用户名: 密码: 验证码:
GPS中央差分定位系统理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着GPS定位技术的不断深入发展,尤其是网络RTK定位技术的出现以及CORS观测网络建设的普及,广域范围内厘米级的实时动态定位服务已经成为现实。然而对于高精度位置监控方面的应用,如高精度实时动态形变监测、精细农业和自动化机械施工等,常规RTK定位技术已不能很好的满足此类实际应用的需求,具体表现为:常规RTK定位的差分计算工作在流动站端设备上完成,(监控)服务器无法获得流动站完整的位置信息;用户端设备需具备载波相位差分计算模块,增加了实际应用的成本;不利于流动站间观测数据的融合处理与分析,也不利于进一步研究、挖掘数据之间所潜在的重要信息。
     基于上述的分析,本文对中央差分定位技术进行了深入研究。中央差分定位模式中,所有GPS测站的观测数据都回传至中央差分服务器,并由服务器端完成位置解算。中央差分定位技术不仅可提供常规RTK定位服务,获取完整的用户位置信息,同时还可提供多样化的数据处理策略,以满足特殊的位置服务需求。中央差分定位技术与常规RTK定位技术形成互补之势,两者共同发展将有助于进一步完善GPS定位的理论框架,提高其应用层次。
     本文主要针对GPS中央差分定位系统所涉及的理论与方法,研究了系统的框架结构,对其中某些关键技术提出了改进算法,并最终初步实现了GPS中央差分定位系统。论文的主要研究内容与创新点概述如下:
     1、概括了GPS定位技术的研究现状,分析了传统RTK定位技术与中央差分定位技术的优缺点,总结了中央差分系统的研究意义。
     2、阐述了网络RTK定位模式与中央差分定位模式的系统框架组成及特征,对两者进行了对比分析,并详细阐述了中央差分定位系统的主要构成与关键技术。
     3、阐述了GPS实时数据质量控制的研究内容与方法流程;提出了一种改进的电离层残差周跳探测与修复方法,方法可直接探测与修复对应频率上载波相位观测值的周跳,其对1周的周跳有较好的探测能力;将时间基线用于动态环境下的粗差探测,时间基线粗差探测法可无需已知模糊度信息,其在试验条件下可探测出0.15周的单个粗差。
     4、总结了三类模糊度解算方法,即基于测量域的模糊度解算、基于坐标域的模糊度搜索以及基于模糊度域的模糊度搜索方法;提出了双频整周关系约束模糊度解算方法(FirCAR),在局部范围内FirCAR将模糊度的等效波长扩大至了L1波长的9倍,通过试验分析了方法的可行性与适用性;同时给出了基于FirCAR的快速动态模糊度初始化方法,并与LAMBDA方法进行了试验对比分析
     5、介绍了大范围动态变形监测的两种常用方法:PPP动态定位技术与长距离RTK定位技术,并分析了两者在强震监测中的不足;基于GPS空间误差的时空相关性,提出了高频GPS双差残差模型动态位移监测方法,一条长为1100km基线的静态数据试验结果表明,该方法在预测5分钟内N、E、U方向动态位移精度分别为6mm、6mm和13mm; E1Mayor-Cucapah7.2级地震GPS测站观测数据进一步证明了该方法的可行性与可靠性。
     6、初步研制了一套GPS中央差分定位软件系统,系统主要包括实时数据流解码模块、基线数据解算模块、数据存储模块以及可视化显示与数据分析模块,并分别通过24小时的静态GPS观测数据、20分钟的动态观测数据以及E1Mayor-Cucapah7.2级地震的94个GPS站的地震数据,对系统在形变监测、动态位置监控以及地震地表动态位移监测方面的应用进行了试验,结果表明该系统是一个能够连续运行、多点监测、高精度和高可靠性的位置信息监控服务系统。
With the development of the network real-time kinematic (NTRK) technology, wide area centimeter-level real-time kinematic (RTK) positioning service becomes true. However, the standard RTK positioning technology can not well meet the needs of high-precision position monitoring applications, such as kinematic deformation monitoring, precision agriculture, automated machinery construction. Firstly, since the differential computation is carried out by the rover, the (monitoring) server can not obtain the full information of the rover's position. Secondly, the capability of differential computation of the carrier phase measurement is required on the user-side device, and the additional requirements will cause an increase in cost. Lastly but not the least, the standard RTK positioning technology is not conducive to the data fusion and overall analysis of the observations from different rovers, and even be against the further research and potential information mining.
     Central differential positioning technology is studied in this dissertation. Observations from all sites are sent back to the central differential positioning server, in which the differential computation is then carried out. The central server can provide standard RTK service, obtain the whole positioning information, and even deploy different data processing strategies to satisfy special location-based services. To give full play to their own advantages and cooperate with each other, the central differential positioning technology, along with the standard RTK positioning technology, will further improve the level and extent of GPS theoretical study.
     This dissertation focuses on the theory and methods involved in the central differential positioning system. The framework structure of the system is studied, the algorithms of some key techniques are improved, and the system is initially implemented. The main research contents and innovations are summarized as follows:
     1、Current research status of GPS positioning technology, the advantages and disadvantages of the standard RTK and the central differential positioning technology are analyzed. The significance of the central differential positioning system is also summarized.
     2、The system frame structure and the characteristics of the NRTK positioning and the central differential positioning are presented. The main components and key technologies of central differential positioning system are elaborated.
     3、Research contents and methods of GPS real-time data quality control are presented. A modified ionospheric residual cycle slip detecting and repairing method is proposed, which can detect and repair the carrier phase cycle slip for a specific frequency, and can deal with the small cycle slip of one cycle. Time baseline is employed to detect the outlier of carrier phase measurements for the kinematic application. Outliers of0.15cycles can be detected under the experimental conditions, without the need of ambiguity fixing.
     4、Different ambiguity resolution methods have been summarized, including ambiguity resolution/searching in measurement domain, in coordinate domain, and in integer ambiguity domain. Dual-frequency integer relationship constrained GNSS ambiguity resolution (FirCAR) method is proposed. FirCAR increases the equivalent wave length of the integer ambiguity up to9times of wave length of L1. The feasibility and applicability is experimentally tested. On the fly (OTF) ambiguity resolution method based on FirCAR is also presented, and it is also experimentally compared with LAMBDA.
     5、Wide range kinematic deformation monitoring methods are presented, including the kinematic precise point positioning (PPP) and the long range RTK positioning technology. Kinematic deformation monitoring method using double-differenced residuals model for high-rate GPS is proposed. Experimental results from a static baseline of about1100km show that the standard deviation of the kinematic position are6mm,6mm and13mm for N, E and U, respectively, in the predicted5minutes. The feasibility and reliability of the proposed method are further verified by GPS data obtained during El Mayor-Cucapah M7.2earthquake.
     6、GPS central differential positioning software system has been preliminarily developed. The system mainly includes the real-time data stream decoding module, the baseline processing module, the data storage module, and the visual analysis module. A24-hour static data set, a20-minute kinematic data set, and the data sets of the94GPS stations during El Mayor-Cucapah M7.2earthquake have been used, to test the functions of deformation monitoring, the kinematic positioning monitoring, and the seismic ground surface kinematic displacement monitoring, respectively. Experimental results show that, the proposed location information monitoring service system is capable of continuous operation, multiple locations monitoring, high precision and high reliability.
引文
[1]Amiri-Simkooei A. R., Tiberius C. C. J. M, Teunissen P. J. G.. Noise characteristics in high precision GPS positioning[A]. VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy,2008:280-286
    [2]Anon. White house official release on selective availability.2000
    [3]Armbrust M., Fox A., Griffith R., et al. A view of cloud computing[J]. Communications of the ACM, 2010,53(4):50-58
    [4]Baoyun W. Review on internet of things[J]. Journal of Electronic Measurement and Instrument, 2009,23(12):1-7
    [5]Bastos L., Landau H. Fixing cycle slips in dual-frequency kinematic GPS-applications using Kalman filtering [J]. Manuscripta,1988
    [6]Bisnath S., Gao Y. Current state of precise point positioning and future prospects and limitations[J]. Observing our Changing Earth,2008,(615-623).
    [7]Blewitt G. An automatic editing algorithm for GPS data[J]. Geophysical research letters,1990,17(3): 199-202.
    [8]Bock Y., Nikolaidis R., DeJonge P. J., Bevis M. Instantaneous geodetic positioning at medium distances with the global positioning system. Journal of Geophysical Research, 2000,105(28):233-253.
    [9]Borre K., Tiberius C. C. J. M. Time series analysis of GPS observables[A].13th International Technical Meeting of the Satellite Division of the Institute of Navigation, ION GPS-2000,Salt Lake City,Utah,2000
    [10]Brunner F. K., Hartinger H., et al. GPS signal diffraction Modelling:the SIGMA-D Model[J]. Journal of Geodesy,1999(73):259-267
    [11]Chang X., Yang X., Zhou T. MLAMBDA:a modi?ed LAMBDA algorithm for integer least-squares estimation. J Geod,2005,79:552-565
    [12]Chang X. W., Paige C.C. Yin L. Code and carrier phase based short baseline GPS positioning: computational aspects[J]. GPS Solutions,2005,9(1):72-83
    [13]Chen D. S. Development of fast ambiguity search filtering (FASF) method for GPS carrier phase ambiguity resolution[D]. PhD thesis,Department of Geomatics Engineering,University of Calgary. 1994
    [14]Chen D., Lachapelle G. A Comparison of the FASF and Least-Square Search Algorithm for on the Fly Ambiguity Resolution[J]. Navigation,1995,42(2):371-390
    [15]Chen X. M., Han S. W., Rizos C., Goh P.C. Improving real-time Positioning effieieney using the SingaPore integrated multiple referene station network (SICORSN). Proc 13th Int Tech Meeting Satellite Division US Inst Navigation, SaltLakeCity, UT,2000,19-22 September,9-16
    [16]Choi K, Bilich A, Larson K. M., et al. Modified sidereal filtering:Implication for high-rate GPS positioning. Geophys Res Lett,2004,31:L24610, doi:10.1029/2004GL021621
    [17]Cocard M., A. Geiger. Systematic search for all possible widelanes[A]. Proceedings of the Sixth International Geodetic Symposium on Satellite Positioning, Columbus, Ohio,1992
    [18]Collins J. P. An overview of GPS interfrequency carrier phase combinations. Unpublished paper. (Available on-line at:),1999
    [19]Counselman C. C., Gourevitch S. A. Miniature interferometer terminals for earth surveying: ambiguity and multipath with Global Positioning System[J]. Geoscience and Remote Sensing, IEEE Transactions on,1981, GE-19(4):244-252
    [20]Crowell, B. W., Y. Bock, and M. B. Squibb. Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks. Seismological Research Letters,2009,80(5) 772-782.
    [21]Dong D, Boek Y. Global positioning system network analysis with phase ambiguity resolution applied to crustal deformation studies in California. JGeophysRes,1989,94:3949-3966
    [22]Dong X., Huang D., Feng W. Real-Time Cycle Slip Detecting and Repairing for Single Station Observation [C]. Proceedings of CPGPS 2010 Navigation and Location Services. Shanghai, China, 2010
    [23]Edwards S.J., Cross P.A., Barnes J.B., Betaille D. A methodology for benchmarking real-time kinematic GPS [J]. Surv. Rev.1999,35(273):163-174
    [24]Elosegui P, Davis JL, Oberlander D, et al. Accuracy of high rate GPS for seismology. Geophys Res Lett,2006,33, L11308, doi:10.1029/2006Gl 026065
    [25]El-Rabbany A. E-S. The effect of physical correlations on the Ambiguity resolution and accuracy estimation in GPS differential positioning [D], Ph. D. thesis, University of New Brunswick,Canada,1994
    [26]Elsobeiey M., E1-Rabbany A. On Modelling of Second-Order Ionospheric Delay for GPS Precise Point Positioning[J]. Journal of Navigation,2012,65(01):59-72
    [27]Euler H.J., H. Landau. Fast GPS ambiguity resolution on-the-fly for real-time application[J], Proceedings of Sixth International Geodetic Symposium on Satellite Positioning, Columbus, Ohio, 1992,17-20 March, pp.650-659
    [28]Feng Y., Rizos C., Higgins M., et al. Developing regional precise positioning services using the current and future GNSS receivers[A]. Proceedings of Spatial Sciences Institute Biennial International Conference, Adelaide,2009
    [29]Fontana R., Cheung W., Stansell T. The modernized L2 civil signal [J]. GPS World,2001
    [30]Fontana R., Latterman D. GPS modernization and the future [A]. Proceedings of IAIN/ION Annual Meeting, San Diego, Californial,2000
    [31]Frei, Beutler E G. Rapid Static Positioning Based on the Fast Ambiguity Function Algorithm[J]. Journal of Geodesy,1990,15(4):325-356
    [32]Gao Y., Chen K. Performance analysis of precise point positioning using real-time orbit and clock products[J]. Journal of Global Positioning Systems,2004,3(1-2):95-100
    [33]Gao Y., Li Z. Cycle slip detection and ambiguity resolution algorithms for dual-frequency GPS data processing [J]. Marine Geodesy,1999,22:169-181.
    [34]Gao Y, Li Z., McLellan J.F. Carrier phase based regional area differential GPS for decimeter-level positioning and navigation [A]. Proc 10th Int Tech Meeting Satellite Division Inst Navigation, Kansas City, Mo,1997,16-19 September, pp 1305-1313
    [35]Ge M., Gendt G., et al. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal of Geodesy,2008,82(7):389-399.
    [36]Gerdan G. P. A comparison of four methods of weighting double-differece pseudo-range measurements[J]. Trans Tasman Surveyor, Australia,1995(1):20-24
    [37]Gianniou M., Groten E. An advanced real-time algorithm for code and phase DGPS[A]. presented at DSNS'96 Conference,Russia,1996
    [38]Goad, C. Precise positioning with the Global Positioning System[C]. Proceedings of the Third International Symposium on Inertial Technology for Surveying and Geodesy,16-20 September 1985, Banff, Canada, pp.745-756
    [39]Gourevitch S. Measuring GPS receiver performance:A new approach[J]. GPS world,1996,7(10):56-62
    [40]Grafarend E. W. Mixed integer-real valued adjustment (IRA) problems:GPS initial cycle ambiguity resolution by means of the LLL algorithm[J]. GPS Solutions,2000,4(2):31-44
    [41]Guo, F.,X. Zhang. Real-time clock jump compensation for precise point positioning[J]. GPS Solutions,2012:1-10.
    [42]Han S. W. Carrier phase-based long-range GPS kinematic positioning. [Ph.D. thesis]. Sydney:The University of New South Wales,1997a
    [43]Han S. W. Quality control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning[J], Journal of Geodesy,1997b,71(6):351-361
    [44]Han S. W., Rizos C. Improving the computational efficiency of the ambiguity function algorithm [J]. Journal of Geodesy,1996,70(6):330-341
    [45]Han S. W., Rizos C. Standardization of the variance-covariance matrix for GPS rapid static positioning[J]. Geomatics Research Australia,1995(62):37-54
    [46]Hartinger H., Brunner F. K. Variance of GPS phase observations:the sigma-εmodel[J]. GPS Solutions,1998,2(4):35-43
    [47]Hatch R., Euler H. J. Comparison of several AROF kinematic techniques [A].7th International Technical Meeting of the Satellite Division of the Institute of Navgation, ION GPS-94,Salt Lake City,Utah,1994
    [48]Heo, M. B. An Approach for GPS Clock Jump Detection Using Carrier Phase Measurements in Real-Time[J]. Journal of Electrical Engineering & Technology,20127(3):429-435.
    [49]Herbert L., Ulrich V., Chen X.M. Virtual Reference Station Systems[J]. Journal of Global Positioning Systems,2002,1(2):137-143.
    [50]Hofmann-Wellenhof B, Lichtenegger H, Collins J. Global Positioning System:Theory and practice [M],5th revised edition. Springer-Verlag.2001
    [51]Howind J., Kutterer H., Heck B. Impact of temporal correlations on GPS-derived relative point positions[J]. Journal of Geodesy.1999,73(5):246-258.
    [52]http://binex.unavco.org/
    [53]http://geoapp03.ucsd.edu/gridsphere/gridsphere?cid=E1+Mayor+Cucapah
    [54]http://geoweb.mit.edu/-tah/track_example/
    [55]http://sopac.ucsd.edu/projects/realtime/CRTN/
    [56]Jazaeri, S., A. Amiri-Simkooei,M. Sharifi. Fast integer least-squares estimation for GNSS high-dimensional ambiguity resolution using lattice theory[J]. Journal of Geodesy,2012,86(2): 123-136.
    [57]Jet Propulsion Laboratory California Institute of Technology. GIPSY5.0 Release Note. https://gipsy-oasis.jpl.nasa.gov/gipsy/docs/Release_Nates_5.0.pdf, June 2,2008.
    [58]Jin S. G., Wang J. L., Impacts of stochastic modeling on GPS-derived ZTD estimations. The University of New South Wales.2005
    [59]Jin S. G., Wang J. L., Park P. An improvement of GPS height estimation:Stochastic Modeling [J]. Earth Planets Sapce,2005,57:253-259
    [60]Kanzaki M. Inverted RTK system and its applications in Japan. In:Proceedings of 12th IAIN Congress and 2006 international symposium on GPS/GNSS, Jeju, Korea,2006,18-20 October, pp 455-458
    [61]Kim D., Langley R. B. A search space optimization technique for improving ambiguity resolution and computational ef?ciency. Earth Planets Space,2000a,52(10):807-812.
    [62]Kim D., Langley R. B. GPS ambiguity resolution and validation:methodologies, trends and issues. In:Proceedings of the 7th GNSS workshop and international symposium on GPS/GNSS, Seoul, Korea, November 30-December,2000b,213-221.
    [63]Kim D., Langley R. B. Instantaneous real time cycle-slip correction of dual-frequency GPS data[C]. Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Alberta, Canada,2001
    [64]Langbein J., Bock Y. High-rate real-time GPS network at Parkfield:Utility for detecting fault slip and seismic displacements. Geophys Res Lett,2004,31, L15S20, doi:10.1029/2003GL019408
    [65]Langley R. B. GPS receiver system noise[J]. GPS World,1997,8(6):40-45
    [66]Lee S. H., K. H. Choi, Park, J.U., et al. The Improvement of Position Accuracy Using Inverted DGPS[J]. Journal of Astronomy and Space Sciences,2001,18:63-70.
    [67]Leick A. GPS Satellite Surveying [M],2nd edition. New York:John Wiley&Sons, Inc.,1995
    [68]Lim S., Rizos C. A conceptual framework for server-based GNSS operations [J]. Journal of Global Positioning Systems,2008,7(2):35-42.
    [69]Lim S., Rizos C. A new framework for server-based and thin-client GNSS operations for high accuracy applications in surveying and navigation[A], ION GNSS 20th International Technical Meeting of the Satellite Division of the US Institute of Navigation, Citeseer,2007,25-28
    [70]Martin-Neira M., Toledo M., Pelaez A. The null space method for GPS integer ambiguity resolution [A]. Proceedings of DSNS'95, Bergen, Norway,1995, April 24-28, Paper No.31,8 pp.
    [71]McDonald K. The Modernization of GPS:Plans, New capabilities and the future relationship to galileo [J]. Journal of Global Positioning Systems,2002,1(1):1-17
    [72]Melbourne G. The case for ranging in GPS based geodetic systems[C]. Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Maryland, 1985,373-386.
    [73]Mohamed A. H., Schwarz K. P. A Simple and Economic Algorithm for GPS Ambiguity Resolution On The Fly Using a Whitening Filter[J]. Navigation,1998,45(3):221-231
    [74]Niell A. E. Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research,1996,101(B2):3227-3246
    [75]Park C., Kim I, Lee J G, et al. Efficient Ambiguity Resolution Using Constraint Equation[C]. IEEE PLANS, Position Lo cation and Nav ig ation Symposium,1996:277-284
    [76]Raquet J. Development of a method for kinematic GPS carrier phase ambiguity resolution using multiple reference receivers [D]. PhD dissertation. UCGE rep 20116, University of Calgary, Canada, 1998
    [77]Raquet J., Lachapelle G. Long distance kinematic carrier-phase ambiguity resolution using a simulated reference receiver network [A]. ION GPS-97, Kansas City, Missouri, September 1997
    [78]Ray J., Kalligudd K. Development and Test Results of a Cost Effective Inverse DGPS System. Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation,2001.
    [79]Remondi B. W. Global Positioning System carrier phase:description and use[J]. Journal of Geodesy, 1985,59(4):361-377
    [80]Remondi B. W. Using the global positioning system(GPS) phase observable for relative geodesy: Modeling, processing, and results[D]. PhD thesis,Center for Space Research, University of Texas at Austin.1984
    [81]Rizos C. Alternatives to current GPS-RTK services and some implications for CORS infrastructure and operations[J]. GPS Solutions,2007,11(3):151-158.
    [82]Rizos C. Principles and practice of GPS surveying,School of Geomatic Engineering,The university of New Wales,1997
    [83]RTCM. Recommended Standards for Differential GNSS Service. Ver2.2 Jan.1998a
    [84]RTCM. RTCM paper 11-98/SC 104-STD-1998. RTCM Recommended Standards for Differential GNSS (Global Navigation Satellite Systems) Service, Version 2.2 [S]. Alexandria:RTCM Special Committee No.104,1998b
    [85]RTCM. RTCM Paper 167-203/SC104-315. Networked Transport of RTCM via Internet Protocol, Version 1.0 [S]. June 2003
    [86]Saastamoinen J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The use of artificial satellites for geodesy, Geophysics Monograph Series,1972,15
    [87]Satirapod C. The effect of anew stochastic model on GPS epoch-by-epoch solutions[A]. Presented at the 27th Annual Research Seminars, School of Geomatic Engineering, the University of New South Wales,Sydney,Australia,1999
    [88]Satirapod C., Wang J. L., Rizos C. Stochstic modeling in GPS data processing[A]. Presented at the 28th Annual research Seminars,School of Geomatic Engineering, The University of New South Wales,Sydney,Australia,2000
    [89]Sauer D. B., Frei E., Beulter G. The importance of code measurements in relative positioning and navigation [A].5th International Technical Meetings of Satellite Division of the Institute of Navigation, ION GPS-92,New Mexico,1992
    [90]Seeber G.Satellite Geodesy[M].Berlin:Walter de Gruyter and Co,1993.
    [91]Shi C., Lou Y.D., Zhang H.P., et al. Seismic Deformation of the Mw 8.0 Wenchuan Earthquake from High-rate GPS Observations. Advances in Space Research,2010,46(2):228-235
    [92]Sun H, Cannon ME, Meigard TE. Real-time GPS referenee network carrier phase ambiguity resolution[A]. proc Nat Tech Meeting Inst Navigation, SanDiegQ, CA,1999,25-27January, 193-199
    [93]Talbot N. Optimal weighting of GPS carrier phase observations based on the signal-to-noise[A]. Proceedings of the International Symposia on Global Positioning Systems,Australia,1998
    [94]Teunissen P. J. G, Kleusberg A. GPS for Geodesy [M]. Springer, Germany,1998b
    [95]Teunissen P. J. G. Least-squares estimation of the integer GPS ambiguities. Invited lecture, section IV theory and methodology, IAGgeneral meeting, Beijing, China. Also in DelftGeodetic Computing Centre LGR series,6:16,1993.
    [96]Teunissen P. J. G. On The integer normal distribution of the GPS ambiguities[J]. Artificial satellites, 1998c,33(2):1-13
    [97]Teunissen P. J. G. Success probability of integer GPS ambiguity rounding and bootstrapping[J]. Journal of Geodesy,1998a,72(10):606-612
    [98]Teunissen P. J. G. The Invertible GPS Ambiguity Transformation[J]. Manuscripta Geodetic,1995, 20(6):489-497.
    [99]Teunissen P. J. G. The Least-Squares Ambiguity Decorrelation Adjustment:a Method for Fast GPS Integer Ambiguity Estimation[J]. Journal of Geodesy,1995,70(1):65-82
    [100]Teunissen P. J. G., Odijk D., Zhang B. PPP-RTK:Results of CORS network-based PPP with integer ambiguity resolution[J]. Journal of Aeronautics, Astronautics and Aviation, Series A,2010, 42(4):223-230
    [101]Teunissen P.J.G. Least-squares estimation of the Integer GPS ambiguities [A]. Invited lecture, Section IV:Theory and Methodology, IAG General Meeting, Beijing, China,1993, August.
    [102]Tiberius C. C. J. M., Jonkman N., Kenselaar F. The stochastics of GPS observables[J]. GPS World, 1999,10(2):49-54.
    [103]Townsend, B, Lachapelle, G, Fortes, L. P., Melg?rd, T.,N?rbech, T., Raquet. New Concepts for a Carrier Phase Based GPS Positioning Using a National Reference Station Network[C]. In Proceedings of the National Technical Meeting of the Institute of Navigation, San Diego, January 1999.
    [104]Wang C., Feng Y., Higgins M., et al. Assessment of commercial Network RTK user positioning performance over long inter-station distances[J]. Journal of Global Positioning Systems,2010, 9(1):78-89
    [105]Wang J. L., Lee H.K., Lee Y. J., Musa T., et al. Online stochastic modeling for network-based GPS real-time kinematic positioning[J]. Journal of Global Positioning Systems.2005(4):113-119
    [106]Wang J. L., Satirapod C., Rizos C. Stochsatic assessment of GPS carrier phase measurements for precise static relative positioning[J], Journal of Geodesy,2001,76(2):95-104
    [107]Wang J. L., Stewart M. P., Tsakiri M. A discrimination test procedure for ambiguity resolution on-the-fly[J]. Journal of Geodesy,1998b,72(11):644-653.
    [108]Wang J. L., Stewart M. P., Tsakiri M. Stochastic modeling for static GPS baseline data processing[J]. Journal of Surveying Engineering,1998a,124(4):171-181
    [109]Wanninger L. Enhancing differential GPS using regional ionospheric error models[J]. Journal of Geodesy,1995,69(4):283-291
    [110]Weber G., Dettmering D., Gebhard H. Networked Transport of RTCM via Internet Protocol (NTRIP)[J]. A Window on the Future of Geodesy,2005,60-64
    [111]Wubbena G. Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements[C]. Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Maryland,1985.15-19
    [112]Wubbena G., Bagge A., Schmitz M. RTK networks based on geo++GNSMART concepts, Implementation, Results [A]. International Technical Meeting, ION GPS01, Salt Lake City, Utah, 2001b
    [113]Wubbena G., Bagge A., Seeber G., Boder V., Hankermeier P. Reducing distance dependent errors for real-time precise DGPS applications by establishing reference station Networks [A]. Proc. ION GPS-96,9th Int. Tech. Meeting of The Satellite Division of the U.S. Institute of Navigation, Kansas City, Missouri,1996,17-20 September,1845-1852
    [114]Wubbena G., Willgalis S. State space approach for precise real time positioning in GPS reference networks [A]. International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, KIS01, Banff,2001a, June 58, Canada.
    [115]Xiong Y. L., Huang D. F., et al. A Reliable GPS Single Epoch Processing Algorithm with Known Deformation Interval Constraints[J]. Geomatics and Information Science of Wuhan University, 2001,26(1):51-57
    [116]Xu G. C. GPS Theory, Algorithms and Applications [M].1st Edition, Springer-Verlag,2003
    [117]Zhang X., Li X. X., Guo F. Satellite clock estimation at 1 Hz for realtime kinematic PPP applications[J]. GPS solutions,2011,14(4):315-324
    [118]Zhang, X., B. Guo, F. Guo, et al. Influence of clock jump on the velocity and acceleration estimation with a single GPS receiver based on carrier-phase-derived Doppler[J]. GPS Solutions, 2012:1-11.
    [119]Zumberge J. F., Heflin M. B., Jefferson D. C., et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks[J]. Journal of Geophysical Research, 1997,102(B3):5005-5017
    [120]蔡华GNSS大网实时数据快速解算方法应用研究[D],武汉大学博士学位论文,2010
    [121]范建军,王飞雪,郭桂荣.GPS三频非差观测数据周跳的自动探测与改正研究[J].测绘科学,2006,31(5):24-26
    [122]方荣新,施闯,徐培亮等.GPS地震仪:PANDA软件测试结果与验证.武汉大学学报(息科学版).2011,36(4),453-456
    [123]方荣新.高采样率GPS数据非差精密处理方法及其在地震学中的应用研究[D].武汉大学博士学位论文,2010.
    [124]冯威,黄丁发,严丽等.GNSS双频整周关系约束模糊度算法研究[J].武汉大学学报:信息科学版,2012a,37(8):945-948
    [125]冯威,黄丁发,张熙.FirCAR算法的OTF快速定位方法[J].测绘学报,2012b,41(004):529-535
    [126]冯威,廖华,董兴干,黄丁发.一种改进的载波相位周跳探测与修复方法[J].测绘科学,2010,35(6):39-41
    [127]韩保民,欧吉坤.一种附约束的单频单历元GPS双差相位解算方法[J].测绘学报,2002,31(4):300-304
    [128]黄兵杰,柳林涛,高光星,等.基于小波变换的GPS精密单点定位中的周跳探测[J].武汉大学学报:信息科学版,2006,31(6):512-515
    [129]黄丁发,熊永良,袁林果.全球定位系统(GPS)——理论与实践[M].成都:西南交通大学出版社,2006
    [130]黄丁发,周乐韬,李成钢,等.GPS增强参考站网络理论[M],北京:科学出版社,2011:98-108
    [131]黄丁发,周乐韬,李成钢,等.增强参考站网络RTK算法模型及其实验研究[J].武汉大学学报(信息科学版),2009(11):1344-1349.
    [132]黄丁发,周乐韬,李成钢,等.增强虚拟参考站网络系统软件(VENUS)研制[J].武汉大学学报:信息科学版,2008,33(2):172-176
    [133]黄丁发,周乐韬,刘经南,等.基于Internet的VRS/RTK定位算法模型及实验研究[J].武汉大学学报:信息科学版,2007,32(3):220-224
    [134]黄丁发,卓健成.GPS相位观测值周跳检测的小波分析法[J].测绘学报,1997,26(4):352-357
    [135]解海中,张守信,任宇飞.用CDMA(?)GPS逆向差分定位技术实现多运动目标实时监控[J].指挥技术学院学报,2000,11(5):29-32
    [136]李博峰,沈云中.顾及基线先验信息的GPS模糊度快速解算[J].测绘学报,2008,37(4):423-427
    [137]李博峰,沈云中.附有约束条件的GPS模糊度快速解算[J].武汉大学学报(信息科学版),2009,30(1):117-121
    [138]李成钢,黄丁发,袁林果,周乐韬,徐锐.GPS参考站网络的电离层延迟建模技术[J],西南交通大学学报,2005,40(5):610-615
    [139]李成钢,黄丁发,周东卫,周乐韬,徐锐GPS/VRS网络实时精密轨道改正算法研究[J],测绘科学,2006,26(4)
    [140]李成钢.网络GPS/VRS系统高精度差分改正信息生成与发布研究[D].西南交通大学博士学 位论文,2007.
    [141]李江卫,王厚之,高光星,周剑.双频动态GPS观测数据周跳的自动修正[C].2006年测绘新技术应用交流会论文集.
    [142]李明,高星伟,徐爱功.一种改进的周跳多项式拟合方法[J].测绘科学,2008,33(4):82-83
    [143]李征航,刘万科,楼益栋,等.基于双频GPS数据的单历元定向算法研究[J].武汉大学学报(信息科学版),2007,32(9):753-756.
    [144]廖华,冯威,黄丁发.中央差分定位系统的设计与实现[J].西南交通大学学报,2010,5(46):764-768
    [145]刘大杰,施一民.全球定位系统的原理与数据处理[M].上海:同济大学出版社,1996:136-143.
    [146]刘基余.GPS卫星导航定位原理与方法[M].科学出版社,2003,34-335.
    [147]罗峰,姚宜斌,宋伟伟.综合利用多项式拟合和载波相位变化率探测单频GPS周跳[J].全球定位系统2007,32(5):9-13.
    [148]邱蕾,花向红,蔡华,伍岳.GPS短基线整周模糊度的直接解法[J].武汉大学学报(信息科学版),2009,(01),P98-104
    [149]任超,欧吉坤,袁运斌.一种用于GPS整周模糊度OTF求解的整数白化滤波改进算法[J].武汉大学学报(信息科学版),2004,29(11):P960-963
    [150]任宇飞,解海中,张守信.逆向GPS差分(IDGPS)定位技术研究[J].全球定位系统,2000,25(2)
    [151]宋迎春.动态定位中的卡尔曼滤波研究[D].中南大学博士学位论文,2006.
    [152]苏小宁,孟国杰,胡丛玮,等.基于TRACK进行GPS单历元定位[J].大地测量与地球动力学,2009,29(3):100-103
    [153]唐卫明,孙红星,刘经南.附有基线长度约束的单频数据单历元LAMBDA方法整周模糊度确定[J].武汉大学学报(信息科学版),2005,30(5):444-446
    [154]王坚,高井祥,王金岭.基于经验模态分解的GPS基线解算模型[J].测绘学报,2008,37(1):10-14
    [155]王仁谦,朱建军.利用双频载波相位观测值求差的方法探测与修复周跳[J].测绘通报,2004,(6):9-11
    [156]王新洲,华向红,邱蕾.GPS形变监测中整周模糊度解算的新方法[J].武汉大学学报(信息科学版),2007,32(1):24-26
    [157]王秀环,张发祥,甑卫民,等.基于GPS OEM板的逆向差分系统[J].全球定位系统,2003,28(1):23-28
    [158]吴继忠,李明峰,吴玮.利用双频载波双差相关性进行周跳探测[J].南京工业大学学报,2007,29(4):90-92
    [159]熊永良,黄丁发,丁晓利,等.虚拟参考站技术中对流层误差建模方法研究.武汉大学学报(息科学版).2006,35(2),118-121
    [160]徐锐,GPS基线解算的质量控制与完整性监测[D].西南交通大学博士学位论文,2008
    [161]徐锐,黄丁发,陈维锋,等.VRS动态随机模型建模方法的综合比较与分析[J].西南交通大学学报.2011(03):440-444.
    [162]徐锐,黄丁发,李成钢,等.基于整周模糊度概率特性的GPS基线质量评估[J].西南交通大学学报.2007(06):739-742+747.
    [163]徐锐,黄丁发,廖华,等.VRS动态随机模型建模方法的综合比较[J].武汉大学学报(信息科学版).2010 (03):290-293.
    [164]徐锐,黄丁发,周乐韬,等.一种改进的双频单P码周跳探测与修复方法[J].大地测量与地球动力学,2007,27(4):67-71
    [165]徐锐,黄丁发,周乐韬,李成钢.一种改进的GPS随机模型建模方法[J],武汉大学学报(自然科学版),2008,33(11):1110-1113
    [166]徐顺福,袁勤丰,王雷.炮兵逆向差分系统构建初探[J].江苏测绘,2002(S1):76-77
    [167]徐顺福,袁勤丰,王卫丰.炮兵IDGPS中数据传输的实现[J].现代测绘,2003(S1):89-90+106
    [168]杨子俊.移动机器人IDGPS导航定位系统分析与设计[D].国防科学技术大学硕士论文,2005
    [169]易重海.实时精密单点定位理论与应用研究[D].中南大学博士学位论文,2011
    [170]殷海涛,张培震,甘卫军,等.高频GPS测定的汶川Ms8.0级地震震时近场地表形变过程.[J]科学通报,2010,55(26):2621-2626
    [171]余学祥,徐绍铨,吕伟才.GPS变形监测信息的单历元解算方法研究[J].测绘学报,2002,31(2):123-127
    [172]喻国荣,生仁军.基于时间相对定位理论的周跳探测方法[J].东南大学学报:英文版,2005,21(3):363-368
    [173]袁伟,熊永良,黄丁发.附有运动轨迹约束条件的整周模糊度快速分解算法[J].武汉大学学报(信息科学版),2009,34(11):1316-1319
    [174]周乐韬,黄丁发,李成钢,徐锐.参考站间双差模糊度快速解算策略研究[J].大地测量与地球动力学,2006,26(4):34-40
    [175]周乐韬,黄丁发,徐锐,等.一种网络RTK新技术——增强参考站[J].武汉大学学报:信息科学版,2008,(1):76-80
    [176]周乐韬,黄丁发,袁林果,等.网络RTK参考站间模糊度动态解算的卡尔曼滤波算法研究[J].测绘学报,2007,36(1):37-42
    [177]周乐韬.连续运行参考站网络实时动态定位理论、算法和系统实现[D].西南交通大学博士学位论文,2007
    [178]周忠谟,易杰军,周琪.GPS卫星测量原理与应用[M].北京:测绘出版社,1992
    [179]皱璇.GNSS单频接收机精密点定位统一性方法的研究[D].武汉大学博士学位论文,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700