研究—以陕西省陇县李家下滑坡为例[C].北京:中国地质大学硕士学位论文,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700