用户名: 密码: 验证码:
GPS精密测量中的海潮负荷问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以GPS (Global Positioning system)为代表的现代空间定位技术手段的蓬勃发展和广泛应用,近20年来积累了大量的宝贵原始观测数据,也为大地测量和地球物理等地学研究领域开辟了广阔的前景。高精度和高可靠性的GPS数据处理结果是地学研究的基础,海潮负荷位移改正对提高GPS估计精度已经得到了广泛的共识,也为GPS坐标时间序列研究中剥离海潮负荷效应影响提供了有效途径,同时利用GPS坐标时间序列分析可以检验海潮负荷模型的精度和适应性。因此在GPS精密测量中研究海潮负荷效应对大地测量和地球物理学研究获取准确的几何和物理信息具有重要的理论意义和参考价值。
     本文系统地阐述了GPS精密测量中海潮负荷效应在国内外的发展现状和趋势,分析了海潮负荷影响GPS精密测量的各个关键环节,着重研究了不同海潮负荷模型位移改正对GPS坐标精密定位的修正效果,建立了海潮负荷位移和天顶对流层延迟(ZTD)估计精度的变化特征关系,深入分析了未模型化的海潮负荷位移传播到GPS高程时间序列的混叠信号的周期变化特征。主要研究内容和成果如下:
     (1)系统研究了海洋潮汐和海潮负荷的理论基础,介绍了海洋潮汐产生的引潮位理论以及海洋潮汐的调和展开,给出了海洋潮汐和海潮负荷分析方法的详细表达式。
     (2)系统研究了非差精密单点定位所涉及的基本理论,包括各种GPS时间系统及相互转化关系、各种GPS坐标系统及相互转化关系、基本观测方程和参数估计模型,针对数据处理过程中的误差项,着重分析了非差精密单点定位主要误差源和改正模型及方法。
     (3)利用全球海潮模型FES2004的M2分潮波深入研究了我国海域的海潮空间特征分布,得出我国海域的M2分潮振幅主要分布为:较小振幅的南海区域,较大振幅的渤海、黄海和东海区域以及大陆近海岸的异常区域。在此研究基础上,给出了我国陆海全区域的海潮负荷位移三维坐标分量,海潮负荷的垂向位移分量为水平位移分量的3~4倍,同时在沿海陆地和近海海洋区域海潮位移变化较大。通过7种全球海潮模型分析了不同海潮负荷位移在我国不同区域范围内的影响差异,结果显示近海区域的不同海潮负荷位移的均方根误差较大,间接证明了全球海潮模型在我国近海区域精度具有较低的精度。
     (4)针对我国及周边地区的13个IGS站,分别采用全球海潮模型和经近海海潮模型修正的全球海潮模型计算及分析了各测站的海潮负荷位移,并利用GPS实测数据研究了海潮负荷对单天解和短时段周期解的精度影响。实验结果表明局部近海海潮模型和全球海潮模型相应区域的精度相当,计算的海潮负荷位移未引起明显的差异。对于GPS单天解精密定位结果,从整体上各海潮负荷位移对测站坐标没有影响,但是在局部沿海地区测站的垂向坐标存在差异;对于GPS短周期精密定位,海潮负荷位移改正对我国沿海地区测站的精度能够提高2.5mm。
     (5)深入分析了利用映射函数和水平梯度模型进行GPS天顶对流层延迟估计的精度,结果显示选用GMF映射函数会比NMF映射函数从整体上提高了ZTD估计精度。在低高度角和气象变化剧烈条件下,施加水平梯度改正也能提高ZTD估计精度。研究了ZTD与海潮负荷位移的关系,通过解算结果确定了在我国及周边地区的IGS站的海潮负荷位移垂向分量与ZTD变化具有显著的线性对应关系,同时二者的比例因子在2-5范围内变化。为了满足GPS气象学应用PWV值优于1mm的精度要求,特别是在沿海地区必须要顾及海潮负荷效应的作用对ZTD估计偏差的影响。
     (6)系统研究了GPS高程时间序列的长周期混叠信号传播机制,确定了未建模的海潮负荷位移造成我国及周边地区8个测站的GPS高程时间序列长周期混叠信号周期和振幅分布特征,发现混叠信号主要集中于约14天、半年和周年周期,未建模的海潮负荷垂向位移引起GPS高程时间序列的混叠信号振幅能达到海潮负荷高程分量振幅的12%,而未建模的海潮负荷水平位移引起GPS高程时间序列的混叠信号振幅最大达到海潮负荷水平分量振幅的100%,同时基于未建模海潮负荷三维分量相对于未建模海潮负荷高程分量的GPS高程时间序列的频谱振幅和周期发生了明显变化,分析表明即使水平负荷位移量值很小,但是对于GPS高程时间序列混叠周期信号频谱特征解释具有不可忽视的作用。提出了通过GPS高程时间序列的频谱分析,利用特定频率的振幅峰值评估不同海潮模型的相对精度特征,为海潮负荷模型定量分析提供了简明的评估手段。
With the vigorous development and wide application of modern space positioning technology represented by GPS (Global Positioning System), a large amount of valuable raw data has been accumulated in the past20years, which opens up the broad prospects for geoscience's research such as geodesy and geophysics. High precision and high reliability of GPS data processing result is regarded as a basis for geoscience's research, ocean tide loading displacement corrections to improve the estimation accuracy of GPS has been adopted widely, it not only provides a effective means to separate the effect of ocean tide loading from GPS coordinate time series, but also can test the accuracy and adaptability of ocean tide model using GPS coordinate time series, so analyzing ocean tide loading effect in GPS precision measurement hold the important theoretical meaning and reference value in better service for geodetic and geophysical research.
     In this paper, the development trend of ocean loading effect in GPS precision measurement is analyzed and summarized, the different ocean tide loading models are focused on, the relationship between ocean tide loading displacement and the zenith tropospheric delay (ZTD) variation is established, and the spurious long period signal character in GPS height time series is further investigated, which is caused by unmodeled ocean tide loading displacement. The main contents and achievements are as follows:
     (1) A brief overview of basic theory for modeling ocean tide and ocean tide loading displacement is given. The tide-raising potential and its harmonic expansion are studied, and then the expression analysis methods to ocean tides and ocean tide loading are derivate in detail.
     (2) The measurement models of zero-difference PPP(Precise Point Positioning) is introduced, including GPS time systems and the transformation between them, GPS coordinate systems and the transformation between them, code pseudo range measurement, phase pseudo range measurement and parameter estimation models. At last the error sources of zero-difference PPP are analyzed and the correction models and methods are summarized.
     (3) The spatial distribution characteristics in China Sea area is obtained by the M2constituent of the global ocean tide model of FES2004. The result reflects small amplitude region in the South China Sea, the larger amplitude region in the Bohai Sea, the Yellow Sea and the East China Sea, amplitude anomaly region near the coastal areas. On the basis of this study, the ocean tide loading displacements are computed across China, the magnitude of the vertical displacement are3-4times as large as that of the horizontal displacements, meanwhile ocean tidal loading displacement change is great in the coastal and offshore areas.7kinds of global ocean tide models are chosen to analyze the effects of different ocean tide loading displacement in different regions of China, the results show that the root mean square of different ocean tide loading displacement is larger in the offshore area, that indirectly testifies that global ocean tide models have a lower accuracy in the offshore region in China.
     (4) Using the global ocean tide model and local ocean tide model in China Seas, the ocean tide loading displacements are calculated and analyzed for13IGS stations in China and the surrounding areas. GPS daily and sub-daily solutions are investigated when ocean tide loading displacements are modeled and then not modeled. According to the comparisons, the accuracy of local ocean tide model and those from global ocean tide mode is in the same level, between which ocean tide loading displacements are identified. For GPS daily solution, on the whole the ocean tide loading displacements have no effect on the station coordinate, but have influence on the vertical coordinates of the coastal stations; for GPS sub-daily solutions, ocean tide loading displacement correction can improve2.5mm accuracy on the coastal stations in China.
     (5) GPS-derived ZTD estimates are researched when the mapping function and the horizontal gradient are taken into account. The results show that GMF is better than NMF, which increases ZTD estimation precision. While horizontal gradient can also improve the accuracy of ZTD estimation, especially under the conditions of low cut-off elevation angle and weather dramatic changes. The effect of ocean tide loading vertical displacement on GPS-derived ZTD estimates is investigated in China and the surrounding areas, the linear relation between ocean tide loading vertical displacement and ZTD is found, the scaling factor is in the range of2-5for a7°cut-off elevation angle. In order to meet the requirements of GPS meteorology application that precipitable water vapor (PWV) is better than1mm, ocean loading effects must be taken into when estimating ZTD from GPS data, especially in the coastal area.
     (6) The aliasing signal propagation mechanism in GPS height time series is systematically studied. Spurious long period signal characters are investigated by analyzing GPS time series at8stations in China and surrounding areas at which the ocean tide loading displacement is not modeled. It is found that spurious long period signals rang in period from fortnight to one year, mainly focus on fortnight, semiannual and annual periods. It is shown that the unmodeled height component periodic ground displacement can propagate to GPS height signal with admittance of12%, whereas the horizontal admittance maximum reaches a maximum of100%. At the same time the spurious long period signals caused by unmodeled three-dimensional component are obviously different from that caused by unmodeled height component. It is reflected that the horizontal load displacement values are very small, but those can not be ignored for spectrum characteristics interpretation. At last a concise evaluation method is provided for accuracy assessment of ocean tide loading models through the peak amplitude of specific frequency in GPS time series.
引文
[1]暴景阳.(2002)基于卫星测高数据的潮汐分析理论与方法[D].武汉:武汉大学.
    [2]陈宪冬.(2006)GPS精密定位中的海潮负荷改正[J].西南交通大学学报,41(4):429-433.
    [3]陈宗镛,黄祖珂,汤恩祥,等.(1990)潮汐分析和推算的一种j、v模型[J].海洋学报,12(06):693-703.
    [4]方国洪,郑文振,陈宗镛,等.(1986)潮汐和潮流的分析和预报[M].北京:海洋出版社.
    [5]方国洪,徐晓庆,魏泽勋,等.(2013)渤、黄、东海垂向位移负荷潮和自吸-负荷潮[J].中国科学:地球科学,43(2):163-170.
    [6]姜卫平,李昭,刘鸿飞,等.(2013)中国区域IGS基准站坐标时间序列非线性变化的成因分析[J].地球物理学报,56(7):2228-2237.
    [7]李大炜,李建成,金涛勇,等.(2012)利用验潮站资料评估全球海潮模型的精度[J].大地测量与地球动力学,32(04):106-110.
    [8]李黎,匡翠林,朱建军,等.(2011)水平梯度和映射函数对PPP对流层延迟估计的影响分析[J].工程勘察,(5):52-56.
    [9]李英冰.(2003)固体地球的环境变化响应[D].武汉:武汉大学.
    [10]李昭.(2012)GPS坐标时间序列的非线性变化研究[D].武汉:武汉大学.
    [11]曲建光.(2005)GPS遥感气象要素的理论与应用研究[D].武汉:武汉大学.
    [12]田云锋,沈正康.(2009)GPS坐标时间序列中非构造噪声的剔除方法研究进展[J].地震学报,31(1):68-81.
    [13]汪汉胜,许厚泽,李国营.(1996)SNREI地球模型负荷勒夫数数值计算的新进展[J].地球物理学报,39(S1):182-189.
    [14]王敏,沈正康,董大南.(2005)非构造形变对GPS连续站位置时间序列的影响和修正[J].地球物理学报,48(5):1045-1052.
    [15]王晓英.(2013)地基GNSS层析对流层水汽若干关键技术研究[D].南京:南京信息工程大学.
    [16]汪一航,方国洪,魏泽勋,等.(2010)基于卫星高度计的全球大洋潮汐模式的准确度评估[J].地球科学进展,25(04):353-359.
    [17]郗钦文,侯天航.(1987)新的引潮位完全展开[J].地球物理学报,30(4):349-362.
    [18]郗钦文.(1991)精密引潮位展开及某些诠释[J].地球物理学报,34(2):182-194.
    [19]郗钦文.(2007)不同规格化的引潮位展开及其转换[J].地球物理学报,50(1):111-114.
    [20]许厚泽等.(2010)固体地球潮汐[M].武汉:湖北科学技术出版社.
    [21]徐宗秋,徐爱功,高扬,等.(2013)对流层延迟参数与坐标参数的相关性研究[J].测绘通报,1:25-28.
    [22]闫昊明,陈武,朱耀仲,等.(2010)温度变化对我国GPS台站垂直位移的影响[J].地球物理学报,53(4):825-832.
    [23]叶世榕.(2002)GPS非差相位精密单点定位理论与实现[D].武汉:武汉大学.
    [24]袁林果,丁晓利,孙和平,等.(2010)利用GPS技术精密测定香港海潮负荷位移[J].中国科学:地球科学,40(6):699-714.
    [25]张杰,李斐,楼益栋,等.(2013)海潮负荷对GPS精密定位的影响[J].武汉大学学报(信息科学版),38(12):1400-1404.
    [26]张良镜,金双根,张腾宇.(2012)用GPS和卫星重力观测估计地表形变的季节性变化[J].大地测量与地球动力学,32(2):32-38.
    [27]张双成,叶世榕,刘经南,等.(2009)动态映射函数最新进展及其在GNSS遥感水汽中的应用研究[J].武汉大学学报(信息科学版),34(3):280-283.
    [28]张双成,张鹏飞,范朋飞.(2012)GPS对流层改正模型的最新进展及对比分析[J].大地测量与地球动力学,32(2):91-95.
    [29]郑祎,伍吉仓,王解先,等.(2002)海潮模型和格林函数对海潮位移改正的影响[J].大地测量与地球动力学,22:71-76.
    [30]周江存,孙和平.(2007)近海潮汐效应对测站位移的负荷影响[J].地球物理学进展,22(5):1340-1344.
    [31]周江存.(2008)固体潮和卫星重力场恢复中的负荷问题及其应用研究[D].武汉:中国科学院测量与地球物理研究所.
    [32]周旭华,吴斌,李军.(2001)高精度大地测量中的海潮位移改正[J].测绘学报,30(4):327-330
    [33]Allinson C.R., Clarke P.J., Edwards S.J., et al. (2004) Stability of direct GPS estimates of ocean tide loading [J]. Geophysical Research Letters,31(15):L15603.
    [34]Altamimi Z., Boucher C., Willis P. (2005) Terrestrial reference frame requirements within GGOS perspective [J]. Journal of Geodynamics,40:363-374.
    [35]Agnew D.C. (1997) NLOADF:a program for computing ocean-tide loading [J]. Journal of Geophysical Research,102:5109-5110.
    [36]Agnew D.C., Larson K. M. (2007) Finding the repeat times of the GPS constellation [J]. GPS Solutions,11:71-76.
    [37]Agnew D.C. (2012) SPOTL:Some programs for ocean-tide loading [R]. Technical report Scripps Institution of Oceanography, La Jolla, CA.
    [38]Amiri-Simkooei A. R. (2007) Least-squares variance component estimation:Theory and GPS applications [D]. Ph.D. thesis Delft University of Technology, Publication on Geodesy, 64, Netherlands Geodetic Commission, Delft.
    [39]Andersen O., Egbert G, Erofeeva S., Ray R. (2006) Non-linear tides in shallow water regions from multi-mission satellite altimetry & the Andersen 06Global Ocean Tide Model[R]. AGU WPGM meeting, Beijing, China.
    [40]Baker T.F., Curtis D. J., Dodson A. H.(1995) Ocean tide loading and GPS [J]. GPS World, 6(3):54-59.
    [41]Bevis M., Businger S., Herring T.A., Rocken C. (1992) GPS meteorology:Remote sensing of atmospheric water vapor using the global positioning system [J]. Journal of Geophysical Research,97 (D14):15787-15801.
    [42]Bogusz J., Figurski M. (2011) Residual Kl and K2 Oscillations in Precise GPS Solutions: Case Study [J]. Artificial Satellites,46:75-91.
    [43]Bogusz J., Figurski M. (2012a) GPS-derived height changes in diurnal and sub-diurnal timescales [J]. Acta Geophysica,60:295-317.
    [44]Bogusz J., Figurski M., Kontny B., et al. (2012b) Unmodelled Effects in the Horizontal Velocity Field Determination:ASG-EUPOS Case Study [J]. Artificial Satellites,47:67-79.
    [45]Bohm J., Schuh H. (2004) Vienna Mapping Functions in VLBI analyses [J]. Geophysical Research Letters,31(1):L01603.
    [46]Bohm J., Werl B., Schuh H. (2006a) Troposphere mapping functions for GPS and VLBI from ECMWF operational analysis data [J]. Journal of Geophysical Research, 111(B02406):35.
    [47]Boehm J., Niell A., Tregoning P., Schuh H. (2006b) Global mapping function (GMF):a new empirical mapping function based on numerical weather model data [J]. Geophysical Research Letters,33:L07304,1-4.
    [48]Boehm J., Heinkelmann R., Schuh H. (2007) Short note:a global model of pressure and temperature for geodetic applications [J]. Journal of Geodesy,81(10):679-683.
    [49]Boehm J., Heinkelmann R., Schuh H. (2009) Neutral atmosphere delays:empirical models versus discrete time series from numerical weather data [A]. Geodetic Reference Frames[C]. International Association of Geodesy Symposia, Munich. Springer, Berlin Heidelberg New York,134:317-321.
    [50]Bos M.S., Baker T.F. (2005) An estimate of the errors in gravity ocean tide loading computations [J]. Journal of Geodesy,79:50-63.
    [51]Cartwright D.E., Tayler R.J. (1971) New computations of tide-generating potential[J]. Geophysical Journal of the Royal Astronomical Society,23:45-74.
    [52]Cartwright D.E., Edden A.C. (1973) Corrected tables of tidal harmonics [J]. Geophysical Journal of the Royal Astronomical Society,33:253-264.
    [53]Cheng Y., Andersen O.B. (2011) Multimission empirical ocean tide modeling for shallow waters and polar seas [J]. Journal of Geophysical Research,116:C11001.
    [54]Cheng R. T., Gartner J. W. (1984) Tides, tidal and residual currents in San Francisco Bay, California:results of measurements 1979-1980 [R]. USGS Water-Resources Investigations Report,84-4339, U. S. Geological Survey.
    [55]Choi K. H., Bilich A., Larson K. M., Axelrad P. (2004) Modified sidereal filtering: Implications for high-rate GPS positioning [J], Geophysical Research Letters,31:L22608.
    [56]Clarke P.J., Penna N.T. (2010) Ocean tide loading and relative GNSS in the British Isles [J]. Survey Review,42:212-228.
    [57]Collilieux X., Altamimi Z., Coulot D. et al. (2010) Impact of loading effects on determination of the international terrestrial reference frame [J]. Advances in space research, 45(1):144-154.
    [58]Collilieux, X., Dam T. van, Ray J., et al. (2012) Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters [J]. Journal of Geodesy,86:1-14.
    [59]Dam T. van, Wahr T. J., Milly P. C. D., et al. (2001) Crustal displacements due to continental water loading [J]. Geophysical Research Letters,28:651-654.
    [60]Dam T. van, Collilieux X., Wuite J., et al. (2012) Nontidal ocean loading:amplitudes and potential effects in GPS height time series [J]. Journal of Geodesy,86:1043-1057.
    [61]Darwin G.H. (1883) Report of a committee for the harmonic analysis of tidal observations[R]. Brit. Assoc. Advancement Sci., Rept:49-118.
    [62]Davis J.L., Elosegui P., Mitrovica J.X., et al. (2004) Climate-driven deformation of the solid Earth from GRACE and GPS [J]. Geophysical Research Letters,31:L24605.
    [63]Davis J.L., Wernicke B.P., Tamisiea M. E. (2012) On seasonal signals in geodetic time series[J]. Journal of Geophysical Research:Solid Earth,117:B01403.
    [64]DiCaprio C.J., Simons M. (2008) Importance of ocean tidal load corrections for differential InSAR [J]. Geophysical research letters,35:L22309.
    [65]Dill R., Dobslaw H. (2013) Numerical simulations of global-scale high-resolution hydrological crustal deformations [J]. Journal of Geophysical Research:Solid Earth,118: 5008-5017.
    [66]Dong D., Fang P., Bock Y, et al. (2002) Anatomy of apparent seasonal variations from GPS-derived site position time series [J]. Journal of Geophysical Research,107(B4):2075.
    [67]Doodson A.T. (1921) The harmonic development of the tide-generating potential [A].Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character[C],100:305-329.
    [68]Dragert F., Janes T.S., Lambert A. (2000) Ocean loading corrections for continuous GPS:a case study at the Canadian coastal site Holberg [J]. Geophysical Research Letters,27(14): 2045-2048.
    [69]Duan J., Bevis M., Fang P., et al. (1996) GPS meteorology:direct estimation of the value of precipitable water [J]. Journal of applied meteorology,35(6):830-838.
    [70]Dziewonski A.M., Anderson D.L. (1981) Preliminary reference Earth model [J]. Physics of the Earth and Planetary Interiors, 25:297-356.
    [71]Eanes R.J. (1994) Diurnal and semidiurnal tides from TOPEX/POSEIDON altimetry [R]. Eos, Transactions AGU, 75:108.
    [72]Eanes R.J., Shuler A. (1999) An improved global ocean tide model from TOPEX/Poseidon altimetry: CSR4.0 [R]. EGS 24th General Assembly, The Hague.
    [73]Egbert G.D., Bennett A.F., Foreman M.G.G. (1994) TOPEX/Poseidon tides estimated using a global inverse model [J]. Journal of Geophysical Research-Oceans,99:24821-24852.
    [74]Fang G, Kwok Y., Yu K., et al. (1999) Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand [J]. Continental shelf research, 19:845-869.
    [75]Fang G, Wang Y., Wei Z., et al. (2004) Empirical cotidal charts of the Bohai, Yellow and East China Seas from 10 years of TOPEX/Poseidon altimetry [J]. Journal of Geophysical Research, 109: C11006.
    [76]Farrell W.E. (1972) Deformation of Earth by surface loads [J]. Reviews of Geophysics and Space Physics, 10:761-797.
    [77]Foreman M.GG (1979) Manual for tidal heights analysis and prediction [R]. Patricia Bay. Pacific Marine Science Report 77-10, Institute of Ocean Sciences, Patricia Bay, Sidney, BC, 97pp.
    [78]Foreman M.G.G., Cherniawsky J.Y., Ballantyne V. A. (2009) Versatile Harmonic Tidal Analysis: Improvements and Applications [J]. Journal of atmospheric and oceanic technology, 26:806-817.
    [79]Fu Y, Freymueller J.T., Dam T. van. (2012) The effect of using inconsistent ocean tidal loading models on GPS coordinate solutions [J]. Journal of Geodesy,86:409-421.
    [80]Fund F., Morel L., Mocquet A., Boehm J. (2011) Assessment of ECMWF-derived tropospheric delay models within the EUREF Permanent Network [J]. GPS Solution, 15:39-48.
    [81]Goad C.C. (1980) Gravimetric tidal loading computed from integrated Green's function[J] Journal of Geophysical Research, 85:2679-2683.
    [82]Goebell S., King M.A. (2011) Effects of azimuthal multipath asymmetry on long GPS coordinate time series [J]. GPS solutions, 15:287-297.
    [83]Hartmann T., Wenzel H.G (1995) The HW95 tidal potential catalogue [J]. Geophysical Research Letters,22:3553-3556.
    [84]Hwang C., Huang J. F. (2013) Numerical modeling of displacements due to ocean tide loading:case study at GPS stations in Taiwan and western Pacific [J]. Journal of the Chinese Institute of Engineers,36(8):1017-1028.
    [85]Jacobs G A., Born G H., Parke M. E. Allen P. C. (1992) The global structure of the annual and semiannual sea surface height variability from Geosat altimeter data [J]. Journal of Geophysical Research.97:17813-17828.
    [86]Jay D. A. and Flinchem E. P. (1997) Interaction of fluctuating river flow with a barotropic tide:A test of wavelet tidal analysis methods [J]. Journal of Geophysical Research, 102:5705-5720.
    [87]Jentzsch, G. (1997) Earth tides and ocean tidal loading [A]. In:Wilhelm, H., Zurn, W., Wenzel, HG. (Eds.), Tidal Phenomena. Lecturer Notes in Earth Sciences [M],66:145-171.
    [88]Jiang W.P., Li Z., van Dam T., Ding W.W. (2013) Comparative analysis of different environmental loading methods and their impacts on the GPS height time series [J]. Journal of Geodesy,87:687-703.
    [89]Jin S., Luo O.F., Gleason. (2009) Characterization of diurnal cycles in ZTD from a decade of global GPS observations [J]. Journal of Geodesy,83:537-545.
    [90]Khan S.A., Scherneck H.G. (2003) The M2 ocean tide loading wave in Alaska:vertical and horizontal displacements, modelled and observed [J]. Journal of Geodesy,77:117-127.
    [91]King M., Colemar R., Nguyen L.N. (2003) Spurious periodic horizontal signals in sub-daily GPS position estimates [J]. Journal of Geodesy,77:15-21.
    [92]King M.A., Penna N.T., Clarke P.J., King E.C. (2005) Validation of ocean tide models around Antarctica using onshore GPS and gravity data [J]. Journal of Geophysical Research-Solid Earth,110:B08401.
    [93]King M. (2006) Kinematic and static GPS techniques for estimating tidal displacements with application to Antarctica [J]. Journal of Geodynamics,41:77-86.
    [94]King M.A., Watson C.S., Penna N.T., Clarke P.J. (2008) Subdaily signals in GPS observations and their effect at semiannual and annual periods [J]. Geophysical Research Letters,35:L03302.
    [95]King M., Williams S.D.P. (2009) Apparent stability of GPS monumentation from short baseline time series [J]. Journal of Geophysical Research-Solid Earth,114:B10403.
    [96]Kouba J. (2008) Implementation and testing of the gridded Vienna mapping function 1 (VMF1) [J]. Journal of Geodesy,82:193-205.
    [97]Kouba J. (2009) Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analysis [J]. Journal of Geodesy,83:199-208.
    [98]Kudryavtsev S.M. (2004) Improved harmonic development of the Earth tide-generating potential [J]. Journal of Geodesy,77:829-838.
    [99]Le Provost C, Genco M.L., Lyard F. et al. (1994) Spectroscopy of the world ocean tides from a finite-element hydrodynamic model [J]. Journal of Geophysical Research-Oceans, 99:24777-24797.
    [100]Le Provost C, Lyard F., Molines J.M. et al. (1998) A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set [J]. Journal of Geophysical Research-Oceans,103:5513-5529.
    [101]Lefevre F., Lyard F.H., Le Provost C. (2000) FES98:A new global tide finite element solution independent of altimetry [J]. Geophysical Research Letters,27:2717-2720.
    [102]Lefevre F., Yard F.H., Le Provost C. et al. (2002) FES99:A global tide finite element solution assimilating tide gauge and altimetric information [J]. Journal of Atmospheric and Oceanic Technology,19:1345-1356.
    [103]Liu Jingnan, Ge Maorong. (2003) PANDA software and its preliminary result of positioning and orbit determination [J]. Wuhan University Journal of Natural Science,8(2B):603-609.
    [104]Longman I.M. (1962) A Green's function for determining the deformation of the earth under surface mass loads:1. Theory [J]. Journal of Geophysical Research,67:845-850.
    [105]Longman I.M. (1963) A Green's function for determining the deformation of the earth under surface mass loads:2. Computation and numerical result [J]. Journal of Geophysical Research,68:485-496.
    [106]Lyard F., Lefevre F., Letellier T. et al. (2006) Modelling the global ocean tides:modern insights from FES2004 [J]. Ocean Dynamics,56:394-415.
    [107]Matsumoto K., Takanezawa T., Ooe M. (2000) Ocean tide models developed by assimilating TOPEX/Poseidon altimeter data into hydrodynamical model:a global model and a regional model around Japan [J]. Journal of Oceanography,56:567-581.
    [108]Matsumoto K., Sato T., Takanezawa T. et al. (2001) GOTIC2:a program for computation of oceanic tidal loading effect [J]. Journal of Geodetic Society of Japan,47:243-248.
    [109]Melachroinos S.A., Biancale R., Llubes M., et al. (2008) Ocean tide loading (OTL) displacements from global and local grids:comparisons to GPS estimates over the shelf of Brittany, France [J]. Journal of Geodesy,82:357-371.
    [110]Melachroinos S. A., Lemoine J. M., Tregoning P., Biancale R. (2009) Quantifying FES2004 S2 tidal model from multiple space-geodesy techniques, GPS and GRACE, over North West Australia [J]. Journal of Geodesy,83:915-923.
    [111]Melachroinos S.A., Lemoine F.G., Chinn D.S., et al. (2013) The effect of seasonal and long-period geopotential variations on the GPS orbits [J]. GPS Solutions, doi: 10.1007/s 10291-013-0346-4.
    [112]Mousavian R., Mashhadi Hossainali M. (2012) Detection of main tidal frequencies using least squares harmonic estimation method [J]. Journal of Geodetic Science,3:224-233.
    [113]McCarthy D., Petit G. (2004) IERS Conventions 2003. (IERS Technical Note 32) [R]. Verlag des Bundesamts fur Kartographie und Geodasie,Frankfurt am Main. ISBN 3-89888-884-3.
    [114]Munekane H., Boehm J. (2010) Numerical simulation of troposphere-induced errors in GPS-derived geodetic time series over Japan [J]. Journal of Geodesy,84:405-417.
    [115]Munekane H. (2013) Sub-daily noise in horizontal GPS kinematic time series due to thermal tilt of GPS monuments [J]. Journal of Geodesy,87:393-401.
    [116]Munk W.H., Macdonald GJ.F. (1960) The rotation of the Earth:a geophysical discussion[M].323 pp. University Press, Cambridge.
    [117]Munk W.H., Cartwright D.E. (1966) Tidal spectroscopy and prediction [R]. Philosophical Transactions of the Royal Society of London Series a-Mathematical and Physical Sciences, 259:533-581.
    [118]Na, S.-H., Baek, J. (2011) Computation of the Load Love number and the Load Green's function for an elastic and spherically symmetric earth [J]. Journal of the Korean Physical Society,58 (5):1195-1205.
    [119]Nahmani S., Bock O., Bouin M.N., et al. (2012) Hydrological deformation induced by the West African Monsoon:Comparison of GPS, GRACE and loading models [J]. Journal of Geophysical Research:Solid Earth,117:B05409.
    [120]Niell A.E. (1996) Global mapping functions for the atmosphere delay at radio wavelengths[J]. Journal of Geophysical Research,101 (B2):3227-3246.
    [121]Niell A. E. (2001) Preliminary evaluation of atmospheric mapping functions based on Numerical Weather Models [J]. Physics and Chemistry of the Earth (A),26(6-8):475-480.
    [122]Pagiatakis S.D. (1990) The response of a realistic earth to ocean tide loading [J]. Geophysical Journal International,103(2):541-560.
    [123]Pawlowicz R., Beardsley B., Lentz S. (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE [J]. Computers and Geosciences,28:929-937.
    [124]Penna, N. T., Stewart M. P. (2003) Aliased tidal signatures in continuous GPS height time series [J]. Geophysical Research Letters,30(23):2184.
    [125]Penna N.T., King M.A., Stewart M.P. (2007) GPS height time series:Short-period origins of spurious long-period signals [J]. Journal of Geophysical Research-Solid Earth,112:B02402.
    [126]Penna N.T., Bos M., Baker T., Scherneck H.G. (2008) Assessing the accuracy of predicted ocean tide loading displacement values [J]. Journal of Geodesy,82:893-907.
    [127]Petit G., Luzum B. (eds) (2011) IERS Conventions, (2010) IERS Technical Note 36[R]. Frankfurt am Main, Verlag des Bundesamts fur Kartographie und Geodasie,2010.
    [128]Ray R.D. (1999) A global ocean tide model from TOPEX/Poseidon altimetry:GOT99.2[R]. NASA Technical Memorandum,209478:58.
    [129]Roosbeek F. (1996) RATGP95:A harmonic development of the tide-generating potential using an analytical method [J]. Geophysical Journal International,126:197-204.
    [130]Savcenko R., Bosch W. (2008) EOT08a-empirical ocean tide model from multi-mission satellite altimetry[R]. Report No.81 Deutsches Geodatisches Forschungsinstitut (DGFI), Miinchen.
    [131]Savcenko R., Bosch W. (2011) EOT11a-a new tide model from Multi-Mission Altimetry[R]. OSTST Meeting, San Diego,19-21 October 2011
    [132]Scargle J. D. (1982) Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data [J]. The Astrophysical Journal,263:835-853.
    [133]Scheinert M., Zakrajsek A.F., Eberlein L., et al. (2012) Gravimetric Time Series Recording at the Argentine Antarctic Stations Belgrano Ⅱ and San Martin for the Improvement of Ocean Tide Models [A]. Geodesy for Planet Earth, International Association of Geodesy Symposia,136:581-589.
    [134]Scherneck H-G (1991) Aparametrized solid earth tidemodel and ocean tide loading effects for global geodetic base-line measurements [J].Geophysical Journal International, 106(3):677-694.
    [135]Scherneck H-G (1993) Ocean tide loading:Propagation of errors from the ocean tide into loading coefficients [J]. Manuscr. Geod.18:59-71.
    [136]Scherneck H.-G., Bos M.S. (2002):Ocean Tide and Atmospheric Loading[R]. IVS 2002 General Meeting Proceedings,205-214.
    [137]Schrama E.J.O. (2005) Three algorithms for the computation of tidal loading and their numerical accuracy [J]. Journal of Geodesy,78:707-714.
    [138]Schwiderski E.W. (1980) On charting global ocean tides [J]. Reviews of Geophysics, 18:243-268.
    [139]Seeber G., Menge F., Volksen C., et al. (1998) Precise GPS positioning improvements by reducing antenna and site dependent effects [A]. In:Brunner FK (ed) Advances in positioning and reference frames:IAG symposium [C]. vol.118. Springer, Berlin Heidelberg New York, pp.237-244.
    [140]Stewart M. P., Penna N. T., Lichti D. D. (2005) Investigating the propagation mechanism of unmodelled systematic errors on coordinate time series estimated using least squares [J]. Journal of Geodesy,79(8):479-489.
    [141]Steigenberger P., Boehm J., Tesmer V. (2009) Comparison of GMF/GPT with VMF1/ECMWF and Implications for atmospheric loading [J]. Journal of Geodesy, 83:943-951.
    [142]Stock G (1976), Modeling of Tides and Tidal Dissipation in the Gulf of California [D]. Ph.D. thesis, University of California, San Diego, La Jolla.
    [143]Taguchi E., Stammer, D., Zahel, W. (2012) Ocean Tides Obtained by Data Assimilative HAMTIDEModel [EB/OL]. Available from:http://icdc.zmaw.de/ham tide.html?&L=1.
    [144]Tamura Y. (1987) A harmonic development of the tide-generating potential [J]. Bulletin d'Information des Mare'es Terrestres,99:6813-6855.
    [145]Thomas I.D., King M.A., Clarke P.J. (2007) A comparison of GPS, VLBI and model estimates of ocean tide loading displacements [J]. Journal of Geodesy,81:359-368.
    [146]Thomas I.D., King M.A., Clarke P.J. (2008) A validation of ocean tide models around Antarctica using GPS measurements [A]. In:Capra A, Dietrich R (eds) Geodetic and geophysical observations in polar regions:overview in perspective of the International Polar Year[C]. Springer, Berlin, pp 211-235.
    [147]Thomas I.D., King M.A., Clarke P.J., Penna N.T. (2011) Precipitable water vapor estimates from homogeneously reprocessed GPS data:An intertechnique comparison in Antarctica[J]. Journal of Geophysical Research:Atmospheres,116:D04107.
    [148]Tregoning P., Herring T.A. (2006) Impact of a priori hydrostatic delay errors on GPS estimates of station heights and zenith total delays [J]. Geophysical Journal International, 33:L23303.
    [149]Tregoning P., Watson C. (2011) Correction to "Atmospheric effects and spurious signals in GPS analyses" [J]. Journal of Geophysical Research, 116:B02412.
    [150]Urschl C., Dach R., Hugentobler U., Schaer S., Beutler G. (2005) Validating ocean tide loading models using GPS [J]. Journal of Geodesy, 78:616-625.
    [151]Vergnolle M., Bouin M. N. L., Morel, F., et al. (2008) GPS estimates of ocean tide loading in NW-France:determination of ocean tide loading constituents and comparison with a recent ocean tide model [J]. Geophysical Journal International,173(2):444-458.
    [152]Vey S., Calais E., Llubes M., et al. (2002) GPS measurements of ocean loading and its impact on zenith tropospheric delay estimates:a case study in Brittany, France [J]. Journal of Geodesy,76:419-427.
    [153]Vey S., Dietrich R., Fritsche M., et al. (2006) Steigenberger P. Influence of mapping function parameters on global GPS network analyses:comparisons between NMF and IMF[J]. Geophysical Research Letters,33:L01814,1-4.
    [154]Wang, H., L. Xiang, L. Jia et al.(2012) Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust2.0 [J]. Computers and Geosciences, 49:190-99.
    [155]Wang R., Wang H. (2007) A fast converging and anti-aliasing algorithm for Green's functions in terms of spherical or cylindrical harmonics [J]. Geophysical Journal International,170:239-248.
    [156]Wei H., Jin S., He X. (2012) Effects and disturbances on GPS-derived zenith tropospheric delay during the CONT08 campaign [J]. Advances in Space Research,50:632-641.
    [157]Wessel P., Smith W.H.F. (1996) A global, self-consistent, hierarchical, highresolution shoreline database [J]. Journal of Geophysical Research,101 (B4):8741-8743.
    [158]Won, J., Park, K., Ha, J., Cho, J. (2010) Effects of tropospheric mapping functions on GPS data processing [J]. J. Astron. Space Sci.,27:21-30.
    [159]Yeh T. K., Hwang C., Huang J. F., et al. (2011) Vertical displacement due to ocean tidal loading around Taiwan based on GPS observations [J]. Terr. Atmos. Ocean. Sci.,22(4): 373-382.
    [160]Yousefi M., Mashhadi Hossainali M. (2013) Analyzing the tidal frequency content using Karhunen-Loeve Expansion technique [J]. Journal of Geodetic Science,3:73-86.
    [161]Yuan L.G., Ding X.L., Zhong P., et al., (2009) Estimates of ocean tide loading displacements and its impact on position time series in Hong Kong using a dense continuous GPS network[J]. Journal of Geodesy,83(11):999-1015.
    [162]Yuan L. G., Chao B. F. (2012) Analysis of tidal signals in surface displacement measured by a dense continuous GPS array [J]. Earth and Planetary Science Letters,355-356,255-261.
    [163]Yuan L.G., Chao B. F., Ding X.L., Zhong P. (2013) The tidal displacement field at Earth's surface determined using global GPS observations [J]. Journal of Geophysical Research-Solid Earth,118(5):2618-2632.
    [164]Yun H.S., Lee D.H., Song D.S. (2007) Determination of vertical displacements over the coastal area of Korea due to the ocean tide loading using GPS observations [J]. Journal of Geodynamics,43:528-541.
    [165]Zahran, K. H., Jentzsch G., Seeber G. (2005) World-wide synthetic tide parameters for gravity and vertical and horizontal displacements [J]. Journal of Geodesy,79:293-299.
    [166]Zahran, K. H., Jentzsch G., Seeber G. (2006) Accuracy assessment of ocean tide loading computations for precise geodetic observations [J]. Journal of Geodynamics 42:159-174.
    [167]Zhou J., Hwang C., Sun H. et al. (2013) Precise determination of ocean tide loading gravity effect for absolute gravity stations in coastal area of China:Effects of land sea boundary and station coordinate [J]. Journal of Geodynamics,68:29-36.
    [168]Zou R., Freymueller J.T., Ding K., et al. (2014) Evaluating Seasonal Loading Models and their Impact on Global and Regional Reference Frame Alignment [J]. Journal of Geophysical Research:Solid Earth,119:1337-1358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700